TNTBase — a Versioned XML Database

Vyacheslav Zholudev and Christoph Lange

Computer Science, Jacobs University Bremen,
{v.zholudev, ch.lange}@jacobs-university.de

Abstract. A huge amount of documents is created and changed in our
everyday life, so that Version Control Systems like Git or SVN are tightly
integrated with documents workflows. On the other hand, XML has come
of age as a basis for document formats, and even though XML as a text-
based format is suitable for version control in principle, the fact that
version control systems work on files makes the integration of fragment
access techniques like XPath or XQuery difficult.

In this paper, we present the state of the art of TNTBase, a versioned
XML database based on Berkeley DB XML and Subversion. Thus, the
system integrates versioning and fragment access needed for fine-granular
document content management. It is intended as a basis for collabora-
tively editing and sharing XML documents, and also provides an infras-
tructure for specialization towards specific applications and their docu-
ment formats, such as validation, format-specific “XML-database views”
and human-oriented presentation.

1 Introduction

A tremendous number of documents is being created and managed nowadays all
over the world. We observe the development of a deep web (web content stored
in databases), from which the surface web (what we see in our browsers) is gen-
erated. With the merging of XML fragment access techniques (most notably
URIs [6] and XPath [3]) and database techniques and the ongoing development
of XML-based document formats, we are seeing the beginnings of a deep web
of XML documents, where surface documents are assembled, aggregated and
mashed up from background information in XML databases by techniques like
XQuery [7], and document (fragment) collections are managed by XQuery Up-
date [8]. At the same time, the web is constantly changing. Therefore, we need
an infrastructure for managing changes in the XML-based deep web. Unfortu-
nately, Version Control systems like Git or Subversion [26] which have heavily
influenced collaboration workflows in software engineering are deeply text-based
(w.r.t. diff/patch/merge) and do not integrate well with XML databases and
XQuery. On the other hand, some XML databases address temporal aspects, but
their versioning possibilities cannot be compared to traditional Version Control
systems. Moreover, the latter do not really provide format-specific features based
on format schemas or semantics.

During the last years there have been a lot of attempts towards versioning
XML. In this paper, we present the state of the art defined by our own ap-
proach: the TNTBase system, a versioned XML database that is built on top
of a tight integration of Berkeley DB XML |[5] into the Subversion Server. The
system is intended as an enabling technology that provides a basis for future
XML-based document management systems that support collaborative editing
and sharing by integrating versioning and fragment access, both of which are re-
quired for fine-granular document content management. We also present how a
general TN'TBase installation can be extended to meet additional requirements
of specific XML-based languages and their applications.

The TNTBase system was born in the context of OMDoc (Open Mathemati-
cal Documents [15]), an XML-based representation of the structure of mathemat-
ical knowledge and communication. Correspondingly, the development require-
ments for the TN'TBase come out of OMDoc-based applications and their storage
needs. But TNTBase, as described here, is independent from all of these and is
not biased towards mathematical content. However, in Sect.[f] we briefly describe
how TNTBase is being used for certain mathematical applications. TNTBase is
available under an open source license from |http://tntbase.org.

Sections [2 and [3] describe two major components of TNTBase: the core and
the application-specific layer. In Sect. [d] we separately discuss the most powerful
part of the application layer — Virtual Documents. Sect. [5] shows the features
described so far in use by summarizing the real-life scenarios in which TNTBase
is currently being used. Sect. [6] concludes the paper. Throughout the paper, a
collection of Computer Science lecture notes in OMDoc will serve as a running
example. We will show how different features of TNTBase help us to manage
this material and extract necessary information from it.

2 TNTBase Core

2.1 Related Projects

The core of the TNTBase system is based on the tight integration of two widely
used open source projects: Subversion and Berkeley DB XML. We provide a
short description of those aspects of the systems that are relevant to TNTBase
and discuss what is missing for versioned XML storage.

Subversion (SVN) is a centralized version control system [26]. For our work
the server part is relevant, which maintains the version history of documents
and directories in a repository. Unfortunately, like any other version control
system, SVN does not focus on the structure of documents inside a repository: its
storage algorithms only distinguish between text and binary files. In particular,
SVN does not support XML database features, most importantly querying via
XQuery, indexing, and updating via XQuery Update. Another limitation of SVN
is the fact that the smallest versioned entity in its repository is a file. But for some
applications it is desirable to abstract away from the notion of files, and work
with XML objects like sections in technical manuals in the DocBook format, or

http://tntbase.org

theorems or proofs in mathematical documents. The Virtual Documents, which
we will introduce in Sect. [] abstract even further from the notion of a file.
Berkeley DB XML (DB XML) is an open source, embedded native XML
database built on top of Berkeley DB [4]. The latter is also one possible SVN
storage backend (in Sect. [2| we will see the consequences of that fact). DB XML
inherits the advantages and features (e. g. portability, ACIHH transactions, repli-
cation, scalability, easy deployment, etc.) from Berkeley DB and extends it with
the typical features of native XML databases: XQuery-based access to documents
(including XQuery Update), content-based indexing for improving the perfor-
mance of queries, XQuery extension functions written in other programming
languages, XQuery debugging, etc. Unfortunately, DB XML does not support
versioning, which is becoming more and more crucial when managing collections
of XML documents. Some XML databases (e.g. [L1, |19, |24]) support primitive
versioning, but they have a number of limitations in comparison to ordinary
version control systems like SVN or Git (e. g. no branching, no merging, no com-
putation of minimal differences between revisions). Also, DB XML does not have
a notion of a file system, which becomes a serious shortcoming when managing
huge collections of documents.

