
Assignment4 – Markov Models
Given: May 22 Due: May 27

Problem 4.1 (The Value of Information)
Chef Giordana runs a kitchen that provides food for a large organisation. A

salad is sold for e6 and costs e4 to prepare. So a sold salad is profit of e2, and an
unsold salad a loss of e4. Actual demand will be 40 (with probability 0.5) or 60
(also with probability 0.5) each day.

Each day, Giordana must decide in advance between two options: prepare 40
or 60 salads.

1. In the absence of additional information, compute the expected utility of each
decision option, and choose the best option.

2. She is considering a new ordering system, where she knows the demand per-
fectly in advance. So she can always choose the better of the two options.
State the formula for computing the value of this perfect information, explain
the components in Giordana’s case, and compute the value.

Solution: Giordana’s payoff table looks as follows:

Demand Probability 40 salads 60 salads
40 0.5 e80 e0
60 0.5 e80 e120

1. Thus, the expected utility for making 40 salads is 80 and the expected utility
formaking 60 salads is 60. Based on these expected values without additional
information, Giordana would choose to make 40 salads per day with an ex-
pected utility of e80 per day.

2. The value of information is equal to the expected value of best action given
the information minus expected value of best action without information.
Consider a random variable 𝑋 with possible values 𝑥1,… , 𝑥𝑛. Let 𝐴𝑘 be the
optimal action to take if 𝑋 = 𝑥𝑘, and let 𝐵 be the optimal action to take in
the absence of information on𝑋. The general formula for the value of perfect
information on variable 𝑋 given evidence 𝐸 is

𝑉𝑃𝐼𝐸(𝑋) =
∑

𝑘
𝑃(𝑋 = 𝑥𝑘 ∣ 𝐸) ⋅ EU(𝐴𝑘|𝐸,𝑋 = 𝑥𝑘) − EU(𝐵|𝐸)

In Giordana’s case, 𝑋 is the demand, i.e., 𝑥1 = 40 and 𝑥2 = 60, and 𝐸 is
all background information already known. 𝐵 is to prepare 40 salads, and
EU(𝐵|𝐸) = 80. 𝐴1 and 𝐴2 are to prepare 40 and 60 salads, respectively, and

∑

𝑘
𝑃(𝑋 = 𝑥𝑘 ∣ 𝐸) ⋅ EU(𝐴𝑘|𝐸,𝑋 = 𝑥𝑘) = 0.5 ⋅ 80 + 0.5 ⋅ 120 = 100

So 𝑉𝑃𝐼𝐸(𝑋) = 100 − 80 = 20. So Giordana should pay at most e20 for the
perfect information.
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Problem 4.2 (Expected Utility)
1. State the formal definition of expected utility of an action in the current state

of an agent? Explain the meaning of every variable in the defining equation.

Solution: The expected utility (⋅|⋅) is defined as

EU(𝑎|𝑒) =
∑

𝑠′
𝑃(𝑅(𝑎) = 𝑠′ ∣ 𝑎, 𝑒) ⋅𝑈(𝑠′)

where
1. 𝑎 is the action for which we want to find out the expected utility, given

the evidence 𝑒.
2. 𝑈(𝑠′) is the utility of a state 𝑠′.
3. 𝑅(𝑎) is the result of the action 𝑎.

2. How do we use expected utility to make decisions?

Solution: The principle of maximum expected utility says that a rational
agent should choose the action thatmaximizes the agent’s expected utility.

Problem 4.3 (Decision Theory)
You are offered the following game: You pay 𝑥 dollars to play. A fair coin is

then tossed repeatedly until it comes up heads for the first time. Your payout is 2𝑛,
where 𝑛 is the number of tosses that occurred.

1. Assumeyour utility function is exactly themonetary value. Howmuch should
you, as a rational agent, be willing to pay to play? Use the formal definition
of “expected utility” from the lecture.

Solution: We have

EU(Play) =
∑

𝑠′
𝑃(Payout = 𝑠′ ∣ Play) ⋅𝑈(𝑠′) =

∑

𝑘∈ℕ+
𝑃(Payout = 𝑘) ⋅ 2𝑘

=
∑

𝑘∈ℕ+

1
2𝑘

⋅ 2𝑘 =
∑

𝑘∈ℕ+
1→∞

We should be willing to pay any amount for a chance to play.
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2. Assumenow, that your utility function for having 𝑘 dollars is𝑈(𝑘) = 𝑚 log𝑛 𝑘
for some𝑚, 𝑛 ∈ ℕ+. How does this change the result?

Solution:

EU(Play) =
∑

𝑘∈ℕ+

1
2𝑘

⋅𝑚 log𝑛(2
𝑘) = 𝑚 log𝑛(2)

∑

𝑘∈ℕ+

𝑘
2𝑘

= 2𝑚 log𝑛(2)

Of course, this is wrong insofar as the utility, being logarithmic, is in partic-
ular not linear, i.e. the actual utility depends on our original capital 𝐾, but
this just makes everything more complicated. The point is that using a loga-
rithmic utility for money yields a finite result.

3. What iswrongwith the result from the first exercise? Which implicit assump-
tion leads to the apparently nonsensical result? How could it be fixed?

