
Fine-Granular Version Control & Redundancy Resolution

Normen Müller and Michael Kohlhase

Jacobs University Bremen
D-28759, Bremen, Germany

{n.mueller,m.kohlhase}@jacobs-university.de

Abstract

We propose an abstract theory of collabora-
tive content management and version con-
trol for collections of semi-structured docu-
ments. Our fs-tree model generalizes version-
controlled file systems and XML files alike,
which allows us to specify and implement ver-
sion control algorithms that seamlessly work
across the file/file system border.
An added value of this model which incor-
porates symbolic links and XML inclusions
as first-class citizens, is that we can signifi-
cantly enhance workflow consistency, space-
efficiency, and processing speed on working
copies by eliminating link copy redundancy.
To evaluate our model and algorithms we
have implemented a prototype Subversion
client based on the ideas put forward in this
paper. The locutor system has been heav-
ily used in day-to-day work and bears out
the expected space efficiency and consistency
gains.

If I had eight hours to chop down a tree,
I’d spend six sharping my ax.

— Abraham Lincoln
1 Introduction
In the last years we have seen sustainable growth in
mathematical content management systems [Franke
and Kohlhase, 2000; Allen et al., 2002; Asperti
et al., 2001], as well as publication and educa-
tion systems [Baraniuk et al., 2002; CNX, 2007]
for mathematics. Elaborated representation for-
malisms, such as MathML [Ausbrooks et al.,
2008], OpenMath [Buswell et al., 2004] or OM-
Doc [Kohlhase, 2006], have been established to re-
flect the well-structured formalized mathematical in-
formation. However, Mathematical Knowledge Man-
agement (MKM) techniques for building up reposito-
ries of highly hierarchical structured and semantically
interrelated mathematical knowledge lag behind. In
practice we make use of version control systems and
XML databases for this, since they promise to provide
distributed access to mathematical knowledge, and on
the other hand simplify the creation of mathemati-
cal knowledge, which is often a distributed and col-
laborative process. In this paper we concentrate on
version control systems: XML databases already pro-
vide static, non-versioned, “knowledge access”, but the
dynamic, i.e. chronological, “knowledge creation” sce-
nario is arguably more important for MKM systems,

as knowledge can only be accessed after it has been
created.

The core of most version control systems [Fogel and
Bar, 2003; Collins-Sussman et al., 2004; DARCS, 2008;
GIT, 2007] is a central repository, which stores infor-
mation in form of a file system tree. The question
for these systems is how to allow users to share in-
formation, but prevent them from accidentally step-
ping on each other’s feet? The most widely used solu-
tion is the copy-modify-merge model, where each user’s
client creates a private working copy, i.e. a local reflec-
tion of the repository’s files and directories. Users can
then work simultaneously and independently, modify-
ing their working copies. The private copies are pe-
riodically committed to the repository, allowing other
users to merge changes into their working copy to keep
it synchronized.

In this paper, we are interested in version control
for large and complex projects where it is often use-
ful to construct a working copy that is made out of a
number of different projects. For example, one may
want different subdirectories to come from different
locations in a repository, or from different reposito-
ries altogether. Most version control systems provide
support for this via external definitions.

In MKM this model only partially applies, though.
Version control systems (as well as XML databases)
neglect both ways in which mathematical theories are
organized: (1) logic-internally, i.e. by their highly hier-
archical internal structure, (2) logic-externally, i.e. by
their decomposition into various files. Thus, mathe-
maticians are facing the constantly recurring decisions
whether to model mathematical concepts internally or
externally. For example, one way of organizing mathe-
matical knowledge is by considering the mathematical
knowledge as a book, and splitting it in sections and
paragraphs, being included in and/or having links to
other “books”. The organization, however, can also be
logic-internal, i.e. depending on the mathematical con-
tent. We consider the external/internal distinction to
be a matter of taste. By making the change manage-
ment algorithms independent of this we want to give
the user freedom to choose.

In this paper we propose a mathematical data
structure (the fs-tree model) that generalizes version-
controlled file systems and XML files alike. This al-
lows us to specify and implement version control al-
gorithms that seamlessly work across the file/file sys-
tem border. For instance, we are going to provide so-
phisticated equality theories on top of fs-trees, which
are essential to provide notions of consistency and in-



variants facilitating the propagation of effects of local
changes to entire document collections [Müller, 2006;
Müller and Wagner, 2007]. Our fs-tree model already
induces a non-trivial equality theory over file systems
and XML files. Elsewhere we have investigated adding
additional equality theories (e.g. to arrive at fs-trees
over OMDoc documents [Kohlhase, 2006]) to enhance
versioning and to arrive at less intrusive edit-scripts.

As a proof of concept for the generalized applica-
tion of our approach to a version control system, we
present the locutor system [locutor, 2007]. This is
a full reimplementation of the Unix svn client fo-
cussing on smart management of change. In addition,
the locutor client identifies relations between version-
controlled entries and uses them for redundancy con-
trol. In future we want to extend locutor to use se-
mantic knowledge about the document format to dis-
tinguish semantically relevant from irrelevant changes,
where Subversion just compares text files line by
line.

