
Assignment5 – Markov Decision Procedures
Given: May 30 Due: June 3

Problem 5.1 (HMMs in Python)
Implement filtering, prediction and smoothing for HMMs in Python by complet-

ing the implementation ofhmm.py athttps://kwarc.info/teaching/AI/resources/
AI2/hmm/.

Hint: This problem uses numpy, which is a Python library for working with ar-
rays/matrices. If you have never worked with numpy before, you can find many
high-quality introductions online. Due to its popularity and frequent use for ma-
chine learning etc., it is definitely worth getting to know numpy. That being said,
you only need very few and basic numpy functions for this assignment, which you
should be able to find without problems (e.g. searching for numpy matrix multipli-
cation).

Solution: See https://kwarc.info/teaching/AI/resources/AI2/hmm/.

Problem 5.2 (Markov Decision Processes)
1. Give an optimal policy 𝜋∗ for the following MDP:

• set of states: 𝑆 = {0, 1, 2, 3, 4, 5} with initial state 0
• set of actions for 𝑠 ∈ 𝑆: 𝐴(𝑠) = {−1, 1}
• transition model for 𝑠, 𝑠′ ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠): 𝑃(𝑠′ ∣ 𝑠, 𝑎) is such that

– 𝑠′ = (𝑠 + 𝑎) mod 6 with probability 2∕3,
– 𝑠′ = (𝑠 + 3) mod 6 with probability 1∕3.

• reward function: 𝑅(5) = 1 and 𝑅(𝑠) = −0.1 for 𝑠 ∈ 𝑆 ⧵ {5}

Solution: 𝜋∗(𝑠) = 1 if 𝑠 ∈ {3, 4} and 𝜋∗(𝑠) = −1 if 𝑠 ∈ {0, 1} and arbitrary for
𝑠 ∈ {2, 5}

2. State the Bellman equation.

Solution: 𝑈(𝑠) = 𝑅(𝑠) + 𝛾max𝑎∈𝐴(𝑠)
∑

𝑠′∈𝑆 𝑈(𝑠
′)𝑃(𝑠′ ∣ 𝑠, 𝑎)

3. Complete the followinghigh-level description of the value iteration algorithm:

1

https://kwarc.info/teaching/AI/resources/AI2/hmm/
https://kwarc.info/teaching/AI/resources/AI2/hmm/
https://kwarc.info/teaching/AI/resources/AI2/hmm/

• The algorithm keeps a table 𝑈(𝑠) for 𝑠 ∈ 𝑆, that is initialized with

• In each iteration, it uses the

in order to

• 𝑈(𝑠) will converge to the

Solution:
• The algorithm keeps a table 𝑈(𝑠) for 𝑠 ∈ 𝑆, that is initialized with arbi-
trary values, e.g. all 0 or the rewards.

• In each iteration, it uses the Bellman equation in order to update 𝑈(𝑠).
• 𝑈(𝑠) will converge to the expected utility of 𝑠.

1 per blank; in each case 0.5 if mistake

Problem 5.3 (Bellman Equation)
State the Bellman equation and explain every symbol in the equation and what

the equation is used for and how.

Solution:

𝑈(𝑠) = 𝑅(𝑠) + 𝛾 ⋅ max
𝑎∈𝐴(𝑠)

(
∑

𝑠′
𝑃(𝑠′ ∣ 𝑠, 𝑎) ⋅ 𝑈(𝑠′))

The meaning of the components is as follows:
• 𝑈(𝑠): the utility of the state 𝑠 (long-term, global)
• 𝑅(𝑠): the reward at state 𝑠 (short-term, local)
• 𝐴(𝑠): the set of actions available in state 𝑠
• max𝑎∈𝐴(𝑠): take the maximum over all available actions in state 𝑠
• 𝑃(𝑠′ ∣ 𝑠, 𝑎): the probability that taking action 𝑎 in state 𝑠 yields state 𝑠′
• 𝑈(𝑠′): the utility in successor state 𝑠′
•
(∑

𝑠′ 𝑃(𝑠
′ ∣ 𝑠, 𝑎) ⋅ 𝑈(𝑠′)

)
: the expected utility of action 𝑎 by summing over all

possible successor states

2

The equation is used to compute the utility of every state. The algorithm uses the
equation as an iteration operator that computes new values for every 𝑈(𝑠) by eval-
uating the right hand side for the current values of 𝑈. If this leads to a fixpoint, a
solution for the utilities has been found.

