
Assignment2 – Bayesian Networks
Given: May 2 Due: May 16

Problem 2.1 (Is your TA in the office?)
You want to discuss something with your TA. You know that

1. the probability of your TA being in the office, assuming it is morning, is 1
5
,

2. if your TA is in the office, there is a 1
3
probability it is morning,

3. the probabilities that it is morning or afternoon are both 1
2

Your tasks:
1. Write down the probabilities mentioned above as formulas

Solution: Let𝑚 denote that it is morning and 𝑜 denote that the TA is in the
office.
1. 𝑃(𝑜 ∣ 𝑚) = 1

5

2. 𝑃(𝑚 ∣ 𝑜) = 1
3

3. 𝑃(𝑚) = 𝑃(¬𝑚) = 1
2

2. Compute the full joint probability distribution

Solution:

• 𝑃(𝑜,𝑚) = 𝑃(𝑜 ∣ 𝑚) ⋅ 𝑃(𝑚) = 1
10
(product rule)

• 𝑃(¬𝑜,𝑚) = 4
10
, because 𝑃(𝑚) = 𝑃(𝑜,𝑚) + 𝑃(¬𝑜,𝑚) (marginalization)

Now, from 𝑃(𝑚 ∣ 𝑜) ⋅𝑃(𝑜) = 𝑃(𝑚, 𝑜) it follows that 𝑃(𝑜) =
1
10
1
3

= 3
10
. So we get

• 𝑃(𝑜,¬𝑚) = 2
10
, because 𝑃(𝑜) = 𝑃(𝑜,𝑚) + 𝑃(𝑜,¬𝑚) (marginalization)

• 𝑃(¬𝑜,¬𝑚) = 3
10
, because 1 − 𝑃(𝑜) = 𝑃(¬𝑜) = 𝑃(¬𝑜,𝑚) + 𝑃(¬𝑜,¬𝑚)

(marginalization)
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3. What’s the probability you’ll meet your TA, if you come to the office in the
afternoon?

Solution: 𝑃(𝑜 ∣ ¬𝑚) = 𝑃(𝑜,¬𝑚)
𝑃(¬𝑚)

= 4
10

Problem 2.2 (Stochastic and Conditional independence)
Consider the following random variables:

• three flips 𝐶1, 𝐶2, and 𝐶3 of the same fair coin, which can be heads or tails

• the variable 𝐸 which is 1 if both 𝐶1 and 𝐶2 are heads and 0 otherwise

• the variable 𝐹 which is 1 if both 𝐶2 and 𝐶3 are heads and 0 otherwise

Out of the above 5 random variables,
1. Give three random variables 𝑋,𝑌, 𝑍 such that 𝑋 and 𝑌 are stochastically in-

dependent but not conditionally independent given 𝑍,

Solution: E.g., 𝐶1 and 𝐶2 with 𝑍 = 𝐸.

2. Give three random variables 𝑋,𝑌, 𝑍 such that 𝑋 and 𝑌 are not stochastically
independent but conditionally independent given 𝑍.

Solution: E.g., 𝐸 and 𝐹 with 𝑍 = 𝐶2.

Problem 2.3 (Calculations)
Assume random variables𝑋,𝑌 both with domain {0, 1, 2}, whose joint probabil-

ity distribution 𝑃(𝑋,𝑌) is given by

𝑥 𝑦 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)
0 0 𝑎
0 1 𝑏
0 2 𝑐
1 0 𝑑
1 1 𝑒
1 2 𝑓
2 0 𝑔
2 1 ℎ
2 2 𝑖
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1. Give all subsets of the probabilities {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖} that sum to 1.

Solution: Only {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖}

2. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 ≠ 0).

Solution: 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ + 𝑖

3. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 = 1, 𝑌 = 0).

Solution: 𝑑

4. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 = 1 ∣ 𝑌 = 0).

Solution: 𝑑∕(𝑎 + 𝑑 + 𝑔)

5. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 + 𝑌 = 2).

Solution: 𝑐 + 𝑒 + 𝑔

6. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 + 𝑌 = 2 ∣ 𝑋 > 𝑌).

Solution: 𝑔∕(𝑑 + 𝑔 + ℎ)

Problem 2.4 (AFT Tests)
Trisomy 21 (Down syndrome) is a genetic anomaly that can be diagnosed during

pregnancy using an amniotic fluid test.
The probability of a foetus having Down syndrome is strongly correlated with

the age of the pregnant parent. We will only consider the following two age groups.

