Assignment1 – Probability

Given: May 2 Due: May 6

Problem 1.1 (Simple Sample Spaces)

In many important situations including all problems treated in this *course*, the sample space, probability measure, domains, and random variables can be given in a simplified form, namely by:

- a list of random variable declarations X_1, \ldots, X_n , each consisting of
 - a name such as *X*
 - a finite domain such as $D_X = \{0, 1, 2, 3\}$
- a probability function $\Omega \to [0;1]$ where $\Omega = D_{X_1} \times ... \times D_{X_n}$ such that $\Sigma_{e \in \Omega} P(e) = 1$

Define the corresponding probability space $\langle \Omega, Q \rangle$ and show that it satisfies the Kolmogorov axioms.

Define the random variables Y_1, \dots, Y_n induced by the respective X_i .

Problem 1.2 (Calculations)

Assume random variables X, Y both with domain $\{0, 1, 2\}$, whose joint probability distribution P(X, Y) is given by

х	у	P(X = x, Y = y)
0	0	a
0	1	b
0	2	С
1	0	d
1	1	е
1	2	f
2	0	g
2	1	h
2	2	i

- 1. Give all subsets of the probabilities $\{a, b, c, d, e, f, g, h, i\}$ that sum to 1.
- 2. In terms of a, b, c, d, e, f, g, h, i, give $P(X \neq 0)$.
- 3. In terms of *a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*, *i*, give P(X = 1, Y = 0).
- 4. In terms of *a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*, *i*, give P(X = 1 | Y = 0).
- 5. In terms of *a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*, *i*, give P(X + Y = 2).
- 6. In terms of *a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*, *i*, give P(X + Y = 2 | X > Y).

Problem 1.3 (Stochastic and Conditional independence)

Consider the following random variables:

- three flips C_1 , C_2 , and C_3 of the same fair coin, which can be heads or tails
- the variable E which is 1 if both C_1 and C_2 are heads and 0 otherwise

• the variable F which is 1 if both C_2 and C_3 are heads and 0 otherwise

Out of the above 5 random variables,

- 1. Give three random variables *X*, *Y*, *Z* such that *X* and *Y* are stochastically independent but not conditionally independent given *Z*,
- 2. Give three random variables *X*, *Y*, *Z* such that *X* and *Y* are not stochastically independent but conditionally independent given *Z*.

Problem 1.4 (Basic Probability)

Let A, B, C be Boolean random variables, and let a, b, c denote the atomic events that A, B, C, respectively, are true. Which of the following equalities are always true? Justify each of your answers in one sentence.

- 1. $P(b) = P(a, b) + P(\neg a, b)$
- 2. $P(a) = P(a | b) + P(a | \neg b)$
- 3. $P(a,b) = P(a) \cdot P(b)$
- 4. $P(a, b \mid c) \cdot P(c) = P(c, a \mid b) \cdot P(b)$
- 5. $P(a \lor b) = P(a) + P(b)$
- 6. $P(a, \neg b) = (1 P(b \mid a)) \cdot P(a)$

Problem 1.5 (Chained Production Elements)

An apparatus consists of six elements A, B, C, D, E, F. Assume the probabilities $P(b_X)$, that element X breaks down, are all stochastically independent, with $P(b_A) = 5\%$, $P(b_B) = 10\%$, $P(b_C) = 15\%$, $P(b_D) = 20\%$, $P(b_E) = 25\%$, and $P(b_F) = 30\%$.

Note: We deliberately differentiate between *not being operational* and *being broken*. If an element breaks, it is not operational; if an element is not operational, either it or the linked element broke.

- 1. Assume the apparatus works if and only if at least *A* and *B* are operational, *C* and *D* are operational, or *E* and *F* are operational. What is the probability the apparatus works?
- 2. Consider a different scenario, in which the elements *A* and *C*, *D* and *F* and *B* and *E* are pairwise linked; such that if either of them breaks down, then the linked element is not operational either. What is the probability that the apparatus works now?