2.2 xSVN — an XML-enabled Repository

xSVN, a modified SVN server integrated with DB XML, is one of the two founda-
tions of TNTBase (see [30] for details). Its design is motivated by the observation
that both the SVN server and the DB XML library are based on Berkeley DB
(BDB). The SVN server uses it to store repository informatiorf’] and DB XML
uses it for storing the raw bytes of the XML documents and for supporting con-
sistency, recoverability and transactions. Moreover, transactions can be shared
between BDB and DB XML, making the integration more natural.

We have extended the SVN backend storage module so that it stores the
latest (HEAD) revisions of XML documentsﬂ in DB XML (that happens to be
physically another BDB table that stores XML nodes in a special format). Non-
XML data like PDF, images or IXTEX source files, differences between revisions,
directory entry lists and other repository information are retained in BDB. From
an end-user perspective there is no difference to SVN: all the SVN commands
are still available and have the same behavior. Thus, for non-XML files the
workflow of xSVN is absolutely the same as in SVN. Thereby we are also able
to store plain text or binary data in xSVN that can supplement the collection of
XML files (e. g. licensing information or PDF documents generated from XML).
Moreover, we can commit XML and non-XML files in the same transaction.

1 atomicity, consistency, isolation, durability

2 Alternatively, SVN can use a filesystem storage backend, but we use BDB.

3 XSVN treats a file as XML if its extension is .zml or its svn:mime-type property is
either set to text/zml. This behaviour can be tweaked in the server-side configuration
files, or by instructing the SVN client to automatically set the right svn:mime-type
property.

Keeping XML documents in DB XML allows us to access those files not only via
any SVN client, but also through the DB XML API, with all benefits mentioned
in Sect. 2.3} efficient querying and update, indexing, and transactions.

xSVN’s deltification algorithms, which compute the difference between a new
revision and the previous one, are retained unchanged from normal SVN, as
the are very complex. The benefits of an XML-aware differencing are, however,
evident, both in terms of smaller and less invasive deltas, and more informative
conflict resolution strategies. Therefore, we are currently working on bringing
XML-aware diff into the server side as an additional feature (cf. Page [5)).

In conclusion, xSVN offers versioned XML storage. However, without addi-
tional modules it is not yet really useful as the only difference from SVN is that
it refuses to commit ill-formed XML documents. In the next section we describe
how we take advantage of DB XML integrated into xSVN.

2.3 XML-related features

The second foundation of the TNTBase core is a Java library called DB XML
Accessor, which communicates with xSVN’s DB XML bypassing all other repos-
itory information stored in BDB. A web application sitting on top of that li-
brary exposes its services to end-users via HT'TP. The DB XML Accessor ex-
tends DB XML’s XQuery syntax with the following TNTBase-specific func-
tions: Querying path-based collections of documents: As mentioned in
Sect. DB XML does not have a notion of a file system: every document
has just a unique name. But in order to make access methods compliant with
xSVN’s repository structure, we introduced several XQuery functions that al-
low to address documents based on their file system path. The trick here is
that xSVN augments XML documents with metadata fields that are supported
by DB XML - including path and revision information —, which allows us to
traverse the filesystem structure without looking into other parts of xSVN back-
end storage. A user can address a single document by the XQuery function
tnt:doc($path as xs:string) as document—node(), where $path is a path of a file in a repos-
itory. To obtain a collection of documents, the tnt:collection ($pattern as xs:string)
as document—node()* function can be used, where $pattern is the template for a
filesystem path that may contain wildcards (*, ¢) and //, representing an arbi-
trary chain of child directories. For example, the query tnt:collection (’/lectures//math/
xset+.omdoc’) Will return all lecture documents regarding set theory in all math
sub-folders of lectures. Querying previous revisions: By default xSVN only
stores the HEAD revisions of XML documents, but it is also possible to access
previous revisions in queries. There are two options:

1. DB XML Accessor can cache a particular subset of any revision in DB XML
on request. That subset can then be retrieved by the tnt:collection ($pattern,
$revision—number) XQuery function. Note that only those documents will be
returned that have been cached and comply with the given filesystem path
pattern. This requires additional coordination from the user side but was
deemed more reasonable than keeping all revisions in DB XML by default.

2. Using the tnt:doc($path, $revision) function. Unless the document under $path
has been cached or is a HEAD revision, it is retrieved by the SVNKit Adapter
module of DB XML Accessor. SVNKit Adapter utilizes the SVNKit Java
library [27] that implements an SVN client. This method works without
prior caching, but queries against that document will typically be typically
slower, as the current method does not take advantage of DB XML indexes.