Problem 5.4 (MDP Example)
Consider the following world:

The world is 101 fields wide (i.e., 203 fields in total). In the 𝑆𝑡𝑎𝑟𝑡 state an agent
has two possible actions, 𝑈𝑝 and 𝐷𝑜𝑤𝑛. It cannot return to 𝑆𝑡𝑎𝑟𝑡 though and the
cannot pass gray fields, so after the first move the only possible action is 𝑅𝑖𝑔ℎ𝑡.

1. Model this world as a Markov Decision Process, i.e., give the components 𝑆,
𝑠0, 𝐴, 𝑃, and 𝑅.

Solution:

• Set of states 𝑆 = {−101, … , 0, … , 101}.
Note that the set of states can be swapped out arbitrarily against any
other set of the same size. The choicemade is practical because it allows
using 0 as the start state and 𝑛 as the state |𝑛| steps away from the start.

• Initial state: 𝑠0 = 0.
• Reward function 𝑅: 𝑅(0) = 0, 𝑅(1) = 50, 𝑅(−1) = −50, 𝑅(𝑠) = −1 for
𝑠 ∈ {2, … , 101}, 𝑅(𝑠) = 1 for 𝑠 ∈ {−2,… ,−101}

• Possible actions in each state: 𝐴(0) = {𝑈𝑝,𝐷𝑜𝑤𝑛}, 𝐴(𝑛) = {𝑅𝑖𝑔ℎ𝑡} for
all 𝑛 ∈ 𝑆 ⧵ {0}

• Transition model 𝑃(𝑠′ ∣ 𝑠, 𝑎): This world is deterministic — the succes-
sor state of each action is uniquely determined. Therefore, all probabil-
ities are either 1 or 0.
– current state 𝑠 = 0: 𝑃(1 ∣ 0, 𝑈𝑝) = 1, 𝑃(1 ∣ 0, 𝐷𝑜𝑤𝑛) = 0, 𝑃(−1 ∣
0,𝑈𝑝) = 0, 𝑃(−1 ∣ 0, 𝐷𝑜𝑤𝑛) = 1
and 𝑃(𝑠′ ∣ 0, 𝑎) for all 𝑠′ ∈ 𝑆 ⧵ {−1, 0, 1} and 𝑎 ∈ {𝑈𝑝,𝐷𝑜𝑤𝑛}

– current state 𝑠 ≠ 0:

3

* 𝑃(𝑠 + 1 ∣ 𝑠, 𝑅𝑖𝑔ℎ𝑡) = 1 for 𝑠 ∈ {1, … , 100}, 𝑃(101 ∣ 101, 𝑅𝑖𝑔ℎ𝑡) =
1

* 𝑃(𝑠−1 ∣ 𝑠, 𝑅𝑖𝑔ℎ𝑡) = 1 for 𝑠 ∈ {−1,… ,−100},𝑃(−101 ∣ −101, 𝑅𝑖𝑔ℎ𝑡) =
1

All other probabilities are 0.

2. Forwhat discount factors 𝛾 should the agent choose𝑈𝑝 and forwhich𝐷𝑜𝑤𝑛?
Compute the utility of each action (i.e., the utility of the successor state) as a
function of 𝛾.

Solution: We have𝑈(𝑠) = 𝑅(𝑠)+𝛾max𝑎
(∑

𝑠′ 𝑈(𝑠
′)
)
, since all transitions are

deterministic. Then

𝑈(1) = 50 + 𝛾(−1 + 𝛾(−1 + …)) = 50 −
100∑

𝑖=1
𝛾𝑖

𝑈(−1) = −50 + 𝛾(1 + 𝛾(1 + …)) = −50 +
100∑

𝑖=1
𝛾𝑖

and for 𝑖 > 0:

𝑈(𝑖) =
𝑖∑

𝑘=1
𝛾𝑘 𝑈(−𝑖) = −

∑

𝑘=1
𝛾𝑘

So we need to solve the following equation for 𝛾:

50 −
100∑

𝑖=1
𝛾𝑖 = −50 +

100∑

𝑖=1
𝛾𝑖

50 =
100∑

𝑖=1
𝛾𝑖

We get 𝛾 ≈ 0.984397669, and we should go Up if 𝛾 is smaller.

3. What is the optimal policy if the upper path is better?

Solution: The optimal policy 𝜋∗ maps each 𝑠 ∈ 𝑆 to an element of 𝐴(𝑠). Be-
cause most states have only one action, we immediately have 𝜋∗(𝑠) = 𝑅𝑖𝑔ℎ𝑡
for 𝑠 ≠ 0. For 𝑠 = 0, we have 𝜋∗(0) = 𝑈𝑝.

4