2 The Fundamental Data Structure
In this section we propose an abstract data structure
for modeling repositories and working copies. We uti-
lize a simple tree structure for the storage layer, and
model node sharing at a semantic layer via explicit
links.
Definition 1 (fs-tree). Let Σ be an alphabet and D a
data set. We call a tuple T = 〈V,E, τ, ν, λ〉 a fs-tree
if and only if
(1.1) G = (V,E) is a tree with root r ∈ V and leaves

L = {v ∈ V|η−(v) = ∅} where η−(v) denotes the
set of outgoing edges of v.

(1.2) τ : L 7→ {f, s} is a node typing function, such
that Vf = {v ∈ L|τ(v) = f}, Vs = {v ∈
L|τ(v) = s}, and Vd = V \L form a partition on
V.

(1.3) ν : V 7→ Σ is a node denomination function.
(1.4) λ : Vf 7→ D, λ : Vs 7→ Σ∗, and λ : E 7→ Σ is a

encoding function, where ∀v, w ∈ V.w 6= w′ ⇒
λ((v, w)) 6= λ((v, w′)).

We denote the set of all fs-trees with FS.
Without loss of generality we assume that D con-

tains all of Σ∗, N and is closed under n-tuple, set con-
struction and function definition.

To traverse a fs-tree we define a lookup function
seeking a target node relative to a source node via a
tree path. A tree path is a sequence of edge labels, not
to be confused with a graph path being a sequence of
node labels.
Definition 2 (fs-tree lookup). Let T = 〈V,E, τ, λ〉 be
a fs-tree. We define a lookup function � : V×Σ∗ ⇀
V such that

v�ε = v (2.1a)

v�π�a =


w if ∃z ∈ V.v�π = z∧

(z, w) ∈ E ∧ λ((z, w)) = a

⊥ otherwise
(2.1b)

for all v ∈ V, π ∈ Σ∗ and a ∈ Σ. We naturally extend
the lookup function on fs-trees, such that

T�π = r�π if r root of T (2.2)

and call π a fs-lookup path, or fs-path, in T if T�π
is defined. We denote an empty fs-path with ε.

Note that � is well-defined: If a node w ∈ V(T )
is a descendant of a node v ∈ V(T ) then, because
G = (V,E) is a tree, there is a fs-path π such that
v�π = w. The uniqueness is directly entailed by (1.4).

To retrieve the data stored in a fs-tree we define a
fs-tree value function.
Definition 3 (Value function). Let T = 〈V,E, τ, λ〉
be a fs-tree. A value function γ over T is a strict
function such that

γT : Vf 7→ D: γT (f) = λ(f) (3.1)

γ
T

: Vs 7→ V: γ
T

(s) =


T�π if π = λ(s)

fs-path in T
⊥ otherwise

(3.2)

γT : Vd 7→ P(Σ):
γ

T
(d) = {λ((d,w))|(d,w) ∈ E} (3.3)

for all v ∈ V(T ).
To simplify matters, we usually omit indexing γ un-

less the context requires. To fortify our intuition about
fs-trees we are going to investigate two applications.
Example 1 (File system). Let us assume the Unix
file system (UFS), i.e. a set of files F = {F1, . . . , Fn},
where each Fi represents any stored object, e.g., a di-
rectory, a regular file, or a symbolic link. All these
items are represented as “files” each having at least a
location within the file system, a name and other at-
tributes. This information is actually stored in the file
system in an inode (index node), the basic file system
entry. In general each inode contains the item’s type
(e.g. file, directory, or symbolic link), the item’s size,
and the location of the item’s contents on the disk, if
any. An inode stores everything about a file system
entry except its name. The names are stored in direc-
tories and are associated with pointers to inode num-
bers. A symbolic link is a file that points to another
file. Hence, the logical structure of a Unix-like file
system is a cyclic graph. For example, let us consider
the UFS structure presented on the left side of Fig. 1.
The root directory (/) contains three subdirectories (/
bin, /usr, and /tmp). The /bin directory contains
one regular file (pwd) and one symbolic link (@tcsh).
The /usr directory contains one subdirectory (/usr/
bin) which in turn contains one regular file (tcsh), the
link target of /bin/@tcsh. Up to here the underlying
data structure is an acyclic graph, however, the direc-
tory /tmp, in particular, the symbolic link @r turns the
UFS structure into a cyclic graph. The subdirectory
/tmp/nrm is empty.