Modifying via XQuery Update: Apart from modifying documents e.g. in
an XML editor and committing them using an SVN client, TNTBase takes ad-
vantage of DB XML’s XQuery Update facilities, and, in contrast to pure DB
XML, modified documents are versioned, i.e., a new revision is committed to
xSVN whenever on every update operation. Note that DB XML’s XQuery Up-
date support could not be used out of the box, as it modifies documents without
preserving their history. Such modifications would not only lose information
but also confuse xSVN, because it guarantees that files are retrieved absolutely
the same as they were committed. TNTBase introduces counterparts of the
XQuery Update functions that make changes consistent with history preserva-
tion [28]. For example, in order to replace the node /omdoc/theory of the document
/lectures /math/sets.omdoc, ON€ has to use tnt:replace —node(tnt:doc(’/lectures/math /sets.omdoc’)
Jomdoc/theory[1], $new—theory—element). That substitutes the thEOI'y element, com-
mits a new revision and returns the commit information as a string.

XML diff: We are working on bringing an XML-aware diff as another feature
to the TNTBase core. So far, we have implemented a simple XML diff function
in XQuery, which compares two XML elements and returns a simple XML out-
put describing the differences. It ignores whitespaces differences, comments and
attribute order. It can be used for comparing different revisions of documents
and finds an internal application in editing of Virtual Documents (Sect. .

2.4 Interfaces

TNTBase provides two different communication interfaces: (i) The xSVN inter-
face behaves like the normal SVN interface — the mod__dav__svn Apache module
serves requests from remote SVN clients — with one exception: If one of the
committed XML files is ill-formed, then xSVN will abort the whole transaction.
(ii) The RESTful [13] interface exposes the DB XML Accessor features described
in the previous subsection for XML operations [32].

3 TNTBase Application Layer

Our case studies (cf. Sect. [5)) showed that many tasks specific to particular XML
formats can be done by TNTBase. That was a reason to derive a separate layer
on top of the TNTBase core and augment this layer with Format-specific func-
tionalities (see Fig. [I). TNTBase provides facilities to integrate format-specific
validation (e.g. against RelaxNG schemas [9]) and presentation (e.g. via XSL
Transformations). But often a format requires more specific functionality, for in-
stance, extracting knowledge to different representations (e.g. RDF) upon com-
mit and caching it, or complex rendering tasks (such as rendering MathML

formulee when presenting our lecture notes as XHTML). Such functionality can
be supplied as additional modules and injected into the application layer via the
TNTBase plugin APT (see for details).

Often document work-

R TNTBase TNTBase (F)

flows involve both core
components of TNTBase, Web Application JisbAnplication
xSVN and the web ap- i 1o cr
plication on top of the -

. - r
DB XML Accessor li- Y |:l‘> XML-layer
brary (cf. Sect. [2]), and XSVN XSVN
require interactions be- ——— ———

XML XML(F)

tween them. For instance,
when one commits a new
version of some XML
documents and wants their
human-oriented XHTML presentation to be cached, this involves committing
files in xSVN, figuring out what files the presentation should be generated for,
sending the corresponding RESTful request to the F-specific layer of TNTBase,
generating the presentation and finally saving it in DB XML. We omit the techni-
cal details of these interactions, as they mainly concern the (painful) integration
of C++ (xSVN) and Java (DB XML).

Fig. 1. TNTBase for specific applications

For our implemen-

<§L°°mm" tation, we utilize the

& xSVN Web-application standard SVN pre-
Retrieve and ven commit and post-commit

ProcesSIContee ————— hook mechanisms for

Validation FE-specific module K
figuring out what sub-

I:{>
w Validation set of committed files

is subject to further

Commit txn Presentation pI"OCGSSng, such as
validation or genera-

[

Presentation generatio, Interface extraction tion of presentation
Post-commit hook meaut (see Fig. [2). If so,

S 4 > “ apre-/post-commit hook
Fig. 2. Interactions between xSVN and Web-application Sends requests to the
TNTBase RESTful in-

terface, where the actual processing is executed. The return codes and error
output stream are used to notify the committer about the result (e.g. valida-
tion errors). This mechanism is surprisingly flexible and naturally fits into the
xSVN approach, since it is inherited from SVN. In the future, we are going
to increase further scalability and manageability, but our approach shows that
that the workflows described in this paper naturally work inside the TNTBase
architecture.

These workflows are configured in the repository itself via specialized XML
configuration files in a pre-defined admin directory. Thus, the configuration can
be edited offline. A workflow is enabled in the three steps:

1. Provide methods (units that comprise a workflow) identifiers and additional
information. In case of schema validation if may be the location of a schema
(that may reside in the repository itself). If an advanced validation that is
performed by a 34 party plugin is needed, the Java class name that plugin
has to be provided. Once the configuration files have been committed, TNT-
Base will reserve a unique URL of the form http: //<tntbase_host> /restful /integration/
validation /<workflow_ name> /validate?path=/path/to/filel.omdoc&path=/path/to/file2.omdoc,
which can be used for manually validating a set of files.

