
Assignment4 – Markov Models
Given: May 22 Due: May 27

Problem 4.1 (The Value of Information)
Chef Giordana runs a kitchen that provides food for a large organisation. A

salad is sold for e6 and costs e4 to prepare. So a sold salad is profit of e2, and an
unsold salad a loss of e4. Actual demand will be 40 (with probability 0.5) or 60
(also with probability 0.5) each day.

Each day, Giordana must decide in advance between two options: prepare 40
or 60 salads.

1. In the absence of additional information, compute the expected utility of each
decision option, and choose the best option.

2. She is considering a new ordering system, where she knows the demand per-
fectly in advance. So she can always choose the better of the two options.
State the formula for computing the value of this perfect information, explain
the components in Giordana’s case, and compute the value.

Problem 4.2 (Expected Utility)
1. State the formal definition of expected utility of an action in the current state

of an agent? Explain the meaning of every variable in the defining equation.
2. How do we use expected utility to make decisions?

Problem 4.3 (Decision Theory)
You are offered the following game: You pay 𝑥 dollars to play. A fair coin is

then tossed repeatedly until it comes up heads for the first time. Your payout is 2𝑛,
where 𝑛 is the number of tosses that occurred.

1. Assumeyour utility function is exactly themonetary value. Howmuch should
you, as a rational agent, be willing to pay to play? Use the formal definition
of “expected utility” from the lecture.

2. Assumenow, that your utility function for having 𝑘 dollars is𝑈(𝑘) = 𝑚 log𝑛 𝑘
for some𝑚, 𝑛 ∈ ℕ+. How does this change the result?

3. What iswrongwith the result from the first exercise? Which implicit assump-
tion leads to the apparently nonsensical result? How could it be fixed?

Hint: The series
∑∞

𝑘=1
𝑘
2𝑘
is convergent with limit 2.

Problem 4.4 (Markov Mood Detection)
On any given day 𝑑, your roommate Moody is either happy or sad, so 𝑀𝑑 ∈

{ℎ, 𝑠}. Usually when he is sad, he stays sad for a while, and 𝑃(𝑀𝑑+1 = 𝑠 ∣ 𝑀𝑑 =
𝑠) = 0.7. But aside from that he is a cheery guy, and 𝑃(𝑀𝑑+1 = ℎ ∣ 𝑀𝑑 = ℎ) = 0.85.

He either listens to jazz or metal music, so 𝐿𝑑 ∈ {𝑗,𝑚}. On a happy day he
usually listens to Jazz, and 𝑃(𝐿𝑑 = 𝑗 ∣ 𝑀𝑑 = ℎ) = 0.7. On a sad day, he slightly
prefers metal, and 𝑃(𝐿𝑑 = 𝑚 ∣ 𝑀𝑑 = 𝑠) = 0.6.
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1. Model this situation as a Markov process. Explain what the state and ev-
idence variables are. What order does the process have? Is the transition
model stationary? Is the sensor model stationary? Does the transition model
have the Markov property? Does the sensor model have the sensor Markov
property? Explain all answers in one short sentence each.

2. State the formula for the full joint probability distribution. You know that he
was happy at day 𝑑0. What is the probability that he is happy and plays Jazz
for the next two days?

Problem 4.5 (Moody HMM)
Consider theMarkov process frombefore about the roommateMoody (which in

particular gives the concrete probabilities needed below). Wehave alreadymodeled
it as an HMMwith state variables𝑀𝑑 and evidence variables 𝐿𝑑.

Because the transition model is first-order and stationary, we can collect the
conditional probabilities for the state transitions into a matrix 𝑇𝑖𝑗 = 𝑃(𝑀𝑑 = 𝑥𝑗 ∣
𝑀𝑑−1 = 𝑥𝑖)where𝑥𝑖 , 𝑥𝑗 are two states (i.e., two possible values of the state variable).
We use 𝑘 for the number of states, and 𝑇 is an 𝑘 × 𝑘 matrix.

Because the sensor model is stationary and has the sensor Markov property, we
can collect the conditional probabilities for the observations into a matrix 𝑆𝑖𝑗 =
𝑃(𝐿𝑑 = 𝑦𝑗 ∣ 𝑀𝑑 = 𝑥𝑖)where 𝑥𝑖 is a state and the 𝑦𝑗 are the possible observations. If
there are 𝑙 possible observations, this is an 𝑘 × 𝑙 matrix. For a fixed observation 𝑒,
the diagonal 𝑘×𝑘matrices𝑂𝑒 from the lecture notes are obtained from the columns
of this matrix.

Clarify the modeling as an HMM. Concretely:
1. What is 𝑘? Give the transition matrix 𝑇.
2. What is 𝑙? Give the sensor matrix 𝑆.

Note that you need to choose and state orderings for the states and observations so
that it is clear which state/observation corresponds to which row/column of 𝑇 and
𝑆.

Now consider a fixed sequence 𝐿1 = 𝑒1, 𝐿2 = 𝑒2 of observations that we have
made for two days. Concretely, you heard Moody play metal on day 𝑑 = 1 and jazz
on day 𝑑 = 2.

3. Give the diagonal sensor matrices 𝑂1 and 𝑂2 corresponding to the observa-
tion at 𝑑 = 1 and 𝑑 = 2.

4. You are not sure what kind of mood your flatmate was in on day 𝑑 = 0, but it
was either good or bad with equal probability. The HMM algorithm for filter-
ing and smoothing uses compact matrix/vector equation to compute 𝑓 and
𝑏. Use those equation to determine the probability distribution of Moody’s
mood on day 𝑑 = 1.
Note that𝑇𝑇 in thefiltering equation in the lecture notesdenotes the transpose
of 𝑇.
Grading will focus on writing out the matrices with the correct probabilities
in them and on formally stating the computations that need to applied to
those matrices. You should also actually do those computations, but that is
secondary.
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Problem 4.6 (Prediction, Filtering, Smoothing)
Consider an HMM consisting of a stationary Markov process and a stationary

sensor model. We restrict attention to HMMs with a single state-variable 𝑋𝑡 and
a single evidence variable 𝐸𝑡. (The sensor model does not necessarily have the
Markov property.)

Explain the results of the prediction, filtering, smoothing algorithms. For each
one, state themotivation, the expression for the conditional probability that is to be
computed, and explain the components of the formula. You do not have to explain
how the algorithms work.
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