
Assignment10 – Learning
Given: July 10 Due: July 15

Problem 10.1 (Passive Reinforcement Learning)
Consider the example on Passive Learning in 4 × 3 world from the slides.
1. Give the transitionmodel to the extent that it can be learned from these trials.

Solution: To obtain 𝑃(𝑠′ ∣ 𝑠, 𝑎), we count how often 𝑠′ followed 𝑠 after exe-
cuting 𝑎. Concretely, we obtain

• 𝑃((1, 2) ∣ (1, 1), 𝑈𝑝) = 2∕3 and 𝑃((2, 1) ∣ (1, 1), 𝑈𝑝) = 1∕3

• 𝑃((1, 3) ∣ (1, 2), 𝑈𝑝) = 3∕3

• 𝑃((2, 3) ∣ (1, 3), 𝑅𝑖𝑔ℎ𝑡) = 2∕3 and 𝑃((1, 2) ∣ (1, 3), 𝑅𝑖𝑔ℎ𝑡) = 1∕3

• 𝑃((3, 1) ∣ (2, 1), 𝐿𝑒𝑓𝑡) = 1∕1

• 𝑃((3, 3) ∣ (2, 3), 𝑅𝑖𝑔ℎ𝑡) = 2∕2

• 𝑃((3, 2) ∣ (3, 1), 𝐿𝑒𝑓𝑡) = 1∕1

• 𝑃((3, 3) ∣ (3, 2), 𝑈𝑝) = 1∕2 and 𝑃((4, 2) ∣ (3, 3), 𝑈𝑝) = 1∕2

• 𝑃((3, 2) ∣ (3, 3), 𝑅𝑖𝑔ℎ𝑡) = 1∕3 and 𝑃((4, 3) ∣ (3, 3), 𝑅𝑖𝑔ℎ𝑡) = 2∕3

The transition probabilities for any action in state (4, 1) and for other action
in the other states are not learned.

2. How could we learn the entire model?

Solution: Because we use a fixed policy, we always apply the same 𝑎 when-
ever reaching 𝑠. So only some parts of the transition model can be learned
from these trials. To learn the entire model, we have to try all actions in each
state.

3. How would we proceed to learn the utilities of the states?

Solution: Once we have learned the transition model, we can apply the Bell-
man equation to obtain a system of linear equations in the utilities of each
state and solve that. (If we are only interested in the utilities of states relative
to a fixed policy, we only need the partial transitionmodel learned from trials
with that policy.)

Problem 10.2 (Active Reinforcement Learning)
Consider reinforcement learning in an unknown non-deterministic environ-

ment.
1. Explain the difference between a passive and an active agent.
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2. What is the critical trade-off in designing an actively learning agent?

Solution:
1. A passive agent has a fixed policy and is only trying to learn its utility. An

active agent is additionally trying to find the best policy.
2. Because the optimal policy depends on the transition model, the agent must

first learn the transition model and then find the optimal policy. But it is
difficult to decide when to switch from the former to the latter. If it switches
too early, the transition model has not been learned well yet and (garbage in,
garbage out) the computed policy is bad. If it switches too late, it wastes time
and resources learning the transition model in areas that are not visited by
the optimal policy anyway.

Problem 10.3 (Logical Formulation of Learning)
Some people with different attributes go sunbathing, the result class is whether

they get sunburned:

# Hair Height Weight Lotion Sunburned
1 Blonde Short Light No Yes
2 Blonde Short Average Yes No
3 Brown Short Average Yes No
4 Blonde Short Average No Yes
5 Blonde Tall Heavy No Yes
6 Brown Tall Heavy No No

We want to model these examples in first-order logic.
1. Explain which predicates are needed. For each predicate give the arity and

the domain of each argument. Give the formal representation of the descrip-
tion and the classification of Example 1.