2. If validation or presentation generation should be performed on commit,
the user may set the tntbase:validate SVIN property on a file or directory.
The format of this property is wy+ws+ ... 4wy, a list of workflow names
separated by “+7.

3. If step [2] takes place, then, finally, the user has to generate a pre-/post-
commit hook via a special TNTBase hook generator, providing the workflow
name. The installation of this hook will lead to processing (like validation
or presentation) of the affected by tntbase:validate property files.

Let us consider the following example (see |31] for elaborated information). Sup-
pose we want to validate lecture notes on the topic of graphs against a RelaxNG
schema and forbid commits of invalid files. Moreover, we intend to perform a
structural validation, one of whose subtasks is checking that there are no cyclic
imports (suppose this structural validation is performed by a TNTBase plugin),
but in case of failure we only want to notify the user, but not reject the com-
mit. First of all, we create a configuration file /admin/validation/methods.xml in our
repository:

<methods xmlns="http://tntbase.mathweb.org/ns">
<schema name="omdocRNG" location="tntbase:/admin/validation/omdoc.rng" type="rng"/>
<java name="structural" class="info.kwarc.tntbase.plugins.StructuralValidationPlugin"/>
</methods>

We define schema validation named omdocRNG, whose schema is located in the
same repository (note the tntbase: prefix). Also, we define the structural validation
named structural and performed by a Java class that implements the TN'TBase
plugin interface. In order to expose OMDoc files to a validation workflow in
our scenario, we set the tntbase:validate property on a folder /lectures/graphs with
value x.omdoc omdocRNG+structural, which means that all files with extension omdoc
in the folder /lectures/graphs will be validated against a schema named omdocRNG,
followed by the validation step named structural. The last step in our setting is
to generate a pre-commit hook for the omdocRNG method via a bundled script,
and a post-commit hook for the structural method. After the creation of these
repository hooks, our desired scenario is installed. These steps need some coor-
dination on the part of the user but provide a powerful and flexible framework
for manipulating files, notifying users and controlling commit time behavior.

20

4 Virtual Documents — Views on XML Documents

Virtual Documents (VDs) are a general framework for integrating XQueries into
XML documents as computational devices and processing them efficiently. As
a rough approximation, VDs are “XML database views” analogous to views in
relational databases; these are virtual tables in the sense that they are the results
of SQL queries computed on demand from the explicitly represented database
tables. Similarly, VDs are the results of XQueries computed on demand from the
XML files explicitly represented in TNTBase, presented to the user as entities
(files) in the TNTBase filesystem. Like views in relational databases TNTBase,
VDs are editable and become very useful abstractions in the interaction with
versioned XML storage. In this section we introduce a reader to the concept of
VDs. For further information refer to [31] and [29] for theoretical and practical
aspects, respectively.

4.1 VDs Introduction by Example

VDs are first class citizens in the TNTBase filesystem. Whereas they are in-
ternally quite different from usual documents, they look like normal files for a
user: one can browse them, validate, apply stylesheets, query and even modify
them. VDs are essentially a tight mix of static XML parts with XQueries and
instructions in XML form that instruct TNTBase how to arrange the XQuery
results inside a VD. Let us start with the simple example that we want to have
a joined list of mathematical exercises with information about their authors. We
would like to have the root element and the elements that embrace authors and
exercises. XQueries that select necessary data will augment our document.

Consider the following VD Specification (VD Spec) — a definition of a VD
(see the bottom left of Fig. [3)):

Listing 1.1. Example of a VD Spec

<tnt:virtualdocument xmlns:tnt="http://tntbase.mathweb.org/ns">
<tnt:skeleton xml:id="exercises">
<omdoc xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:title >Exercises for Computer Science lectures</dc:title>
<dc:creator>Michael Kohlhase</dc:creator>
<omdoc>
<dc:title > Acknowledgements</dc:title>
<omtext>
The following individuals have contributed material to this document:
<tnt:xqinclude query="tnt:collection(’/exercises//*.omdoc’)//dc:creator">
<tnt:return><tnt:result/></tnt:return>
</tnt:xqinclude>
</omtext>
</omdoc>
<omdoc>
<dc:title >Exercises</dc:title>
<tnt:xqinclude>
<tnt:query name="exercises.xq"/>
<tnt:return><tnt:result/></tnt:return>
</tnt:xqinclude>
</omdoc>
< /omdoc>
< /tnt:skeleton>

<tnt:query name="exercises.xq">
for $t in $topics return
tnt:collection(concat(’/exercises /’, $t, ’/*.omdoc’))//exercise
</tnt:query>
</tnt:virtualdocument >

TNTBASE REPOSITORY

Boolean algebra Discrete math

<author>..</author> | <author>...</author>:

<author>..</author>

<author>...</author>

/ M

VD Specificatio)

<omdoc> ‘<um doc> A L
v <authors>
<authors> <author>Michael<author>
T‘ <author>John<author>
(¢ XQuery inclusion :) ‘\ :aumopNormen(au\hoo
| </authors>
</authors> |
|<exercises> ¥
<exercises> | <exercise type="algebra"> <ekercise type="algebrd">
Get | LetAbeasest.. Edit Let B be a set
s P P \<lexercise> <lexercise>
(' X Query inclusion) “exercise type="VM"> <exercise type="VM">
Wirite a static procedure ... Consider a static proc ...
</exercises> </exercise> <[exercise>
- </exercises> </exercises>
<fomdoc> ciamdoc domdoo

