
Assignment8 – Learning
Given: June 26 Due: July 1

Problem 8.1 (Decision List)
Construct a decision list to classify the data below. The tests should be as small

as possible (in terms of attributes), breaking ties among tests with the same number
of attributes by selecting the one that classifies the greatest number of examples
correctly. If multiple tests have the same number of attributes and classify the same
number of examples, then break the tie using attributes with lower index numbers
(e.g., select 𝐴1 over 𝐴2).

Example 𝐴1 𝐴2 𝐴3 𝐴4 𝑦
𝑥1 1 0 0 0 1
𝑥2 1 0 1 1 1
𝑥3 0 1 0 0 1
𝑥4 0 1 1 0 0

Solution: if 𝐴1 = 1 then 1
else if 𝐴3 = 1 then 0
else 1

Problem 8.2 (General Properties of Linear Regression)
Consider a list of examples (�⃗�𝑖 , 𝑦𝑖) ∈ ℝ𝑛 ×ℝ for 𝑖 = 1,… , 𝑚. We want to apply

linear regression.
1. What is the hypothesis space?

Solution: The set of linear functions �⃗� ↦ 𝑤 ⋅ �⃗� + 𝑤0.

2. What is the point of the trick to set (𝑥𝑖)0 = 1 for all examples?

Solution: If we assume all 𝑥𝑖 are of the form ⟨1, (�⃗�𝑖)1,… , (�⃗�𝑖)𝑚⟩ we can write
the hypotheses as functions �⃗� ↦ 𝑤 ⋅ �⃗� for vectors 𝑤 ∈ ℝ1+𝑛. That simplifies
the calculations.

3. What is themaximumnumber of examples for which a consistent hypothesis
can still exist?

Solution: Trick question: There can be infinitely many �⃗�. So if we only
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pick examples of the form (�⃗�, ℎ(�⃗�)) for some fixed hypothesis ℎ, we can find
infinitely many examples and still have ℎ as a consistent hypothesis.
But we do have the following: If the examples (�⃗�, 𝑦) are chosen randomly
and IID, then requiring consistency, i.e., 𝑤 ⋅ �⃗�𝑖 = 𝑦𝑖 for 𝑖 = 1,… , 𝑚, yields a
system of 𝑚 linear equations in 1 + 𝑛 unknowns (the components of 𝑤). So
we can realistically expect being able to find a consistent hypothesis only for
up to 1 + 𝑛 examples.

4. How important is it to find a consistent hypothesis here?

Solution: With continuous data (real numbers instead of, e.g., Boolean clas-
sifications), a very limited hypothesis space (only linear functions instead of
all functions), and many examples (typically much more than 𝑛), it is un-
likely that any hypothesis is consistent. Therefore, practical applications aim
for error minimization instead of consistency. A consistent hypothesis would
have error 0. Error minimization can be seen as finding the least inconsistent
hypothesis.

5. What kind of loss function should we use here?

Solution: 𝐿0∕1 loss (error rate) is not a good choice. It just counts how often
ℎ(�⃗�𝑖) ≠ 𝑦𝑖 , but equality comparisons on real number data are typically not
reliable.
Instead, we should a loss function that measures how far off a hypothesis is.
Typical choices are |ℎ(�⃗�𝑖) − 𝑦𝑖| and (ℎ(�⃗�𝑖) − 𝑦𝑖)2.

Problem 8.3 (Support Vectors)
Consider the following 2-dimensional dataset
support vector classification
𝐱1 = ⟨0, 0⟩ 𝐲1 = −1
𝐱2 = ⟨0, 0.5⟩ 𝐲2 = −1
𝐱3 = ⟨0.5, 0⟩ 𝐲3 = −1
𝐱4 = ⟨1, 1⟩ 𝐲4 = 1
𝐱5 = ⟨2, 2⟩ 𝐲5 = −1

1. Give a linear separator in the form ℎ(𝐱) = 𝐰 ⋅𝐱+𝑏 for the dataset containing
only the examples for 𝐱1 to 𝐱4.

Solution: Many solutions, e.g.,𝐰 = ⟨1, 1⟩ and 𝑏 = −1.
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2. Explain informally why no linear separator exists for the full dataset of all 5
vectors.