Solution: We use a unary predicate for each boolean attribute/class and a
binary predicate for the others. The first argument of all predicates represents
the example and has domain {1,… , 6}. The domain of the second argument
of the binary predicates is the set of possible values. Thus, we have for an
example 𝑒:

• 𝐻𝑎𝑖𝑟(𝑒, 𝑐) for 𝑐 ∈ {𝐵𝑙𝑜𝑛𝑑𝑒, 𝐵𝑟𝑜𝑤𝑛}

• 𝐻𝑒𝑖𝑔ℎ𝑡(𝑒, ℎ) for ℎ ∈ {𝑆ℎ𝑜𝑟𝑡, 𝑇𝑎𝑙𝑙}

• 𝑊𝑒𝑖𝑔ℎ𝑡(𝑒, 𝑤) for 𝑤 ∈ {𝐿𝑖𝑔ℎ𝑡, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒,𝐻𝑒𝑎𝑣𝑦}

• 𝐿𝑜𝑡𝑖𝑜𝑛(𝑒)

• 𝑆𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑(𝑒)

For exampel, the description of example 1 is𝐻𝑎𝑖𝑟(1, 𝐵𝑙𝑜𝑛𝑑𝑒)∧𝐻𝑒𝑖𝑔ℎ𝑡(1, 𝑆ℎ𝑜𝑟𝑡)∧
𝑊𝑒𝑖𝑔ℎ𝑡(1, 𝐿𝑖𝑔ℎ𝑡) ∧ ¬𝐿𝑜𝑡𝑖𝑜𝑛(1). Its classification is 𝑆𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑(1).
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2. For attributes𝐴, 𝐵, we write𝐴1,… , 𝐴𝑛 ≻ 𝐵 if any two examples that agree on
all of the attributes 𝐴𝑖 also agree on the attribute 𝐵.
Explain whether Height≻Weight and Weight ≻ Height hold or do not hold.

Solution: Height ≻Weight does not hold: Examples 1 and 2 agree on Height
but not on Weight. Weight ≻ Height holds: any pair of examples that agree
on Weight also agree on Height.

3. Give a minimal subset 𝒜 ⊆ {𝐻𝑎𝑖𝑟,𝐻𝑒𝑖𝑔ℎ𝑡,𝑊𝑒𝑖𝑔ℎ𝑡, 𝐿𝑜𝑡𝑖𝑜𝑛} such that 𝒜 ≻

𝑆𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑 holds.
Using the predicates introduced above, give a logical formula that captures
the rule 𝒜 ≻ 𝑆𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑.

Solution: 𝒜 = {𝐻𝑎𝑖𝑟, 𝐿𝑜𝑡𝑖𝑜𝑛}. This corresponds to the formula∀𝑒, 𝑒′.∀𝑐.
(
(𝐻𝑎𝑖𝑟(𝑒, 𝑐)∧

𝐻𝑎𝑖𝑟(𝑒′, 𝑐))∧((𝐿𝑜𝑡𝑖𝑜𝑛(𝑒)⇔𝐿𝑜𝑡𝑖𝑜𝑛(𝑒′)))
)
⇒((𝑆𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑(𝑒)⇔𝑆𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑(𝑒′))).

For example, instantiatingwith 𝑒′ = 1 and 𝑐 = 𝐵𝑙𝑜𝑛𝑑𝑒, that implies∀𝑒.𝐻𝑎𝑖𝑟(𝑒, 𝐵𝑙𝑜𝑛𝑑𝑒)∧
¬𝐿𝑜𝑡𝑖𝑜𝑛(𝑒)⇒ 𝑆𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑(𝑒).

Problem 10.4 (Inductive Learning)
Consider the family tree given by the following relations:

couple children
A, B E, F
C, D G, H
F, G I, J

Assume we already know the predicate 𝚙𝚊𝚛(𝑥, 𝑦) for 𝑥 being a parent of 𝑦.
Our goal is to learn the predicate 𝚐𝚙(𝑥, 𝑦) for 𝑥 being a grandparent of 𝑦. That

means to find a formula 𝐷 such that ∀𝑥, 𝑦.𝚐𝚙(𝑥, 𝑦)⇔ 𝐷(𝑥, 𝑦).
We do not know 𝐷, but we have the following examples for 𝚐𝚙:

person-pair grandparent
A, I yes
B, I yes
A, J yes
A, E no
A, F no
F, A no
A, A no
C, J yes
D, H no
I, A no
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1. Give the intended formula 𝐷1, i.e., the correct definition of grandparent.
2. Give a formula 𝐷2 that covers exactly the positive examples.
3. Explain the pros and cons of learning the formula 𝐷 as 𝐷1 vs. 𝐷2.
4. Wewant to learn algorithmically the formula𝐷(𝑥, 𝑦) = ∃𝑢1,… , 𝑢𝑙.𝐿1∧…∧𝐿𝑘

where each 𝐿𝑖 is a literal of the form 𝑃(𝑥, 𝑦, 𝑢1,… , 𝑢𝑙) or ¬𝑃(𝑥, 𝑦, 𝑢1,… , 𝑢𝑙) for
somepredicate symbol𝑃 including the equality predicate, i.e.,𝑃 ∈ {𝚙𝚊𝚛, 𝚐𝚙,=

}. We do so by building the set {𝐿1,… , 𝐿𝑘} of literals gradually (with the un-
derstanding that each 𝐿𝑖 can have any free variables in addition to 𝑥 and 𝑦,
which we will collect at the end as the 𝑢𝑖).
(a) If we start with the empty set of literals, give all useful choices that we

can make for the first literal.
(b) For each choice 𝐿 that is non-recursive (i.e., 𝑃 is not the target predicate

𝚐𝚙), positive (i.e., the literal is not negated), not an equality (i.e., 𝑃 is not
the equality predicate =), and does not introduce a new variable (i.e.,
only uses 𝑥 and 𝑦), which examples are falsely classified?

Solution:
1. 𝐷1(𝑥, 𝑦) = ∃𝑢.𝚙𝚊𝚛(𝑥, 𝑢) ∧ 𝚙𝚊𝚛(𝑢, 𝑦)

2. 𝐷2(𝑥, 𝑦) = (𝑥 = 𝐴 ∧ 𝑦 = 𝐼) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐼)∨ and so on for all positive
examples.

3. pros of 𝐷1:
• 𝐷2 captures only the provided examples. If that list is incomplete, it is
likely the wrong formula. Even if the list is complete, 𝐷 would have
to be changed every time the list of examples changes. 𝐷1 captures all
future examples correctly.

• 𝐷1 has size 𝑂(1), whereas 𝐷2 has size 𝑂(𝑛) where 𝑛 is the number of
examples.

pros of 𝐷2:
• 𝐷2 can be easily read off the list of examples in 𝑂(𝑛) time.
• A nice formula for 𝐷1 might not even exist or might be very difficult to
find or might be impossible to find from the given examples.

4. (a) There are 16 choices each for 𝑃 ∈ {𝚙𝚊𝚛, 𝚐𝚙}: 𝑃(𝑥, 𝑥), 𝑃(𝑦, 𝑦) 𝑃(𝑥, 𝑦) or
𝑃(𝑦, 𝑥) (no new variables), 𝑃(𝑥, 𝑢), 𝑃(𝑢, 𝑥), 𝑃(𝑦, 𝑢), 𝑃(𝑢, 𝑦) (1 new vari-
able); as well as the negated versions. (It is useless to add 𝑃(𝑢, 𝑣) or
𝑃(𝑢, 𝑢) where all variables are new.)
Additionally, we can choose 𝑥 = 𝑦 and ¬𝑥 = 𝑦. (It is useless to add an
(in)equality with a new variable or where both variables are the same.)

(b) There are 4 such choices:
• 𝚙𝚊𝚛(𝑥, 𝑥): no false-positives
• 𝚙𝚊𝚛(𝑦, 𝑦): no false-positives
• 𝚙𝚊𝚛(𝑥, 𝑦): false-positives are (𝐴, 𝐸), (𝐴, 𝐹), and (𝐷,𝐻)
• 𝚙𝚊𝚛(𝑦, 𝑥): false-positives are (𝐹,𝐴)

Additionally, for all 4 choices, all positive examples are false-negatives.
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