Assignment9 - Propositional and First-Order Logic

Problem 9.1 (Calculi Comparison)

Prove (or disprove) the *validity* of the following *formulae* in i) *Natural Deduction* ii) *Tableau* and iii) *Resolution*:

- 1. $P \land Q \Rightarrow (P \lor Q)$
- 2. $(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow C$
- 3. $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$
- 4. Can you identify any advantages or disadvantage of the *calculi*, and in which situations?

Problem 9.2 (Equivalence of CSP and SAT)

We consider

- $CSPs \langle V, D, C \rangle$ with finite domains as before
- *SAT problems* $\langle V, A \rangle$ where V is a set of propositional variables and A is a propositional formula over V.

We will show that these problem classes are equivalent by reducing their instances to each other.

- 1. Given a SAT instance $P = \langle V, A \rangle$, define a CSP instance $P' = \langle V', D', C' \rangle$ and two *bijections*:
 - f mapping satisfying assignments of P to solutions of P',
 - and f' the inverse of f.

We already know that *constraint networks* are equivalent to *higher-order CSPs*. Therefore, it is sufficient to give a *higher-order CSP*.

2. Given a CSP instance $\langle V, D, C \rangle$, define a SAT instance (V', A') and *bijections* as above.

Problem 9.3 (Induction)

Use structural induction on terms and formulas to define a function C that maps every term/formula to the number of *free variable occurrences*. For example, $C(\forall x. P(x, x, y, y, z)) = 3$ because the argument has 2 *free occurrences* of y and one of z.

Hint: Use an auxiliary function C'(V, A) that takes the set V of bound variables and a term/formula A. Define C' by structural induction on A. Then define $C(A) = C'(\emptyset, A)$.

Problem 9.4 (First-Order Semantics)

Let $=\in \Sigma_2^p$, $P\in \Sigma_1^p$ and $+\in \Sigma_2^f$. We use the semantics of first-order logic without equality.

Prove or refute the following formulas semantically. That means you must show that $I_{\varphi}(A) = T$ for all models I and assignments φ (without using a proof calculus) or to give some I, φ such that $I_{\varphi}(A) = F$.

- 1. P(X)
- 2. $\forall X. \forall Y. = (+(X,Y), +(Y,X))$
- 3. $\exists X.P(X) \Rightarrow (\forall Y.P(Y))$
- 4. $P(Y) \Rightarrow (\exists X.P(X))$