
Assignment3 – Search

Problem 3.1 (Search Algorithms)
Consider the following directed graph:

𝐴 ∶ 10

𝐵 ∶ 5 𝐶 ∶ 6

𝐷 ∶ 7 𝐸 ∶ 5 𝐹 ∶ 7 𝐺 ∶ 3

𝐻 ∶ 4 𝐼 ∶ 0

6 1
3

1

1
2

5
1

2 6

5 8 4

1

Every node is labeled with 𝑛 ∶ ℎ(𝑛) where 𝑛 is the identifier of the node and
ℎ(𝑛) is the heuristic for estimating the cost from 𝑛 to a goal node. Every edge is
labeled with its actual cost.

1. Assume that 𝐼 is the goal node. Argue whether or not the heuristic is admis-
sible.

Solution: It is not admissible: The cost from 𝐷 to the goal is 1 + 5 = 6 < 7 =
ℎ(𝐷), and a heuristicmust not overestimate that cost.

Now assume you have already expanded the node 𝐴. List the next 4 nodes
(i.e., excluding 𝐴) that will be expanded using the respective algorithm. If there
is a tie, break it using alphabetical order.

2. depth-first search

Solution: 𝐵, 𝐶, 𝐹,𝐻

3. breadth-first search

Solution: 𝐵, 𝐶, 𝐸, 𝐹

1



4. uniform-cost search

Solution: 𝐶, 𝐹, 𝐵, 𝐸

5. greedy-search

Solution: 𝐵, 𝐸, 𝐶, 𝐺

6. 𝐴∗-search

Solution: 𝐶, 𝐹, 𝐺, 𝐵

Problem 3.2 (Formally Modeling a Search Problem)
Consider the Towers of Hanoi for 7 disks initially stacked on peg A.
Is this problem deterministic? Is it fully observable?
Formally model it as a search problem in the sense of the mathematical defini-

tion from the slides. Explain how your mathematical definition models the prob-
lem.

Note that the formal model only defines the problem— we are not looking for
solutions here.

Note that modeling the problem corresponds to defining it in a programming
language, except that we use mathematics instead of a programming language.
Then explaining the model corresponds to documenting your implementation.

Solution: We need to give (𝑆,𝒜, 𝑇, 𝐼, 𝐺).
Because the problem is deterministic, we know #(𝑇(𝑎, 𝑠)) ≤ 1. Because the

problem is fully observable, we know #(𝐼) = 1.
Let 𝐷 = {1, 2, 3, 4, 5, 6, 7} (the set of disks) and 𝑃 = {𝐴, 𝐵, 𝐶} (the set of pegs).

We put:
• 𝑆 = 𝐷 → 𝑃, i.e., a state 𝑠 is a function from disks to pegs.
Explanation: In state 𝑠, the value 𝑠(𝑑) is the peg that disk 𝑑 is on. Because
disks must always be ordered by size, we do not have to explicitly store the
order in which the disks sit on the pegs.

• 𝒜 = {(𝐴, 𝐵), (𝐵, 𝐴), (𝐴, 𝐶), (𝐶, 𝐴), (𝐵, 𝐶), (𝐶, 𝐵)}, i.e., an action 𝑎 is a pair of
different pegs.
Explanation: (𝑝, 𝑞) represents the action of moving the top disk of peg 𝑝 to
peg 𝑞.

2



• For 𝑠 ∈ 𝑆 and 𝑝 ∈ 𝑃, we abbreviate as 𝑡𝑜𝑝(𝑠, 𝑝) the smallest 𝑑 ∈ 𝐷 such that
𝑠(𝑑) = 𝑝.
Explanation: 𝑡𝑜𝑝(𝑠, 𝑝) is the top (smallest) disk on peg 𝑝 in state 𝑠.
Then 𝑇∶ 𝒜 × 𝑆 → 𝒫(𝑆) is defined as follows:
– If 𝑡𝑜𝑝(𝑠, 𝑞) > 𝑡𝑜𝑝(𝑠, 𝑝), we put 𝑇((𝑝, 𝑞), 𝑠) = {𝑠′} where 𝑠′ ∶ 𝐷 → 𝑃 is
given by
* 𝑠′(𝑑) = 𝑞 if 𝑑 = 𝑡𝑜𝑝(𝑠, 𝑝)

* 𝑠′(𝑑) = 𝑠(𝑑) for all other values of 𝑑
– otherwise, 𝑇((𝑝, 𝑞)), 𝑠) = ∅

Explanation: In state 𝑠, if the top disk of 𝑞 is bigger than the top disk of 𝑝, the
action (𝑝, 𝑞) is applicable, and the successor state 𝑠′ of 𝑠 after applying (𝑝, 𝑞)
is the same as 𝑠 except that the top (smallest) disk on peg 𝑝 is now on peg 𝑞.

