
Assignment1 – Prolog

Problem 1.1 (Basic Prolog Functions)
Implement the functions listed below in Prolog. Note that many of them are

built-in, but we ask you create your own functions.

1. a function reversing a list
Test case:
?- myReverse([1,2,3,4,2,5],R).
R = [5, 2, 4, 3, 2, 1].

2. a function removing multiple occurrences of elements in a list
Test case:
?- removeDuplicates([1,1,1,1,2,2,3,4,1,2,7],A).
A = [1, 2, 3, 4, 7].

Hint: You may want to implement a helper method delete(X,LS,RS), that
removes all instances of X in LS and returns the result in RS.

3. a function for zipping two lists
zip takes two lists and outputs a list of pairs (represented as 2-element lists)
of elements at the same index in the two lists. If the lists do not have the same
length, the zipped list contains only as many pairs as the shorter list.
Create a Prolog predicate with 3 arguments: the first two are the two lists to
zip and the third one the result. For instance:

?- zip([1,2,3],[4,5,6],L).
L = [[1, 4], [2, 5], [3, 6]].

?- zip([1,2],[3,4,5],L).
L = [[1, 3], [2, 4]].

4. a function for computing permutations of a list
Try it out on paper first and understand why this is difficult.
Test case:
?- myPermutations([1,2,3],P).
P = [1, 2, 3] ;
P = [2, 1, 3] ;
P = [2, 3, 1] ;
P = [1, 3, 2] ;
P = [3, 1, 2] ;
P = [3, 2, 1].

1



Note that there are two ways for specifying such a function:

(a) return a list of all permutations
(b) return a single permutation each time such that Prolog finds them one

by one.

Here we are using the second way, i.e., myPermutations(L,P)must in par-
ticular be true if P is some permutation of L.

Hint: Onepossible solution is to startwith ahelper predicatetakeout(X,L,M)
that is true iff M is the result of removing the first occurrence of X from L. Or
equivalently: M arises by adding X somewhere in L. How does this allow you
to define the notion of permutation recursively?

Solution:

1. the reverse function
% myReverseAcc uses an additional argument (the second one) as an accumulator
% in which the result is built.
% Its invariant is that myReverserAcc(X,Y,Z) iff reverse(X);Y = Z.
% When the first argument is empty, we return the accumulated result.
myReverserAcc([],X,X).
% When the first argument is non-empty, we take its first element and
% prepend it to the accumulator.
myReverserAcc([X|Y],Z,W) :- myReverserAcc(Y,[X|Z],W).
% To compute the reversal, we initialize the accumulator with the empty list.
myReverse(A,R) :- myReverserAcc(A,[],R).

2. the remove duplicates function
delete(_,[],[]).
delete(X,[X|T],R) :- delete(X,T,R).
delete(X,[H|T],[H|R]) :- not(X=H), delete(X,T,R).
removeDuplicates([],[]).
removeDuplicates([H|T],[H|R]) :- delete(H,T,S), removeDuplicates(S,R).

3. the zip function
zip(L,[],[]).
zip([],L,[]).
zip([H1|T1],[H2|T2],[[H1,H2]|T]) :- zip(T1,T2,T).

4. the permute function

2



takeout(X,[X|T],T).
takeout(X,[H|T1],[H|T2]) :- not(X=H), takeout(X,T1,T2).

% There is exactly one permutation of the empty list.
myPermutations([],[]).
% To find a permutation P of a longer list [H|T], we permute T into Q
% and insert H somewhere into Q.
myPermutations([H|T],P) :- myPermutations(T,Q), takeout(H,P,Q).

Note that we defined takeout in such a way that the second argument is
input and the third one output. But Prolog does not distinguish input and
output: when we use it later, we use the third argument as input and the
second one as output.

Problem 1.2
1. Program a Prolog predicate uadd for addition and umult for multiplication in

unary representation.

Hint: The number 3 in unary representation is the Prolog term s(s(s(o))),
i.e. application of the arbitrary function s to an arbitrary value o iterated three
times.

Hint: Note that Prolog does not allow you to program (binary) functions, so
you must come up with a three-place predicate. You should use add(X,Y,Z)
to mean 𝑋 + 𝑌 = 𝑍 and program the recursive equations 𝑋 + 0 = 𝑋 (base
case) and 𝑋 + 𝑠(𝑌) = 𝑠(𝑋 + 𝑌).