Fig. 3. A complete VD workflow

Conceptually, the VD Spec consists of the top-level parts of the intended
exercises document, where some document fragments have been replaced by em-
bedded XQueries that generate them. In general, queries are embedded into a VD
Spec in the form <tnt:xqinclude><tnt:query>Q</tnt:query><tnt:return>R</tnt:return>
</tnt:xqginclude>, where @ is an XQuery and R consists of a result expression, in
which tnt:result elements will be replaced with the results of Q. The query in line
10-12 has been abbreviated to <tnt:xqginclude query="Q">R< /tnt:xginclude>, as it does
not contain embedded elements. The result of this particular query would be a
list of author names wrapped in an omtext element. The query in lines 17-20

uses another useful feature: a reference to a shared, reusable external query (see
below). Queries in VDs can also reference the physical files in a repository, or
include other XQuery modules, which enables further reusability.

VDs are created simply by committing a VD Spec to the xSVN repository
and executing an additional RESTful method of TNTBase that takes as an input

the path of a virtual document specification and the path of the new virtual
document. Thus, we can create multiple virtual documents from a single virtual
document specification. For instance, the above virtual document specification
XQueries can be changed so that the VD would contain not more than a certain
amount of exercises. This can be done by creating a new VD Spec that will
reference a skeleton from List. and overrides the exercises query:

Listing 1.2. Reusing a VD Skeleton

<tnt:virtualdocument xmlns:tnt="http://tntbase.mathweb.org/ns">
<tnt:skeleton href="/specs/exercises—spec.xml"/>
<tnt:query name="exercises.xq">
for $t in $topics return
tnt:collection(concat(’/exercises/’, $t, ’/+.omdoc’))//exercise[position() le $max]
</tnt:query>
<tnt:params>
<tnt:param name="max">
<tnt:value>10</tnt:value>
</tnt:param>
</tnt:params>
</tnt:virtualdocument >

Thus we write a skeleton once, and may use it for creating VDs with different
content. Note the parameter $max, which declared with a default value below the
query element. There is one more undefined parameter $topics that can be defined
in another VD Spec that references the current one, or when creating a VD file
system entity via a RESTful method (see [33}[32] for the technical details). Thus
the reference-based setup caters for a wide variety of reuse scenarios, as we can
see in List. [[.2] One may think of method overriding in Java or C++. It is
also possible to have an empty tnt:query element as the specification. Then it
becomes an abstract specification, and can be compared to abstract methods in
Java or pure virtual functions in C++.

Virtual Document are can be retrieved via a RESTful request (see middle
bottom picture of Fig. |3), or via XQuery (see below).

4.2 Other Features of VDs

Retrieving the content of a VD already gives us read-only “XML database views”,
but we can do more with VDs:

Querying Like usual documents, VDs can also be queried via the TNTBase
XQuery function tnt:vdoc($path as xs:string). It can be mixed with other elements
of a query, or even can be used to constitute queries of other VD Specs. If a VD
Spec is self-contained (i.e. it has all referenced variables and queries defined),
then its generated content can be also retrieved without the need to have a VD
file system entity associated with this VD Spec: tnt:vd—spec($spec—path as xs:string).
Materializing We can turn the content of a VD into a regular file in a repository,
i.e. materialize a VD. That makes sense, for instance, when computing a VD
takes a considerable amount of time, whereas the content of the sources queried
by the VD changes rarely, or when a user intends to fix the content of the source
document (cf. the ontology refactoring use case in Sect. [5)) and make it versioned:
In our example, when a user is satisfied with the list of exercises he obtained

from the VD, he might want to make it persistent by adding it to repository
under a certain path. If there is already a file in that place, materializing results
in a new revision of that file. Thus we can even version VDs, with the possibility
of rollback if required. Editing One of the most advanced features of is the
ability to edit VDs and commit them back TNTBase via the RESTful interface:
changed parts of a VD that came from files in a repository will be transparently
propagated back to the sources, while the repository history is preserved, i.e.
a new revision is created. At the bottom right of Fig. [3] we can see the final
phase of a VD workflow: editing and submitting it back. The modified parts
(marked in red) are propagated back to their origin. All changes are performed
in a single xSVN transaction, of which only those files will be part that were
implicitly affected by editing the VD. Editing static parts of a VD is not allowed;
otherwise TNTBase will not allow to commit a VD. The XML diff discussed on
Page [f takes identified allowed and prohibited changes. The strong advantage
of editing VDs is that users can abstract away from the physical documents in
the repository and work with semantically consistent objects (like theorems or
exercises) focusing only on relevant information aggregated into one logical unit.

5 Applications

TNTBase is constantly evolving becoming mature for integration into other
projects or ready to be used as a stand-alone application. In this section we
describe the use cases and projects where TNTBase has found its application so
far.

