Assignment8 - Calculi for Propositional Logic

Problem 8.1 (FOL-Signatures)

- 1. Model the following situation as a FOL signature. (FOL and PLNQ signatures are the same.)
 - We have constants (= nullary functions) called zero and one.
 - We have a binary function called plus.
 - We have a unary function called minus.
 - We have a binary predicate called less.
- 2. Now consider the signature given by

•
$$\Sigma_0^J = \{a, b\}$$

•
$$\Sigma_1^f = \{f, g\}$$

•
$$\Sigma_2^f = \{h\}$$

•
$$\Sigma_0^p = \{p\}$$

•
$$\Sigma_1^p = \{q\}$$

- $\Sigma_2^p = \{r\}$
- all other sets empty
- 3. Give a term over this signature that uses all function symbols

Solution: $\Sigma_0^f = \{ \text{zero, one} \}, \Sigma_1^f = \{ \text{minus} \}, \Sigma_2^f = \{ \text{plus} \}, \Sigma_2^p = \{ \text{less} \}$, and all other sets are empty

4. Give a formula over this signature that uses all function and predicate symbols

Solution: E.g., t = h(f(a), g(b)) for the term $r(t \land t) \land q(t) \land p$ for the formula

Problem 8.2 (Natural Deduction)

Prove the following formula using the propositional Natural Deduction calculus.

$$(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow C$$

(1)	1	$(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C)$	Assumption
(2)	1	$A \lor B$	$\mathcal{ND}_0 \wedge E_l \text{ (on 1)}$
(3)	1	$(A \Rightarrow C) \land (B \Rightarrow C)$	$\mathcal{ND}_0 \wedge E_r \text{ (on 1)}$
(4)	1	$A \Rightarrow C$	$\mathcal{ND}_0 \wedge E_l \text{ (on 3)}$
(5)	1	$B \Rightarrow C$	$\mathcal{ND}_0 \wedge E_r \text{ (on 3)}$
(6)	1,6	Α	Assumption
(7)	1,6	C	$\mathcal{ND}_0 \Rightarrow E \text{ (on 4 and 6)}$
(8)	1,8	В	Assumption
(9)	1,8	C	$\mathcal{ND}_0 \Rightarrow E \text{ (on 5 and 8)}$
(10)	1	С	$\mathcal{ND}_0 \lor E \text{ (on 2, 7 and 9)}$
(11)		$(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow C$	$\Rightarrow I (on 1 and 10)$
	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)	$\begin{array}{c cccc} (1) & 1 \\ (2) & 1 \\ (3) & 1 \\ (4) & 1 \\ (5) & 1 \\ \hline (6) & 1,6 \\ (7) & 1,6 \\ \hline (8) & 1,8 \\ (9) & 1,8 \\ \hline (10) & 1 \\ (11) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Problem 8.3 (Proving in Tableau Calculus)

We use the *propositional variables P*, *Q*, and *R* and define *formulae A*, *B*, and *C* by

 $A = Q \land (Q \Rightarrow R)$ $B = P \Rightarrow A$ $C = P \Rightarrow R$

Prove the formula $B \Rightarrow C$ using the propositional tableau calculus \mathcal{T}_0 .

Solution:

 \perp for closing is acceptable.

Problem 8.4 (Logical Systems)

Fix a set *V* of propositional variables. We define a logical system (L, K, \models) . (Note: This logical system is different from the ones in the lecture and only used here as an exercise.)

- *L* is the powerset of *V*, i.e., a formula is a set of propositional variables.
- *K* is the set of functions $V \to \{F, T\}$.
- For $A \in L$ and $M \in K$, $M \models A$ holds if M(p) = T for all $p \in A$.
- 1. Give examples of formulas that are
 - 1. satisfiable
 - 2. falsifiable
 - 3. unsatisfiable
 - 4. valid

Give a sound and complete calculus for this logical system.

Solution: Assume some $p \in V$.

- 1. $\{p\}$ (satisfied if K(p) = T)
- 2. $\{p\}$ (falsified if K(p) = F)
- 3. No such formula exists
- 4. \emptyset is the only valid formula
- 2. Consider the relation $H \vdash A$ holding if $A = \bigcup_{h \in H} h$. Check if \vdash is a derivation relation.

Solution: It is not (unless $|V| \le 1$). For example, put $H = \{\{p\}, \{q\}\}$ and $A = \{p\}$. Then $\bigcup_{h \in H} h = \{p, q\}$ and thus $H \nvDash A$ even though $A \in H$. It becomes a derivation relation if we use \subseteq instead of = in the definition.