Solution: This model assumes that the payout is potentially infinite (which
is unrealistic), as well as that we have an unlimited amount of money at our
disposal. One way to fix this is to calculate our overall utility as the difference
of EU(Play) and the utility 𝑈(𝑘) of paying the cost 𝑘. Then we can set an
upper limit of howmuch we can afford to pay by setting𝑈(𝑘) = −∞when 𝑘
is greater than the amount in our bank account.

Hint: The series
∑∞

𝑘=1
𝑘
2𝑘
is convergent with limit 2.

Problem 4.4 (Markov Mood Detection)
On any given day 𝑑, your roommate Moody is either happy or sad, so 𝑀𝑑 ∈

{ℎ, 𝑠}. Usually when he is sad, he stays sad for a while, and 𝑃(𝑀𝑑+1 = 𝑠 ∣ 𝑀𝑑 =
𝑠) = 0.7. But aside from that he is a cheery guy, and 𝑃(𝑀𝑑+1 = ℎ ∣ 𝑀𝑑 = ℎ) = 0.85.

He either listens to jazz or metal music, so 𝐿𝑑 ∈ {𝑗,𝑚}. On a happy day he
usually listens to Jazz, and 𝑃(𝐿𝑑 = 𝑗 ∣ 𝑀𝑑 = ℎ) = 0.7. On a sad day, he slightly
prefers metal, and 𝑃(𝐿𝑑 = 𝑚 ∣ 𝑀𝑑 = 𝑠) = 0.6.

1. Model this situation as a Markov process. Explain what the state and ev-
idence variables are. What order does the process have? Is the transition
model stationary? Is the sensor model stationary? Does the transition model
have the Markov property? Does the sensor model have the sensor Markov
property? Explain all answers in one short sentence each.

Solution: The state variables are the𝑀𝑑. The evidence variables are the 𝐿𝑑.
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The process is first-order: 𝑃(𝑀𝑑 ∣ 𝑀0∶𝑑−1) = 𝑃(𝑀𝑑 ∣ 𝑀𝑑−1) and thus has
the Markov property (and thus is a Markov process). The transition model is
stationary: 𝑃(𝑀𝑑 ∣ 𝑀𝑑−1) does not depend on 𝑑. The sensorMarkov property
holds: 𝑃(𝐿𝑑 ∣ 𝑀0∶𝑑−1, 𝐿1∶𝑑−1) = 𝑃(𝐿𝑑 ∣ 𝑀𝑑). The sensor model is stationary:
𝑃(𝐿𝑑 ∣ 𝑀𝑑) does not depend on 𝑑.

2. State the formula for the full joint probability distribution. You know that he
was happy at day 𝑑0. What is the probability that he is happy and plays Jazz
for the next two days?

Solution: The distribution is

𝑃(𝑀0∶𝑛, 𝐿1∶𝑛) = 𝑃(𝑀0) ⋅
𝑛∏

𝑖=1
𝑃(𝑀𝑖 ∣ 𝑀𝑖−1) ⋅ 𝑃(𝐿𝑖 ∣ 𝑀𝑖)

In our case, 𝑛 = 2, 𝑃(𝑀0 = ℎ) = 1, 𝑃(𝑀𝑖 = ℎ ∣ 𝑀𝑖−1 = ℎ) = 0.85 and
𝑃(𝐿𝑖 = 𝑗 ∣ 𝑀𝑖 = ℎ) = 0.7. So 𝑃(𝑀0 = ℎ,𝑀1 = ℎ,𝑀2 = ℎ, 𝐿1 = 𝑗, 𝐿2 = 𝑗) =
0.852 ∗ 0.72.

Problem 4.5 (Moody HMM)
Consider theMarkov process frombefore about the roommateMoody (which in

particular gives the concrete probabilities needed below). Wehave alreadymodeled
it as an HMMwith state variables𝑀𝑑 and evidence variables 𝐿𝑑.

Because the transition model is first-order and stationary, we can collect the
conditional probabilities for the state transitions into a matrix 𝑇𝑖𝑗 = 𝑃(𝑀𝑑 = 𝑥𝑗 ∣
𝑀𝑑−1 = 𝑥𝑖)where𝑥𝑖 , 𝑥𝑗 are two states (i.e., two possible values of the state variable).
We use 𝑘 for the number of states, and 𝑇 is an 𝑘 × 𝑘 matrix.

Because the sensor model is stationary and has the sensor Markov property, we
can collect the conditional probabilities for the observations into a matrix 𝑆𝑖𝑗 =
𝑃(𝐿𝑑 = 𝑦𝑗 ∣ 𝑀𝑑 = 𝑥𝑖)where 𝑥𝑖 is a state and the 𝑦𝑗 are the possible observations. If
there are 𝑙 possible observations, this is an 𝑘 × 𝑙 matrix. For a fixed observation 𝑒,
the diagonal 𝑘×𝑘matrices𝑂𝑒 from the lecture notes are obtained from the columns
of this matrix.

Clarify the modeling as an HMM. Concretely:
1. What is 𝑘? Give the transition matrix 𝑇.

