
Assignment2 – Introduction and Prolog

Problem 2.1 (Towers of Hanoi)
The Towers of Hanoi is a puzzle. It consists of three pegs (𝐴, 𝐵, and 𝐶) and a

number of disks of different sizes, which can slide onto any peg. The puzzle starts
with the disks in a stack in ascending order of size on one peg, the smallest at the
top, thus making a conical shape. The objective of the puzzle is to move all disks
from peg 𝐴 to peg 𝐵, while obeying the following rules:

1. only one disk can be moved at a time,

2. eachmove consists of taking the upper disk fromone of the stacks and placing
it on top of another stack or on an empty peg,

3. no larger disk may be placed on top of a smaller disk.

The idea of the algorithm (for 𝑁 > 1) is to move the top 𝑁 − 1 disks onto the
auxiliary peg, thenmove the bottom disk to the destination peg, and finally moving
the remaining 𝑁 − 1 disks from the auxiliary peg to the destination peg.

1. Write a Prolog predicate that prints out a solution for the Towers of Hanoi
puzzle. Use the write(X) predicate that prints the value of 𝑋 (𝑋 can be sim-
ple text or any type of argument) to the screen and nl that prints a new line

1

to write a rule move(N, A, B, C) that prints out the solution for moving 𝑁
disks from peg 𝐴 to peg 𝐵, using 𝐶 as the auxiliary peg.
Each step of the solution should be of the form “Move top disk from X to Y”.
Examples:
?- write(hello), write(' world!'), nl.
hello world!
true.

?- move(3, left, center, right).
Move top disk from left to center
Move top disk from left to right
Move top disk from center to right
Move top disk from left to center
Move top disk from right to left
Move top disk from right to center
Move top disk from left to center
true ;
false.

Solution:
move(1, A, B, _) :-

write('Move top disk from '),
write(A), write(' to '), write(B), nl.

move(N, A, B, C) :-
N>1, M is N-1,
move(M, A, C, B), move(1, A, B, _), move(M, C, B, A).

2. Determine the complexity class of your algorithm in terms of the number of
disks 𝑁 and explain how you computed it.

Solution: Let 𝑇(𝑁) be the number of moves needed to move 𝑁 disks from
one peg to another.
Clearly, 𝑇(1) = 1. For 𝑇(𝑁), we have the following recursive relation:

𝑇(𝑁) = 2𝑇(𝑁 − 1) + 1

The values for 𝑁 = 1, 2, 3, 4, 5 are 1, 2 + 1, 22 + 2 + 1, 23 + 22 + 2 + 1, and
24 + 23 + 22 + 2 + 1. Thus, 𝑂(𝑇(𝑛)) = 2𝑛−1, which is exponential.
(You could also solve the non-homogenous linear recurrence to obtain a pre-
cise closed formula for 𝑇(𝑁).)

Problem 2.2 (Mathematical Notation)
Let ℕ be the set of natural numbers. A monoid is a mathematical structure

⟨𝐺, ◦, 𝑒⟩where𝐺 is a set, ◦ is an associative binary function on𝐺, and 𝑒 is the neutral
element of ◦.

Express the following concepts inmathematical notation:

2

1. The set containing all natural numbers

Solution: ℕ

2. The set containing the set of natural numbers

Solution: {ℕ}

3. The set containing all square numbers

Solution: 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 ∶= {𝑛 ∈ ℕ|∃𝑚 ∈ ℕ.𝑛 = 𝑚2} (selecting a subset by
a property) or {𝑛2 ∶ 𝑛 ∈ ℕ} (generating a set by applying a function to all
elements of a set)

4. The set containing all even natural numbers

Solution: 𝐸𝑣𝑒𝑛𝑠 ∶= {𝑛 ∈ ℕ|∃𝑚 ∈ ℕ.𝑛 = 2𝑚} or {2𝑛|𝑛 ∈ ℕ}

5. The set containing all even square numbers

Solution: 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 ∩ 𝐸𝑣𝑒𝑛𝑠

6. The 3-tuple of 0, 1, and 2

Solution: ⟨0, 1, 2⟩

7. The 𝑛-tuple of all numbers from 0 to 𝑛 − 1

Solution: ⟨0, … , 𝑛 − 1⟩

8. The set of pairs of natural numbers and their squares

Solution: {(𝑛, 𝑛2)|𝑛 ∈ ℕ}

3

9. The pair of sets of natural numbers and square numbers

Solution: (ℕ, 𝑆𝑞𝑢𝑎𝑟𝑒𝑠)

10. The monoid of natural numbers under addition

Solution: 𝑁𝑎𝑡𝐴𝑑𝑑 ∶= (ℕ,+, 0)

11. The pair of monoids of the natural numbers under addition and under mul-
tiplication

Solution: Let 𝑁𝑎𝑡𝑀𝑢𝑙𝑡 ∶= (ℕ, ⋅, 1). Then (𝑁𝑎𝑡𝐴𝑑𝑑,𝑁𝑎𝑡𝑀𝑢𝑙𝑡).

12. The set of the monoids of the natural numbers under addition and under
multiplication

Solution: {𝑁𝑎𝑡𝐴𝑑𝑑,𝑁𝑎𝑡𝑀𝑢𝑙𝑡}

13. Given amonoid ⟨𝐺, ◦, 𝑒⟩, the set of elements that are not the neutral element

Solution: {𝑢 ∈ 𝑈|𝑢 ≠ 𝑒}

14. Given amonoid ⟨𝐺, ◦, 𝑒⟩, the monoid in which the operation is the same but
with left and right argument switched.

Solution: ⟨𝐺, 𝑜, 𝑒⟩ where 𝑜 is the function (𝑥, 𝑦) ↦ 𝑦◦𝑥

Problem 2.3 (Prolog Grammar)
Consider the following partial grammar for a simplified version of Prolog with

start symbol 𝑃 and productions

𝑃 ∶∶= 𝐶∗ programs: lists of clauses
𝐶 ∶∶= clauses: head literal and list of body literals
𝐿 ∶∶= literals: predicate symbol applied to list of terms

| or term equality
𝑇 ∶∶= terms: function symbol applied to list of terms
𝐼 ∶∶= alphanumeric string identifiers

4

1. Complete the grammar with appropriate productions.

Solution:
𝑃 ∶∶= 𝐶∗ programs
𝐶 ∶∶= 𝐿 ∶−𝐿∗. clauses
𝐿 ∶∶= 𝐼(𝑇∗) | 𝐼 = 𝑇 literals
𝑇 ∶∶= 𝐼(𝑇∗) terms
𝐼 ∶∶= alphanumeric string identifiers

2. The above grammar uses 𝑁∗ to indicate a repetition (list) of words derived
from 𝑁. But often we want a list with a separator, e.g., 𝑁,𝑁,𝑁 instead of
𝑁𝑁𝑁.
Describe how the production 𝐴 ∶∶= 𝐵𝑁∗ 𝐶 can be revised to produce a
comma-separated list (assuming ‘,‘ is among the terminal symbols).

Solution:
𝐴 ∶∶= 𝐵𝑁𝑠 𝐶
𝑁𝑠 ∶∶= 𝜖 |𝑁,𝑁𝑠

or
𝐴 ∶∶= 𝐵𝑁𝑠 𝐶
𝑁𝑠 ∶∶= 𝜖 |𝑁(,𝑁)∗

5