1. For 25 year olds the probability is one in 1250,

2. for 43 year old parents it increases to one in fifty.

However, diagnostic tests are never perfect. We distinguish two kinds of errors:
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3. Type I Error (False Positive): The test result is positive even though the child
is healthy.

4. Type II Error (False Negative): The test result is negative even though the
child has trisomy 21.

The probabilities of Type I and Type II Errors are both merely 1% for amniotic fluid
tests for Down syndrome.

1. Express the four items above in the form of conditional probabilities. Use
the random variable 𝐹 with domain {𝐴𝑔𝑒25, 𝐴𝑔𝑒43} for the age of the preg-
nant person and the Boolean random variables 𝑃𝑜𝑠 and 𝐷𝑜𝑤𝑛 for the propo-
sitions “The amniotic fluid test is positive” and “The child hasDown syndrome”
respectively.

Solution: 𝑃(𝐷𝑜𝑤𝑛 ∣ 𝐹 = 𝐴𝑔𝑒25) = 0.0008, 𝑃(𝐷𝑜𝑤𝑛 ∣ 𝐹 = 𝐴𝑔𝑒43) = 0.02,
𝑃(𝑃𝑜𝑠 ∣ ¬𝐷𝑜𝑤𝑛) = 0.01, 𝑃(¬𝑃𝑜𝑠 ∣ 𝐷𝑜𝑤𝑛) = 0.01.

2. Assume that we have a 25 year old pregnant person. Using Bayes’ theorem,
express and compute the probability that their child has Down syndrome,
given that the amniotic fluid test is positive. What can we conclude from the
result?

Solution: We normalize to 𝐹 = 𝐴𝑔𝑒25, making 𝑃(𝐷𝑜𝑤𝑛) = 0.0008 and com-
pute:

𝑃(𝐷𝑜𝑤𝑛 ∣ 𝑃𝑜𝑠) =
𝑃(𝑃𝑜𝑠 ∣ 𝐷𝑜𝑤𝑛) ⋅ 𝑃(𝐷𝑜𝑤𝑛)

𝑃(𝑃𝑜𝑠)
=

𝑃(𝑃𝑜𝑠 ∣ 𝐷𝑜𝑤𝑛) ⋅ 𝑃(𝐷𝑜𝑤𝑛)
𝑃(𝑃𝑜𝑠 ∧ 𝐷𝑜𝑤𝑛) + 𝑃(𝑃𝑜𝑠 ∧ ¬𝐷𝑜𝑤𝑛)

=
𝑃(𝑃𝑜𝑠 ∣ 𝐷𝑜𝑤𝑛) ⋅ 𝑃(𝐷𝑜𝑤𝑛)

𝑃(𝑃𝑜𝑠 ∣ 𝐷𝑜𝑤𝑛) ⋅ 𝑃(𝐷𝑜𝑤𝑛) + 𝑃(𝑃𝑜𝑠 ∣ ¬𝐷𝑜𝑤𝑛) ⋅ 𝑃(¬𝐷𝑜𝑤𝑛)

=
(1 − 𝑃(¬𝑃𝑜𝑠 ∣ 𝐷𝑜𝑤𝑛)) ⋅ 𝑃(𝐷𝑜𝑤𝑛)

(1 − 𝑃(¬𝑃𝑜𝑠 ∣ 𝐷𝑜𝑤𝑛) ⋅ 𝑃(𝐷𝑜𝑤𝑛)) + 𝑃(𝑃𝑜𝑠 ∣ ¬𝐷𝑜𝑤𝑛) ⋅ (1 − 𝑃(𝐷𝑜𝑤𝑛))

= 0.99 ⋅ 0.0008
0.99 ⋅ 0.0008 + 0.010.9992 ≈ 0.07

So, even with a positive test result, the probability of the child actually having
Down syndrome is still only 7%, simply due to Down syndrome being rela-
tively rare in young parents. Consequently, there is little point in applying
this particular test without exceptional cause for concern.

Problem 2.5 (Medical Bayesian Network)
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BothMalaria andMeningitis can cause a fever, which canbemeasured by check-
ing for a high body temperature. Of course you may also have a high body temper-
ature for other reasons. We consider the following random variables for a given
patient:

• 𝑀𝑎𝑙: The patient has malaria.

• 𝑀𝑒𝑛: The patient has meningitis.

• 𝐻𝐵𝑇: The patient has a high body temperature.

• 𝐹𝑒𝑣: The patient has a fever.