Solution: 𝑘 = 2 and we use the ordering [ℎ, 𝑠] for the states. Then 𝑇 =

(0.85 0.15
0.3 0.7 ). For example, 𝑇12 = 𝑇ℎ𝑠 = 𝑃(𝑀𝑑 = 𝑠 ∣ 𝑀𝑑−1 = ℎ) = 0.15.
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2. What is 𝑙? Give the sensor matrix 𝑆.

Solution: 𝑙 = 2 and we use the ordering [𝑗,𝑚]. Then 𝑆 = (0.7 0.3
0.4 0.6). For

example, 𝑆12 = 𝑆ℎ𝑚 = 𝑃(𝐿𝑑 = 𝑚 ∣ 𝑀𝑑 = ℎ) = 0.3.

Note that you need to choose and state orderings for the states and observations so
that it is clear which state/observation corresponds to which row/column of 𝑇 and
𝑆.

Now consider a fixed sequence 𝐿1 = 𝑒1, 𝐿2 = 𝑒2 of observations that we have
made for two days. Concretely, you heard Moody play metal on day 𝑑 = 1 and jazz
on day 𝑑 = 2.

3. Give the diagonal sensor matrices 𝑂1 and 𝑂2 corresponding to the observa-
tion at 𝑑 = 1 and 𝑑 = 2.

Solution: We have 𝑒1 = 𝑚 and 𝑒2 = 𝑗.

Wehave𝑂1 = 𝑂𝑚 = (𝑂ℎ𝑚 0
0 𝑂𝑠𝑚

) = (0.3 0
0 0.6) and𝑂2 = 𝑂𝑗 = (

𝑂ℎ𝑗 0
0 𝑂𝑠𝑗

) =

(0.7 0
0 0.4).

4. You are not sure what kind of mood your flatmate was in on day 𝑑 = 0, but it
was either good or bad with equal probability. The HMM algorithm for filter-
ing and smoothing uses compact matrix/vector equation to compute 𝑓 and
𝑏. Use those equation to determine the probability distribution of Moody’s
mood on day 𝑑 = 1.
Note that𝑇𝑇 in thefiltering equation in the lecture notesdenotes the transpose
of 𝑇.
Grading will focus on writing out the matrices with the correct probabilities
in them and on formally stating the computations that need to applied to
those matrices. You should also actually do those computations, but that is
secondary.

Solution: We need to apply smoothing at 𝑘 = 1. The general equation for
smoothing is 𝑃(𝑀1 ∣ 𝐿1∶2 = 𝑒1∶2) = 𝛼 ⋅ (𝑓1∶1 ⋅ 𝑏2∶2). And the HMM matrix
equation for 𝑓 give us 𝑓1∶1 = 𝛼 ⋅ (𝑂1𝑇𝑡𝑓1∶0)We have the prior probabilities

𝑃(𝑀0) = (0.50.5), and we use that for the starting value 𝑓1∶0 of the forward

iteration. The HMM matrix equation for 𝑏 gives us 𝑏2∶2 = 𝑇𝑂2𝑏3∶2. As the
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starting value 𝑏3∶2 of the backward iteration, we use the vector containing all

1s, i.e., 𝑏3∶2 = (11).

Note that, for simplicity, this example is chosen such that only one iteration
step each is needed for 𝑓 and 𝑏—for the general case wewould need to apply
the matrix equations multiple times to iterate towards the needed value.
We omit the concrete calculation.

Problem 4.6 (Prediction, Filtering, Smoothing)
Consider an HMM consisting of a stationary Markov process and a stationary

sensor model. We restrict attention to HMMs with a single state-variable 𝑋𝑡 and
a single evidence variable 𝐸𝑡. (The sensor model does not necessarily have the
Markov property.)

Explain the results of the prediction, filtering, smoothing algorithms. For each
one, state themotivation, the expression for the conditional probability that is to be
computed, and explain the components of the formula. You do not have to explain
how the algorithms work.

Solution: In all three cases, we have observed the process from time 1 to time 𝑡,
i.e., we have observed the events 𝐸𝑖 = 𝑒𝑖 for 𝑖 = 1,… , 𝑡. Let 𝐸1∶𝑡 = 𝑒1∶𝑡 abbreviate
the conjunction of these events.

We use those observations to compute different conditional probabilities about
the state 𝑋𝑝 of the HMM at time 𝑝.

Prediction Here we predict the future of the HMM, i.e., 𝑝 = 𝑡 + 𝑘 > 𝑡. We need
the conditional probability

𝑃(𝑋𝑡+𝑘 ∣ 𝐸1∶𝑡 = 𝑒1∶𝑡)

Filtering Here we estimate the current state of the HMM, i.e., 𝑝 = 𝑡. We need the
conditional probability

𝑃(𝑋𝑡 ∣ 𝐸1∶𝑡 = 𝑒1∶𝑡)

Smoothing Here we estimate the past states of the HMM, i.e., 𝑝 = 𝑘 < 𝑡. We need
the conditional probability

𝑃(𝑋𝑘 ∣ 𝐸1∶𝑡 = 𝑒1∶𝑡)
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