
Assignment3 – Agents and Search

Problem 3.1
For each of the following agent architectures, develop a PEAS description of the

task environment.
Additionally, characterize the environments of these agents according to the

properties discussed in the lecture. Where not “obvious”, justify your choice with a
short sentence.

Finally, choose suitable designs for the agents.
1. Robot soccer player
2. Internet book-shop agent (that is: an agent for book shops that stocks up on

books depending on demand)
3. Autonomous Mars rover
4. Mathematical theorem prover
5. First-person shooter (Counterstrike, Unreal Tournament etc.)

Problem 3.2
Explain the difference between agent function and agent program. How many

agent programs can there be for a given agent function?

Solution: The function specifies the input-output relation (outside view). The pro-
gram implements the function (inside view).

The function takes the full sequence of percepts as arguments. The program
uses the internal state to avoid that.

There are either none or infinitely many programs for a function.

Problem 3.3
Explain the commonalities of and the differences between the performance

measure and the utility function.

Solution: Both measure how well an agent is doing.
The performance measure is a meta-level object that defines the quality of any

agent used to solve the task. It may be defined informally (but still precisely) be-
cause it only needs to be used by an outside observer, such as a human comparing
multiple agents.

A utility function is a component of a particular utility-based agent. It must be
defined formally (e.g., in a specification or programming language) because it must
be computed as a part of applying the agent.

1

Problem 3.4 (Tree Search in ProLog)
Implement the following tree search algorithms in Prolog:
1. BFS

2. DFS

3. IDSIterative Deepening (with step size 1)
Remarks:
• In the lectures, we talked about expanding nodes. That is relevant in many
AI applications where the tree is not built yet (and maybe even too big to
hold in memory), such as game trees in move-based games or decision trees
of agents interacting with an environment. In those cases, when visiting a
node, we have to expand it, i.e., compute what its children are.
In this problem, we work with smaller trees where the search algorithm re-
ceives the fully expanded tree as input. The algorithm must still visit every
node and perform some operation on it — the search algorithm determines
in which order the nodes are visited.
In our case, the operation will be to write out the label of the node.

• In the lectures, we worked with goal nodes, where the search stops when a
goal node is found. Here we do something simpler: we visit all the nodes and
operate on each one without using a goal state. (Having a goal state is then
just the special case where the operation is to test the node and possibly stop.)

Concretely, your submission must be a single Prolog file that extends the fol-
lowing implementation:
% tree(V,TS) represents a tree.
% V must be a string - the label/value/data V of the root node
% TS must be a list of trees - the children/subtrees of the root node
% In particular, a leaf node is a tree with the empty list of children
istree(tree(V,TS)) :- string(V), istreelist(TS).

% istreelist(TS) holds if TS is a list of trees.
% Note that the children are a list not a set, i.e., they are ordered.
istreelist([]).
istreelist([T|TS]) :- istree(T), istreelist(TS).

% The following predicates define search algorithms that take a tree T
% and visit every node each time writing out the line D:L where
% * D is the depth (starting at 0 for the root)
% * L is the label

% dfs(T) visits every node in depth-first order
dfs(T) :- ???
% bfs(T) visits every node in beadth-first order
bfs(T) :- ???
%itd(T):- visits every node in iterative deepening order
itd(T) :- ???

2

Here “must” means you can define any number of additional predicates. But the
predicates specified above must exist and must have that arity and must work cor-
rectly on any input T that satisfies istree(T). “working correctly”means the pred-
icates must write out exactly what is specified, e.g.,
0:A
1:B

for the depth-first search of the tree tree("A",[tree("B",[])]).

Solution:

% initialize with depth 0
dfs(T) :- dfsD(T,0).

% write out depth and value V of the current node, then search all children with depth D+1
dfsD(tree(V,TS), D) :- write(D), write(":"), writeln(V), Di is D+1, dfsAll(TS,Di).

% calls dfsD on all trees in a list
dfsAll([],_).
dfsAll([T|TS],D) :- dfsD(T,D), dfsAll(TS,D).

% initialize with the fringe containing T at depth 0
bfs(T) :- bfsFringe([(0,T)]).

% empty fringe - done
bfsFringe([]).
% take the first pair (D,T) in the fringe, write out D and the value V of T
% append children TS of T paired with depth D+1 to the *end* of F, and recurse
bfsFringe([(D,tree(V,TS))|F]) :- write(D), write(":"), writeln(V),

Di is D+1, pair(Di,TS, DTS), append(F,DTS,F2), bfsFringe(F2).

% pair(D,L,DL) takes value D and list L and pairs every element in L with D, returning DL
pair(_,[],[]).
pair(D,[H|T],[(D,H)|DT]) :- pair(D,T,DT).

% initialize with cutoff 0
itd(T) :- itdUntilDone(T,0),!.

% calls dfsUpTo with cutoff C and initial depth
itdUntilDone(T,C) :- dfsUpTo(T,0,C,Done), increaseCutOffIfNotDone(T,C,Done).
% depending on the value of Done, terminate or increase the cutoff.
increaseCutOffIfNotDone(_,_,Done) :- Done=1.
increaseCutOffIfNotDone(T,C,Done) :- Done=0, Ci is C+1, itdUntilDone(T,Ci).

% dfsUpTo(T,D,U,Done) is like dfs(T,D) except that
% * we stop at cutoff depth U
% * we return Done (0 or 1) if there were no more nodes to explore

% cutoff depth reach, more nodes left
dfsUpTo(_, D, U, Done) :- D > U, Done is 0.
% write data, recurse into all children with depth D+1
dfsUpTo(tree(V,TS), D, U, Done) :- write(D), write(":"), writeln(V),

3

Di is D+1, dfsUpToAll(TS,Di,U, Done).

% dfsUpToAll(TS,D,U,Done) calls dfsUpTo(T,D,U,_) on all elements of TS; it returns 1 if all children did
dfsUpToAll([],_,_,Done) :- Done is 1.
dfsUpToAll([T|TS],D,U,Done) :- dfsUpTo(T,D,U,DoneT),

dfsUpToAll(TS,D,U,DoneTS), Done is DoneT*DoneTS.

4

