MathDataHub - your dataset, but FAIR

Katja Berčič, Michael Kohlhase, Florian Rabe, <u>Tom Wiesing</u> Computer Science, FAU Erlangen-Nürnberg

> May 22, 2020 Seminar for Mathematical Data

- There are a lot of different kinds of mathematical data
 - concrete data (record or array data)
 - symbolic data (computation, decuction, modelling)
 - linked data (metadata, knowledge graphs)
 - narrative data (notations, documents, visualisations, verbalisations)
- we heard about some of this in more detail last time
 - I will try to keep this talk self-contained
 - But: I will try to avoid going into too much details if we already knew them

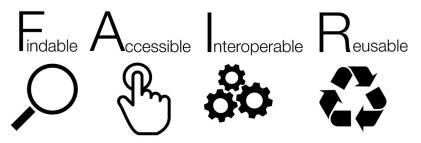


Image Source: Wikipedia, licensed under CC BY-SA 4.0.

- Problem: Typical Math Datasets are not FAIR
 - hard to achieve, especially if it is not in focus
- Solution: Provide a generic infrastructure
 - make it easy for mathematicans
- MathDataHub aims to be such an infrastructure

What MathDataHub Can Do

Available conditions

A census of small connected cubic vertex-transitive graphs

All connected cubic vertex-transitive graphs of order at most 1280.

This dataset has 111360 objects.

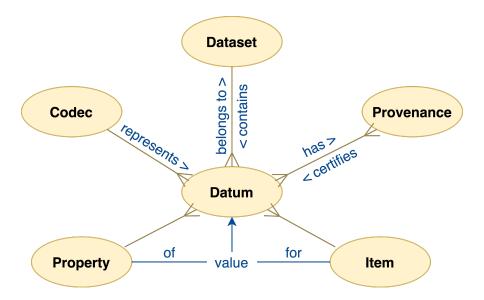
Matches found: 111355

P More about this dataset

Order 🔞 Order>=10 CVT Index 🔞 Graph 🕐 Name 🔞 Clique Number 🔞

Active conditions

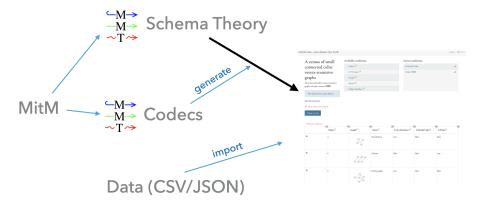
1	▼Choose columns													
	Order ③	CVT Index ⑦	Graph ®	Name ®	Clique Number ③	Diameter 🔞	Girth ⑦	Is Arc- Transitive ③	Is Bipartite ③	Is Cayley ⑦	Is Hamiltonian 😨	Is Prism ③	Is Split Praeger- Xu [®]	
0	10	I		5-Prism	2	3	4	false	false	true	true	true	false	
0	10	2		5-Möbius	2	3	4	false	true	true	true	false	false	

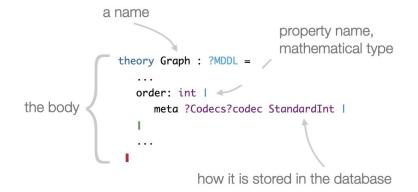

1

MathDataHub – Architecture Overview


- stores and represents mathematical data in a generic data model
 - (more about this on the next slide)
- all data is stored in a PostgreSQL database
 - Pros: this can handle a lot of data efficiently
 - Cons: Requires some optimization (e.g. using "materialized database views")
- Backend written in Python using a web-framework called Django
 - Pros: We do not have to manually create (and update) SQL table structures
 - Cons: We had to write a lot of custom code to make **importing** datasets faster
- Frontend written in TypeScript and React
 - TypeScript is a typed version of JavaScript
 - React is an MVC framework originally developed by Facebook
- developed as a part of MathHub

- Example: "A census of small connected cubic vertex-transitive graphs"
 - all connected cubic vertex-transitive graphs of order at most 1280
 - cvt for short
 - contributed and authored Primož Potočnik et al.
 - now available at https://data.mathhub.info/collection/cvt
- collection has several properties
 - 22 properties e.g. order, name, graph, girth, ...
 - 111360 items
- we will investigate the order property
 - an integer value
 - represents the number of vertices in the graph
 - stored using database integers


Under the Hood – Data Model


Under the Hood – Data Model

How To Import Your Dataset

How To Import Your Dataset – Schema Theory

11 / 13

How To Import Your Dataset - Schema JSON

```
"slug": "cvt",
"displayName": "A census of small connected cubic vertex-
    transitive graphs",
"description": "connected cubic vertex-transitive graphs",
// ... some properties omitted ...
"metadata": {
 "schemaTheoryURL": "gl.mathhub.info/ODK/mbgen/cvt_schema.mmt",
// ... other metadata omitted ...
},
"properties": [
 "slug": "order",
  "displayName": "Order",
  "codec": "StandardInt",
  "description": "Number of vertices in the graph."
},
 // ... more properties ...
```

Summary

- Summary
 - there is a lot of mathematical datasets out there
 - it is desirable to make them FAIR
 - MathDataHub is a generic system that allows you doing so
 - Codecs tell the system how a certain object is represented
 - an MDDL schema is required to import a new dataset
 - the system will then generate the userinterface automatically
 - check out https://data.mathhub.info
- Questions, Comments, Concerns?
- Thank You For Listening!
 - This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

