Assignment8 - Calculi for Propositional Logic

Problem 8.1 (FOL-Signatures)

- 1. Model the following situation as a FOL signature. (FOL and PLNQ signatures are the same.)
 - We have constants (= nullary functions) called zero and one.
 - We have a binary function called plus.
 - We have a unary function called minus.
 - We have a binary predicate called less.
- 2. Now consider the signature given by
 - $\Sigma_0^f = \{a, b\}$
 - $\Sigma_1^f = \{f, g\}$
 - $\Sigma_2^f = \{h\}$
 - $\Sigma_0^p = \{p\}$
 - $\Sigma_1^p = \{q\}$
 - $\Sigma_2^p = \{r\}$
 - all other sets empty
- 3. Give a term over this signature that uses all function symbols
- 4. Give a formula over this signature that uses all function and predicate symbols

Problem 8.2 (Natural Deduction)

Prove the following formula using the propositional Natural Deduction calculus.

$$(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow C$$

Problem 8.3 (Proving in Tableau Calculus)

We use the *propositional variables P*, Q, and R and define *formulae A*, B, and C by

$$A = Q \land (Q \Rightarrow R)$$
$$B = P \Rightarrow A$$
$$C = P \Rightarrow R$$

Prove the formula $B \Rightarrow C$ using the propositional tableau calculus \mathcal{T}_0 .

Problem 8.4 (Logical Systems)

Fix a set V of propositional variables. We define a logical system $\langle L, K, \models \rangle$. (Note: This logical system is different from the ones in the lecture and only used here as an exercise.)

- L is the powerset of V, i.e., a formula is a set of propositional variables.
- K is the set of functions $V \to \{F, T\}$.
- For $A \in L$ and $M \in K$, $M \models A$ holds if M(p) = T for all $p \in A$.
- 1. Give examples of formulas that are
 - 1. satisfiable
 - 2. falsifiable
 - 3. unsatisfiable
 - 4. valid

Give a sound and complete calculus for this logical system.

2. Consider the relation $H \vdash A$ holding if $A = \bigcup_{h \in H} h$. Check if \vdash is a derivation relation.