Repository for Computer Science Lectures at Jacobs University: Our
research group has accumulated a collection of more than 2000 slides of lecture
notes and homework problems. They are originally written in SIEX, a I¥TREX-
based input syntax for OMDoc. Besides being compiled to PDF for presenting
and reading, they can be translated to OMDoc using the BWTEXML TEX—XML
converter[20]. The JOMDoc library [12] can render the OMDoc semantic markup
to human-readable XHTML, plus MathML for mathematical formulae [1]. These
steps had been performed semi-automatically in the time before TNTBase. Be-
yond that, we wanted to be able to query the document collection (e.g. “what
exercises deal with structural induction?”), to generate exams automatically
(e.g. by selecting exercises that cover certain topics, have not been used last
year, and sum up to one hour), and to make the lecture notes browsable inter-
actively (e.g. by showing the definition of a mathematical symbol in a popup,
when the user clicked on an occurrence of it in a formula). These features were
enabled by maintaining the lecture notes in TNTBase and integrating plugins for
certain tasks. The IXTEXML plugin is now triggered after committing an §IEX
document and converts it automatically to OMDoc. These OMDoc documents
can then be queried, but we have also implemented automated exam genera-
tion as VDs that we materialize to publish final versions of exams. The Krextor
RDF extraction plugin (cf. [17]), which is run afterwards, extracts structural
outlines and metadata from the latest version of an OMDoc document into an

RDF representation in order to (i) provide semantic querying possibilities be-
yond XQueryEL (ii) to be able to enrich the rendered documents with semantic
annotations, to which interactive services can attach (e.g. in-place lookup of
relevant linked information), (iii) and to publish the contents of a repository as
Linked Data, so that external semantic search engines and mashups can make
use of them. [10]. In order to store RDF scalably, to answer SPARQL queries,
and to publish RDF as Linked Data, we put the RDF extracted by Krextor into
a Virtuoso RDF database (“triple store”) [23], which is connected to TNTBase
by another plugin. Finally, there is a plugin that integrates the JOMDoc library,
which renders OMDoc human-readable XHTML+MathML documents and now
also enriches them with semantic RDFa annotations [10].

Logic Atlas: In the LATIN project (Logic Atlas and Integrator), we deal with
almost 300 highly modularized and interlinked logical theories that have been
formalized in OMDoc. Similarly to the lecture note scenario, these documents
have to be rendered to human-readable presentations. This is realized by the
MMT (Module system for Mathematical Theories) web server application, which
obtains the formalized documents as well as instructions for how to display for-
mal mathematical symbols from different locations in an underlying TNTBase
repository. Additionally, validation of the mathematical theories was required —
a structural validation (in terms of Sect. [3)) that extends beyond XML schema
validation. For that purpose, the MMT library has been integrated into TNT-
Base as another validation plugin. After schema validation, it extracts the formal
logical structure of an OMDoc document to an RDF-like representation — rep-
resenting, for example, whether one mathematical symbol is defined in terms of
other symbols, whether other symbols occur in its type declaration, or whether
a mathematical theory imports (= reuses) other theories. Based on that infor-
mation, it checks the logical well-formedness. If, for example, a definition uses
symbols that have not been imported before, this definition and thus the whole
document is not well-formed. We refer to |16] for further details.

Ontology Engineering and Refactoring: Ontology engineering is a disci-
pline closely related to software engineering. Usually, engineers collaborate on a
project. Support for integrated testing as well as refactoring, i.e. restructuring
the (internal) structure of an ontology without changing its external behavior, is
essential. We utilize VDs for refactoring ontologies that are written in the OWL
2 Web Ontology Language [25] and serialized as XML [22]. In the lifecycle of an
ontology, it is not always obvious whether a refactoring step is appropriate, and
it is not always granted that it does not have any effects on external modules
(e. g. software, or annotated documents) depending on the ontology. Therefore,
we allow for previewing refactorings via VDs. The specifications of these VDs

4 The advantage of querying RDF (in the SPARQL language) is that an RDF rep-
resentation can abstract from different structural dimensions of knowledge being
represented in syntactically different ways in XML. We have detailed that in a case
study with Software Engineering documents containing structures in dimensions as
diverse as mathematical models, project organization and responsibilities, document
layout, and revision histories|14].

are maintained in the same repository as the ontologies and can collaboratively
be refined by the ontology developers. We have so far implemented VD specifica-
tions for renaming entities, factoring out or merging modules, rewriting axioms,
lowering expressivity and stripping axiom annotations. Once such a VD specifi-
cation has been applied to an ontology [module] — physical ontology documents
or another VD, the resulting view on the refactored ontology can be downloaded
and tested in an ontology development environment. Once the developers are
satisfied with the result of a refactoring, they can materialize the VD, thus
obtaining the refactored ontology as a physical document. We envisage TNT-
Base as a backend to be integrated with ontology engineering tools in order to
complement their functionality. Besides translation and refactoring support, we
envisage automated testing support [21]: When a user commits an ontology, a
pre-commit method feeds it into a reasoner (integrated as a validation plugin) in
order to check its consistency — quite similar to MMT’s logical well-formedness
check mentioned above. We refer to 18] for further details about refactoring
OWL ontologies.