Solution:

uadd(X,o,X).
uadd(X,s(Y),s(Z)) :- uadd(X,Y,Z).

umult(_,o,o).
umult(X,s(Y),Z) :- umult(X,Y,W), uadd(X,W,Z).

2. Write a Prolog predicate u�b that computes the 𝑛th Fibonacci Number (0, 1,
1, 2, 3, 5, 8, 13,. . . add the last two to get the next), using the addition predicate
above.

3



Solution:

ufib(o,o).
ufib(s(o),s(o)).
ufib(s(s(X)),Y):-ufib(s(X),Z),ufib(X,W),uadd(Z,W,Y).

If you have mastered addition and multiplication, feel free to try your hands on
exponentiation as well.

Problem 1.3 (Binary Tree)
A binary tree of (in this case) natural numbers is inductively defined as either

• an expression of the form tree(n,t1,t2) where n is a natural number (the
label of the node) and t1 and t2 are themselves binary trees (the children of
that node)

• or nil for the empty tree. (Normally a tree cannot be empty, but it is more
convenient here to allow an empty tree as well.)

In particular, the nodes of the form tree(n,nil,nil) are the leaf nodes of the
tree, the others are the inner nodes.

An example tree in Prolog would be:
tree(1,tree(2,nil,nil),tree(2,nil,nil))

1. Write a Prolog function construct that constructs a binary tree out of a list
of (distinct) numbers such that for every subtree tree(n,t1,t2) all values
in t1 are smaller than n and all values in t2 are larger than n.
Note that there are usually multiple such trees for every list. One example is:
?- construct([3,2,4,1,5],T).
T = tree(3, tree(2, tree(1, nil, nil), nil), tree(4, nil, tree(5, nil, nil))).

2. WriteProlog functions count_nodes and count_leafs that take a binary tree
and return the number of nodes and leaves, respectively.

3. A binary tree is symmetric if it is its own mirror image, i.e., all nodes have
left and right child switched. Write a Prolog function symmetric that checks
whether a binary tree is symmetric.

Solution:

% add(X,S,T) inserts a node with label X into tree S yielding tree T
% Inserting into the empty tree yields a tree with a single node.
add(X,nil,tree(X,nil,nil)).
% To insert an element smaller than the root, insert on the left.

4



add(X,tree(Root,L,R),tree(Root,L1,R)) :- X @< Root, add(X,L,L1).
% To insert an element bigger than the root, insert on the right.
add(X,tree(Root,L,R),tree(Root,L,R1)) :- X @> Root, add(X,R,R1).

% To construct a binary tree T, from a list L, we insert all elements in order.
% We use an accumulator that we initialize with the empty tree.
construct(L,T) :- constructAcc(L,T,nil).
% At the end of the list, we return the accumulator.
constructAcc([],T,T).
% For each element of the list, we add it to the accumulator A (obtaining A1) and recurse.
constructAcc([N|Ns],T,A) :- add(N,A,A1), constructAcc(Ns,T,A1).

% The empty tree has no nodes.
count_nodes(nil,0).
% An inner node has one more node than its child trees together.
count_nodes(tree(_,L,R),N) :- count_nodes(L,NL), count_nodes(R,NR), N is NL+NR+1.
% Note that we do not need an additional case for leaf nodes here.

% The empty tree has no leaves.
count_leafs(nil,0).
% A leaf node has 1 leaf (itself).
count_leafs(tree(_,nil,nil),1).
% An inner node has as many leaves as its child trees together.
count_leafs(tree(_,L,R),N) :- count_leafs(L,NL), count_leafs(R,NR), N is NL+NR.

% The empty tree is symmetric.
symmetric(nil).
% Any other tree is symmetric if its two child trees are mirror images of each other.
symmetric(tree(_,L,R)) :- mirror(L,R).

% The empty tree is its own mirror image.
mirror(nil,nil).
% Otherwise, the mirror image arises by mirroring and swapping the child trees.
mirror(tree(X,L1,R1),tree(X,L2,R2)) :- mirror(L1,R2), mirror(R1,L2).

%A few tests
test1(X):- construct([5,2,4,1,3],Y), count_leafs(Y,X).
% X=2
test2(X):- construct([6,10,5,2,9,4,8,1,3,7],Y), count_leafs(Y,X).
% X=3
symmetric(tree(1,tree(2,nil,nil),tree(2,nil,nil))).
% true.
symmetric(tree(1,tree(3,nil,nil),tree(2,nil,nil))).
% false.

5