• 𝐼 = {𝑖} where the state 𝑖 is given by 𝑖(𝑑) = 𝐴 for all 𝑑 ∈ 𝐷.
Explanation: Initially, all disks are on peg 𝐴.

• 𝐺 = {𝑔} where the state 𝑔 is given by 𝑔(𝑑) = 𝐵 for all 𝑑 ∈ 𝐷.
Explanation: There is only one goal state, described by all disks being on peg
𝐵.

Note that there are many different correct solutions to this problem. In particu-
lar, you can use different definitions for 𝑆 (i.e., model the state space differently), in
which case everything else in the model will be different, too. Often a good model
for the state space can be recognized by how straightforward it is to define the rest
of the model formally.

Even if you used a different state space, a good self-study exercise is to check
that the above (a) is indeed a search problem and (b) correctly models the Towers of
Hanoi. Continuing the above analogy to programming languages, (a) corresponds
to compiling/type-checking your implementation and (b) to checking that your im-
plementation is correct.

Problem 3.3 (Heuristic Searches)
Consider the graph of Romanian cities with edges labeled with costs 𝑐(𝑚, 𝑛) of

going from 𝑚 to 𝑛. 𝑐(𝑚, 𝑛) is always bigger than the straight-line distance from 𝑚
to 𝑛. 𝑐(𝑚, 𝑛) is infinite if there is no edge.

Our search algorithm keeps:

• a list 𝐸 of expanded nodes 𝑛 together with the cost 𝑔(𝑛) of the cheapest path
to 𝑛 found so far,

• a fringe 𝐹 containing the unexpanded neighbors of expanded nodes.

We want to find a cheap path from Lugoj to Bucharest. Initially, 𝐸 is empty, and
𝐹 contains only Lugoj. We terminate if 𝐸 contains Bucharest.

3



Expansion of a node 𝑛 in 𝐹 moves it from 𝐹 to 𝐸 and adds to 𝐹 every neighbor
of 𝑛 that is not already in 𝐸 or 𝐹. We obtain 𝑔(𝑛) by minimizing 𝑔(𝑒) + 𝑐(𝑒, 𝑛) over
expanded nodes 𝑒.

As aheuristicℎ(𝑛), we use the straight-line distance from𝑛 to Bucharest as given
by the table in the lectures.

Explain how the following algorithms choose which node to expand next:
1. greedy search with heuristic ℎ

Solution: The search expands the node 𝑛 that minimizes the function ℎ(𝑛).

2. A∗ search with path cost 𝑔 and heuristic ℎ

Solution: The search expands the node 𝑛 that minimizes the function 𝑔(𝑛)+
ℎ(𝑛)

3. Explain what ℎ∗ is here and why ℎ is admissible.

Solution: ℎ∗(𝑛) is the cost of the shortest path from 𝑛 to Bucharest (which
we do not know unless we expand all nodes). Because 𝑐(𝑚, 𝑛) is always big-
ger than the straight-line distance, every path is longer than the straight-line
distance between its end points. Thus ℎ(𝑛) ≤ ℎ∗(𝑛).

4. For each search, give the order in which nodes are expanded.
(You only have to give the nodes to get the full score. But to get partial credit
in case you’re wrong, you may want to include for each step all nodes in the
fringe and their cost.)

Solution: Lugoj (244), Mehadia (241), Drobeta (242), Craiova (160), Pitesti
(100), Bucharest (0)
A∗ search: Lugoj (0+244),Mehadia (70+241), Drobeta ((70+75)+242), Craiova
(70+75+120)+160), Timisoara (111+329), Pitesti ((70+75+120+138)+100),
Bucharest ((70+75+120+138+101)+0)

Problem 3.4 (Heuristics)
Consider heuristic search with heuristic ℎ.
1. Briefly explain what is the same and what is different between𝐴∗ search and

greedy search regarding the decision which node to expand next.

Solution: Both choose the node that minimizes a certain function. As that

4



function,𝐴∗ uses the sum of path cost and heuristicwhereas greedy only uses
the heuristic.

2. Is the constant function ℎ(𝑛) = 0 an admissible heuristic for 𝐴∗ search?

Solution: Yes. (But it’s a useless one.)

5


