# Assignment5 - Markov Decision Procedures 

Given: May 30 Due: June 9

## Problem 5.1 (Markov Decision Processes)

1. Give an optimal policy $\pi^{*}$ for the following MDP:

- set of states: $S=\{0,1,2,3,4,5\}$ with initial state 0
- set of actions for $s \in S: A(s)=\{-1,1\}$
- transition model for $s, s^{\prime} \in S$ and $a \in A(s): P\left(s^{\prime} \mid s, a\right)$ is such that
$-s^{\prime}=(s+a) \bmod 6$ with probability $2 / 3$,
$-s^{\prime}=(s+3) \bmod 6$ with probability $1 / 3$.
- reward function: $R(5)=1$ and $R(s)=-0.1$ for $s \in S \backslash\{5\}$

2. State the Bellman equation.
3. Complete the following high-level description of the value iteration algorithm:

- The algorithm keeps a table $U(s)$ for $s \in S$, that is initialized with
- In each iteration, it uses the
in order to
- $U(s)$ will converge to the


## Problem 5.2 (Bellman Equation)

State the Bellman equation and explain every symbol in the equation and what the equation is used for and how.

Consider the following world:

| +50 | -1 | -1 | -1 | $\ldots$ | -1 | -1 | -1 | -1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start |  |  |  | $\ldots$ |  |  |  |  |
| -50 | +1 | +1 | +1 | $\ldots$ | +1 | +1 | +1 | +1 |

The world is 101 fields wide (i.e., 203 fields in total). In the Start state an agent has two possible actions, $U p$ and Down. It cannot return to Start though and the cannot pass gray fields, so after the first move the only possible action is Right.

1. Model this world as a Markov Decision Process, i.e., give the components $S$, $s_{0}, A, P$, and $R$.
2. For what discount factors $\gamma$ should the agent choose $U p$ and for which Down? Compute the utility of each action (i.e., the utility of the successor state) as a function of $\gamma$.
3. What is the optimal policy if the upper path is better?

## Problem 5.4 (Value Iteration for Navigation)

Implement value iteration for an agent navigating worlds like the $4 \times 3$ world from the lecture notes. The agent has four possible actions: right, up, left, down. The probability of actually moving in the intended direction is $p$ and the probability of moving in one of the orthogonal directions is $\frac{1-p}{2}$ respectively. For example, if $p=0.8$ and the chosen action is $u p$, the agent will actually move up with a probability of $p=0.8$ and will move left and right with a probability of 0.1 each. If the agent ends up moving in a direction that has no free adjacent square, it will remain on its current square instead. For example, if the agent is on square $(0,0)$ with the action $u p$, it will end up on square $(0,1)$ with a probability of $p$, on square $(1,0)$ with a probability of $\frac{1-p}{2}$ and on square $(0,0)$ with a probability of $\frac{1-p}{2}$.

| $(0,2)$ | $(1,2)$ | $(2,2)$ | $(3,2)$ |
| :---: | :---: | :---: | :---: |
| -0.040 | -0.040 | -0.040 | 1.000 |
| $\overrightarrow{.}$ | - $\overrightarrow{753}$ | $\overrightarrow{055}$ | T |
| 0.647 | 0.753 | 0.855 | 1.000 |
| $(0,1)$ | $(1,1)$ | $(2,1)$ | $(3,1)$ |
| -0.040 |  | -0.040 | -1.000 |
| $\uparrow$ | W | $\uparrow$ | T |
| 0.557 |  | 0.569 | -1.000 |
| $(0,0)$ | $(1,0)$ | $(2,0)$ | $(3,0)$ |
| -0.040 | -0.040 | -0.040 | -0.040 |
| $\uparrow$ | $\leftarrow$ | $\uparrow$ | $\leftarrow$ |
| 0.465 | 0.386 | 0.451 | 0.230 |

Results for $4 \times 3$ world with $p=0.8, \gamma=0.95, \varepsilon=0.001$.

A skeleton implementation with technical instructions can be found at https://kwarc. info/teaching/AI/resources/AI2/mdp/. It also allows the visualization of the computed utilities and policy (see figure above): Each square is annotated with the coordinates, the reward, the computed policy and the computed utility. Walls and terminal nodes don't have a policy and are marked with $W$ and $T$ respectively.

Hint: You will also have to compute a policy based on the utilities obtained from value iteration. For that, you should pick the actions that maximize the expected utility. A common mistake is the assumption that the best policy is always to go in the direction of the square with the maximal utility.