Solution: The points 𝐱1, 𝐱4, 𝐱5 lie on a line and themiddle one has a different
classification than the others. No line can have 𝐱1 and 𝐱5 on one side and 𝐱4
on the other.

3. Transform the dataset into a 3-dimensional dataset by applying the function
𝐹(⟨𝑢, 𝑣⟩) = ⟨𝑢2, 𝑣2, 𝑢 + 𝑣⟩.

Solution:

support vector 𝐱 𝐹(𝐱) classification
𝐱1 ⟨0, 0, 0⟩ 𝐲1 = −1
𝐱2 ⟨0, 0.25, 0.5⟩ 𝐲2 = −1
𝐱3 ⟨0.25, 0, 0.5⟩ 𝐲3 = −1
𝐱4 ⟨1, 1, 2⟩ 𝐲4 = 1
𝐱5 ⟨4, 4, 4⟩ 𝐲5 = −1

4. Give a linear separator for the transformed full dataset in the form ℎ(𝐱) =
𝐰 ⋅ 𝐱 + 𝑏.

Solution: Many solutions, e.g.,𝐰 = ⟨−1,−1, 2⟩ and 𝑏 = −1.

Problem 8.4 (Weight Updates)
We’re trying to find a linear separator. Our examples are the set

Example number 𝐱1 𝐱2 y
1 2 0 2
2 3 1 2

Ourhypothesis space contains the functionsℎ𝐰(𝐱) = 𝐴(𝐰⋅𝐱) for 2+1-dimensional
vectors 𝐰, 𝐱 (using the trick 𝐱0 = 1 to allow for the constant term 𝐰0) and some
fixed function 𝐴.

As the initial weights, we use𝐰0 = 𝐰1 = 𝐰2 = 0.
For each of the following cases, iterate the respective weight update rule once

for each example (using the examples in the order listed). Use learning rate 𝛼 = 1.
1. Using the threshold function𝐴(𝑧) = 𝒯(𝑧), i.e.,𝐴(𝑧) = 1 if 𝑧 > 0 and𝐴(𝑧) = 0

otherwise. Here we cannot do gradient descent, so we have to use the percep-
tron learning rule.

Solution: The update rule is𝐰𝑖 ← 𝐰𝑖+𝛼(𝑦−ℎ𝐰(𝐱))𝐱𝑖 . Using the examples,
we obtain:
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• Example 1: 𝑦−ℎ𝐰(𝐱) = 2−𝒯((0, 0, 0)⋅(1, 2, 0)) = 2, i.e.,𝐰𝑖 ← 𝐰𝑖+1𝐱𝑖 .
Thus,𝐰 ← (2, 4, 0).

• Example 2: 𝑦−ℎ𝐰(𝐱) = 2−𝒯((2, 4, 0)⋅(1, 3, 1)) = 1, i.e.,𝐰𝑖 ← 𝐰𝑖+1𝐱𝑖 .
Thus,𝐰 ← (3, 7, 1).

2. Using the logistic function𝐴(𝑧) = 1∕(1+𝑒−𝑥). Here we use gradient descent.

Solution: The update rule is 𝐰𝑖 ← 𝐰𝑖 + 𝛼(𝑦 − ℎ𝐰(𝐱))ℎ𝐰(𝐱)(1 − ℎ𝐰(𝐱))𝐱𝑖 .
Using the examples, we obtain:

• Example 1: ℎ𝐰(𝐱) = 1∕(1 + 𝑒0) = 1∕2, i.e.,𝐰𝑖 ← 𝐰𝑖 + 1∕4(2 − 1∕2)𝐱𝑖 .
Thus,𝐰 ← (3∕8, 3∕4, 0).

• Example 2: ℎ𝐰(𝐱) = 1∕(1 + 𝑒−((3∕8,3∕4,0)⋅(1,3,1))) = 1∕(1 + 𝑒−21∕8), i.e.,
(after rounding)𝐰𝑖 ← 𝐰𝑖 + 0.07𝐱𝑖 . Thus,𝐰 ← (0.44, 0.95, 0.07).
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