6 Conclusion and Future Work

We have presented the TNTBase, a versioned XML database, in all of its facets,
from the technical core to its current applications. The core, formed from the
integration of the two reliable and scalable systems Subversion and Berkeley DB
XML, combines the document collection management capabilities of version con-
trol systems (branching, merging, history view, collaborative editing) with the
fine-grained fragment access and querying capabilities of XML databases. Much
of TNTBase’s core functionality is accessible via a normal Subversion interface,
which allows for a gentle migration from legacy Subversion-based workflows to-
wards applications that take more advantage of the added XML functionality,
which is accessible via a RESTful interface. TNTBase can be adapted to appli-
cations that require advanced XML document management workflows in various
ways: The plugin architecture allows for the integration of application-specific
components, e.g. for validation beyond the XML schema, knowledge extrac-
tion, and human-friendly presentation. Virtual Documents (VDs) provide flexi-
ble views on XML documents.

Over the last two years, TNTBase has matured enough for being used in
the application scenarios that we have summarized in Sect. 5] The largest-scale
application, the lecture note repository, has so far demanded the highest extent
of customization. It showcases all varieties of application-specific extensions: val-
idation and translation of committed TEX sources, rendering of human-readable
web documents with integrated interactive lookup services, knowledge extrac-
tion for semantic query answering and integration into the Semantic Web, as
well as generation of exams via VDs. The logic atlas and ontology engineering
applications further demonstrate the diverse applicability and customizability
of TNTBase. In the course of using TNTBase for these applications, we have
significantly increased stability and performance, taking care of multi-user en-

vironments and scalability. Furthermore, one is able to mirror TNTBase repos-
itories to normal SVN repositories by replication functionality adopted from
Subversion. This possibility once more justifies the decision of combining the
two systems as it allows not to worry about TNTBase failures that may cause
data corruption (actually, it never happened to us): in this case we can easily
restore them from a replicated SVN repository with all history preservation.

Future work on TNTBase will concentrate on providing further high-level
XML processing functionality, from which all of our current application scenar-
ios will benefit. We are working on integrating a semantic XML differencing
algorithm [2] into TNTBase. It will allow users to compare XML trees based on
declarative equivalence models that describe what XML nodes in a particular
language are considered to be equal. For example, we might consider two the-
ory elements in OMDoc equal if their formal parts are equal, ignoring narrative
structures only written for human readers, and ignoring the order of examples.
Again, the equivalence models will be collaboratively editable in the same repos-
itory where XML files reside.

References

[1] Mathematical Markup Language 3.0. Candidate Recommendation. W3C,
2009. URL: http://w3.0rg/TR/2009/CR-MathML3-20091215.

[2] S. Autexier and N. Miiller. “Semantics-Based Change Impact Analysis for
Heterogeneous Collections of Documents”. In: 10" ACM Symposium on
Document Engineering. under submission. 2010.

[3] XML Path Language (XPath) 2.0. Recommendation. W3C, 2007. URL:
http://w3.0rg/TR/2007/REC- xpath20-20070123/.

[4] Berkeley DB. URL: http://oracle.com/technology/products/berkeley-db/.

[6] Berkeley DB XML. URL: |http://oracle.com/database/berkeley-db/xml/.

[6] Uniform Resource Identifier (URI): Generic Syntar. RFC 3986. IETF,
2005. URL: http://www.ietf.org/rfc/rfc3986.txt.

[71 XQuery: An XML Query Language. Recommendation. W3C, 2007. URL:
http://w3.0rg/TR/xquery/.

[8] XQuery Update Facility 1.0. Candidate Recommendation. W3C, 2008.
URL: http://w3.0rg/TR/xquery-update-10/.

[9] RELAX NG Specification. Tech. rep. OASIS, 2001. URL: http: //www .
relaxng.org/spec-20011203.html.

[10] C. David, M. Kohlhase, C. Lange, F. Rabe, N. Zhiltsov, and V. Zholudev.
“Publishing Math Lecture Notes as Linked Data”. In: ESWC. LNCS 6089.
Springer, 2010. arXiv: 1004.3390.

[11] Ipedo XML Database. URL: http://ipedo.com/html/ipedo_xml_db.html.

[12] JOMDoc Project — Java Library for OMDoc documents. URL: http://
jomdoc.omdoc.org.

[13] JSR 811: JAX-RS: The Java API for RESTful Web Services. URL: |https:

//jsr3ll.dev.java.net/nonav/releases/1.0/.

http://w3.org/TR/2009/CR-MathML3-20091215
http://w3.org/TR/2007/REC-xpath20-20070123/
http://oracle.com/technology/products/berkeley-db/
http://oracle.com/database/berkeley-db/xml/
http://www.ietf.org/rfc/rfc3986.txt
http://w3.org/TR/xquery/
http://w3.org/TR/xquery-update-10/
http://www.relaxng.org/spec-20011203.html
http://www.relaxng.org/spec-20011203.html
http://arxiv.org/abs/1004.3390
http://ipedo.com/html/ipedo_xml_db.html
http://jomdoc.omdoc.org
http://jomdoc.omdoc.org
https://jsr311.dev.java.net/nonav/releases/1.0/
https://jsr311.dev.java.net/nonav/releases/1.0/

[14]

[15]

[16]

A. Kohlhase, M. Kohlhase, and C. Lange. “Dimensions of Formality: A
Case Study for MKM in Software Engineering”. In: Intelligent Computer
Mathematics. LNAIL Springer, 2010. arXiv: 1004.5071.