Consider the following Bayesian network for this situation:

𝑀𝑎𝑙 𝑀𝑒𝑛

𝐹𝑒𝑣

𝐻𝐵𝑇

1. Explain the purpose of the edges in the network regarding the conditional
probability table.

Solution: The parents (i.e, nodes from which there are incoming edges) of 𝑋
are the variables that𝑋may depend on. The conditional probability table for
𝑋 must take all of those as additional inputs.

2. Whatwould have happened if we had constructed the network using the vari-
able order𝑀𝑎𝑙,𝑀𝑒𝑛,𝐻𝐵𝑇, 𝐹𝑒𝑣? Would that have l better network?

Solution: We would have obtained additional edges from 𝑀𝑎𝑙 and 𝑀𝑒𝑛 to
𝐹𝑒𝑣 because they affect the probability of fever. That would be a worse net-
work because more edges increase the complexity.

3. Howdowe compute the probability distribution for the patient havingmalaria,
given that he has high body temperature? State the query variables, hidden
variables and evidence and write down the equation for the probability we
are interested in.

Solution: Query variable: 𝑀𝑎𝑙. Evidence: 𝐻𝐵𝑇. Hidden variables: 𝑀𝑒𝑛,
𝐹𝑒𝑣. We get:

• start
𝑃(𝑀𝑎𝑙 ∣ 𝐻𝐵𝑇 = 𝑡𝑟𝑢𝑒)
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• normalization to turn the conditional distribution into anunconditional
one

= 𝛼𝑃(𝑀𝑎𝑙,𝐻𝐵𝑇 = 𝑡𝑟𝑢𝑒)

where 𝛼 = 1∕𝑃(𝐻𝐵𝑇 = 𝑡𝑟𝑢𝑒) is the constant factor that normalizes the
vector ⟨𝑃(𝑀𝑎𝑙 = 𝑡𝑟𝑢𝑒,𝐻𝐵𝑇 = 𝑡𝑟𝑢𝑒), 𝑃(𝑀𝑎𝑙 = 𝑓𝑎𝑙𝑠𝑒,𝐻𝐵𝑇 = 𝑡𝑟𝑢𝑒)⟩

• marginalization to bring in the hidden variables

= 𝛼
∑

𝑚,𝑓
𝑃(𝑀𝑎𝑙,𝐻𝐵𝑇 = 𝑡𝑟𝑢𝑒,𝑀𝑒𝑛 = 𝑚,𝐹𝑒𝑣 = 𝑓)

where𝑚 and 𝑓 range over the possible values of𝑀𝑒𝑛 and 𝐹𝑒𝑣
• chain rule to turn the joint distribution into a product of conditional
ones, ordering the variables according to the structure of the network

= 𝛼 ⋅
∑

𝑚,𝑓
𝑃(𝑀𝑎𝑙) ⋅ 𝑃(𝑀𝑒𝑛 = 𝑚 ∣ 𝑀𝑎𝑙) ⋅ 𝑃(𝐹𝑒𝑣 = 𝑓 ∣ 𝑀𝑎𝑙,𝑀𝑒𝑛 = 𝑚)⋅

𝑃(𝐻𝐵𝑇 = 𝑡𝑟𝑢𝑒 ∣ 𝐹𝑒𝑣 = 𝑓,𝑀𝑎𝑙,𝑀𝑒𝑛 = 𝑚)

Note that each factor is a vector with two entries, one for 𝑀𝑎𝑙 = 𝑡𝑟𝑢𝑒
and one for 𝑀𝑎𝑙 = 𝑓𝑎𝑙𝑠𝑒. These vectors are multiplied component-
wise.

• use the structure of the network to drop redundant conditions

= 𝛼⋅
∑

𝑚,𝑓
𝑃(𝑀𝑎𝑙)⋅𝑃(𝑀𝑒𝑛 = 𝑚)⋅𝑃(𝐹𝑒𝑣 = 𝑓 ∣ 𝑀𝑎𝑙,𝑀𝑒𝑛 = 𝑚)⋅𝑃(𝐻𝐵𝑇 = 𝑡𝑟𝑢𝑒 ∣ 𝐹𝑒𝑣 = 𝑓)

Now all factors are entries of the conditional probability table of the net-
work, which can be plugged in to compute the result.

Because𝑀𝑎𝑙 is boolean, we could have started with 𝑃(𝑀𝑎𝑙 = 𝑡𝑟𝑢𝑒 ∣ 𝐻𝐵𝑇 =
𝑡𝑟𝑢𝑒) right away. Then we could have skipped the normalization step and
would not have to multiply vectors. But for variables with many values, the
above is practical because it derives the entire distribution in one go.

Problem 2.6 (Bayesian Networks in Python)
The goal of this exercise is to implement inference by enumeration in Bayesian

networks in Python. You can find the necessary files at https://kwarc.info/
teaching/AI/resources/AI2/bayes/.

Your task is to implement the query function in bayes.py. Use test.py for
testing your implementation.

Important: We will test your code automatically. So please make sure that:

• The tests intest.pywork on your code (without anymodifications totest.py)

• You use a recent Python version (≥ 3.5)

• You don’t use any libraries
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• You only upload a single file bayes.py with your implementation of query

Otherwise you risk getting no points.

Hint: First implement a function for the full joint probability distribution.

Problem 2.7 (Bayesian Epistemology)
Consider the following sayings. How can we express them in the form of con-

ditional probabilities? Give actual mathematical formulas and explain how they
relate to the sayings.

Are they (as statements about probabilities) actually true or under which as-
sumptions can they be?

1. The simplest explanation is always the best.

Solution: Obviously, we have a problem to quantify what simple exactly
means. So let’s take one step back and think about what it means for one
hypothesis 𝐴 to be simpler than some hypothesis 𝐵.
One way to answer that question would be to say: 𝐴 is simpler than 𝐵 if the
set of propositions entailed by 𝐴 is a proper subset of those entailed by 𝐵. In
this case we can say 𝐴𝑃1 ∧ … ∧ 𝑃𝑛 and 𝐵𝑃1 ∧ … ∧ 𝑃𝑛 ∧ 𝑃𝑛+1 ∧ … ∧ 𝑃𝑚.
Naturally, we have 𝑃(𝐴) ≥ 𝑃(𝐴 ∧ 𝐵) for any propositions 𝐴, 𝐵, hence under
this interpretation the claim is true.

2. Extraordinary claims require extraordinary evidence.

Solution: Let’s assume “extraordinary” means that the prior probability (in
the absence of any evidence) is rather small, i.e. 𝑃(𝐴) ≈ 01. If we want the
claim 𝐴 to be likely, we need to find some evidence 𝑒 such that 𝑃(𝐴 ∣ 𝑒) ≈ 1.
By Bayes’ Theorem:

1 ≈ 𝑃(𝐴 ∣ 𝑒) =
𝑃(𝑒 ∣ 𝐴) ⋅

≈0⏞⏞⏞
𝑃(𝐴)

𝑃(𝑒)

It is immediately obvious that for this to hold,𝑃(𝑒)needs to be highly unlikely,
i.e. extraordinary.

3. Absence of evidence is not evidence of absence.
1I’ll write 𝑃(𝑥) ≈ 0 resp. ≈ 1 simply for “is very unlikely” and “is very likely”
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Solution: Let’s assume that 𝑒 is evidence for 𝐴 iff 𝑃(𝐴 ∣ 𝑒) > 𝑃(𝐴), i.e. ob-
serving 𝑒 actuallymakes the proposition𝐴more likely. I claim: If 𝑒 is evidence
for 𝐴, then ¬𝑒 is evidence for ¬𝐴, making the claim false:

𝑃(𝐴 ∣ 𝑒) =
𝑃(𝑒 ∣ 𝐴)𝑃(𝐴)

𝑃(𝑒)
> 𝑃(𝐴)

⇝𝑃(𝑒 ∣ 𝐴)𝑃(𝐴) > 𝑃(𝑒)𝑃(𝐴)
⇝(1 − 𝑃(¬𝑒 ∣ 𝐴))𝑃(𝐴) > (1 − 𝑃(¬𝑒))𝑃(𝐴)
⇝𝑃(¬𝑒 ∣ 𝐴)𝑃(𝐴)
⏟⎴⎴⎴⏟⎴⎴⎴⏟

=𝑃(¬𝑒,𝐴)

< 𝑃(¬𝑒)𝑃(𝐴)

⇝
⏞⎴⎴⎴⏞⎴⎴⎴⏞
𝑃(𝐴 ∣ ¬𝑒)𝑃(¬𝑒) < 𝑃(¬𝑒)𝑃(𝐴)

⇝𝑃(𝐴 ∣ ¬𝑒) < 𝑃(𝐴)
⇝1 − 𝑃(¬𝐴 ∣ ¬𝑒) < 1 − 𝑃(¬𝐴)
⇝𝑃(¬𝐴 ∣ ¬𝑒) > 𝑃(¬𝐴)

□
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