M. Kohlhase. OMDoOC — An open markup format for mathematical docu-
ments [Version 1.2]. LNAT 4180. Springer, 2006. URL: http://omdoc.org.
M. Kohlhase, F. Rabe, and V. Zholudev. “Towards MKM in the Large:
Modular Representation and Scalable Software Architecture”. In: Intelli-
gent Computer Mathematics. LNAI. Springer, 2010. URL: http://kwarc.
info/kohlhase/papers/mkml0-scalable.pdf.

C. Lange. “Krextor — An Extensible XML—RDF Extraction Framework”.
In: Scripting and Development for the Semantic Web (SFSW). 2009. URL:
http://kwarc.info/projects/krextor/pubs/sfsw09-krextor.pdf.

C. Lange and V. Zholudev. “Previewing OWL Changes and Refactorings
Using a Flexible XML Database”. In: Ontology Repositories and Editors.
CEUR. 2010. URL: |http://kwarc.info/clange/pubs/ores2010- tntbase.pdf.
MarkLogic Server. URL: http://www.marklogic.com/product/marklogic -
server.html.

LaTexmL: A BTEX to XML Converter. URL: http://dlmf.nist.gov/LaTeXML/.
D. Misev. “Integrating SUMO and OMDoc”. Bachelor’s Thesis. Computer
Science, Jacobs University, Bremen, 2010.

OWL 2: XML Serialization. Recommendation. W3C, 2009. URL: |http:
//w3.0rg/TR/2009/REC-owl2-xml-serialization-20091027/.

OpenLink Software. OpenLink Universal Integration Middleware — Virtu-
0so Product Family. URL: |http://virtuoso.openlinksw.com.

Oracle XML DB. URL: http://oracle.com/technology/tech/xml/xmldb/.
OWL 2: Document Overview. Recommendation. W3C, 2009. URL: http:
//w3.0rg/TR/2009/REC-owl2-overview-20091027/.

Subversion. URL: http://subversion.tigris.org/.

SVNKit. URL: |http://svnkit.com/.

TNTBase TRAC. URL: https://tntbase.org.

V. Zholudev and M. Kohlhase. “Scripting Documents with XQuery: Vir-
tual Documents in TNTBase”. 2010. URL: http://kwarc.info/kohlhase/
papers/balisagel0.pdf.

V. Zholudev and M. Kohlhase. “TNTBase: a Versioned Storage for XML”.
In: Balisage. Mulberry, 2009. URL: http://kwarc.info/vzholudev/pubs/
balisage.pdf.

V. Zholudev, M. Kohlhase, and F. Rabe. “A [insert XML Format] Database
for [insert cool application]”. In: XML Prague. 2010. URL: http://kwarc.
info/vzholudev/pubs/XMLPrague.pdf.

TNTBase — RESTful API. URL: https://tntbase.org/wiki/restful.
TNTBase — Virtual Documents. URL: https:/tntbase.org/wiki/VD.

http://arxiv.org/abs/1004.5071
http://omdoc.org
http://kwarc.info/kohlhase/papers/mkm10-scalable.pdf
http://kwarc.info/kohlhase/papers/mkm10-scalable.pdf
http://kwarc.info/projects/krextor/pubs/sfsw09-krextor.pdf
http://kwarc.info/clange/pubs/ores2010-tntbase.pdf
http://www.marklogic.com/product/marklogic-server.html
http://www.marklogic.com/product/marklogic-server.html
http://dlmf.nist.gov/LaTeXML/
http://w3.org/TR/2009/REC-owl2-xml-serialization-20091027/
http://w3.org/TR/2009/REC-owl2-xml-serialization-20091027/
http://virtuoso.openlinksw.com
http://oracle.com/technology/tech/xml/xmldb/
http://w3.org/TR/2009/REC-owl2-overview-20091027/
http://w3.org/TR/2009/REC-owl2-overview-20091027/
http://subversion.tigris.org/
http://svnkit.com/
https://tntbase.org
http://kwarc.info/kohlhase/papers/balisage10.pdf
http://kwarc.info/kohlhase/papers/balisage10.pdf
http://kwarc.info/vzholudev/pubs/balisage.pdf
http://kwarc.info/vzholudev/pubs/balisage.pdf
http://kwarc.info/vzholudev/pubs/XMLPrague.pdf
http://kwarc.info/vzholudev/pubs/XMLPrague.pdf
https://tntbase.org/wiki/restful
https:/tntbase.org/wiki/VD

	TNTBase – a Versioned XML Database
	Vyacheslav Zholudev and Christoph Lange