The corresponding fs-tree T is displayed on the right
side of Fig. 1. According to the respective file system
type, directories are represented by gray colored nodes,
regular files by transparent nodes, and symbolic links
by rectangular nodes. Two nodes v, u ∈ V(T ) are con-
nected if u is in the list of content of v. Assuming an
adequate alphabet Σ and data set D, respectively, file
nodes are labeled by their corresponding file content,
symbolic link nodes by the symbolic link target path,
and edges are labeled by the names of the files they
are pointing to. For convenience we left out the node
labeling as for file system those are equal to the re-
spective incoming edge label, i.e. ν(u) = λ((v, u)) for



/
/bin/
/bin/pwd
/bin/@tcsh −→ ../usr/bin/tcsh
/usr/
/usr/bin
/usr/bin/tcsh
/tmp/
/tmp/@r −→ /
/tmp/nrm/

v0

v1 v2 v3

v4 v5 v6 v7 v8

v9

bin
usr

tmp

pwd tcsh
bin

r nrm

tcsh

Figure 1: A fs-tree over a Unix-like file system

all v ∈ V(T ). Note as to UFS, root nodes are special,
though, i.e. the location of v0 is encoded into a mount
point.

Consequently, fs-trees allow us interpreting file sys-
tem graphs as trees without any information loss. In
the following example we demonstrate how to build fs-
trees over semi-structured documents. The basic idea
is that an XML file is an ordered tree and that redun-
dancy can be avoided by sharing fragments through
XInclude references. We will use a straightforward
analogy between XML files and Unix file systems in
our approach. In particular, a version control system
based on fs-trees would blow up a file system with
XML files into a big tree where files themselves are
expanded according to their structure so that each un-
structured textual content can be versioned individu-
ally.
Example 2 (XML documents). The left side of Fig. 2
presents the structure of this paper in an imagined
XML format. The header element specifies the cover
page. Constituent parts are the title and the authors.
The former one is represented by a title element and
the latter one by an authors element, where the in-
dividual authors are marked up by an explicit author
element. The actual text is specified by a body element
and included via an XInclude directive1.

Note that in contrast to file systems, XML doc-
uments are ordered trees therefore we encode the
child of relation using rational numbers annotated to
the respective tree edges. This always enables us
to insert new tree nodes. For example, to add a
third author between the first and the second one in
the fs-tree, we would simply add a node v17 where
λ((v14, v17)) = (λ((v14, v15)) + λ((v14, v15)))/2 = 3/2.
Similar to file system mappings, empty XML elements
are fs-tree leaves, where links like XInclude or other
kind of XML reference statements are of fs-tree type
s, and the remaining empty XML elements are of type

1XInclude is a standardized XML vocabulary for spec-
ifying document inclusions.

<paper>
<header>
<title>fs-trees</title>
<authors>
<author>Normen Müller<author/>
<author>Michael Kohlhase<author/>

</authors>
</header>
<body><xi:include href="U"/></body>

</paper>

v10
paper

v11
header

v12
body

v13
title

v14
authors

v15 author v16

1 2

1 2

1 2

Figure 2: A fs-tree over an XML document

f . Content, represented in XML text nodes, is treated
like files and URIs in reference statements like sym-
bolic links on file systems.

Note, up to the xi:include element, the XML doc-
ument does not contain any XML attributes. Encod-
ing of XML attributes in fs-trees is modeled in Sec-
tion 3.

We conclude this section with the observation that
with this model we have obliterated the border be-
tween file systems and files as both can be mapped to
one fs-tree. For example, let us consider to store the
XML file represented at Fig. 2 in the /tmp/nrm/ direc-
tory. This would extend the fs-tree in Fig. 1 at node
v9 with the fs-tree rooted at v10. Consequently, with
fs-trees we have the freedom to structurally decom-
pose semi-structured files over file systems, but hold-
ing up the dependency graph. This generalization of
XML documents promotes versioning as well as au-
thoring processes. That is, regarding authoring pro-
cess self-contained XML documents are appreciated
to, for instance, realize consistent text replacements,
but regarding versioning small decomposed XML doc-
uments are preferred to manage small-sized revision
chunks.

Some of our ideas have already discussed in the con-
text of file systems, e.g. Reiser4 [reiser4, 2008], which
proposes to blur the traditional distinction between
files and directories introducing the concept of a “re-
source”. For example, a resource named kwarc.mp3
can be accessed as ./kwarc.mp3 to obtain the com-
pressed audio and as ./kwarc.mp3/ for a “directory”
of metata files. Our approach can model this behavior:
we would interpret resource kwarc.mp3 as a structured
XML file that contains both the compressed audio in
a CDATA section and the metadata in custom XML
markup. All aspects of the resource can be addressed
by standard XPath queries, e.g. fine-grained access
to document fragments, for example the title of the
third song can be obtained with the query./kwarc.
mp3/metadata/song[position()=3]/@title.



3 Version-Controlled fs-trees

In the following we model the core notions of version
control systems, in order to map versioning workflows
to fs-trees. In general, a version control system is a
special file server, designed for concurrent editing and
to store history information. A normal file server (e.g.
NFS) can provide file sharing, but would keep only one
version of each file (the most recent one). The core of
a version control system, a repository, is a centralized
store for data. It stores data in form of a filesystem
tree, provides read/write access to the stored data2,
and remembers any modification made to it. A work-
ing copy is made up of two parts. A local copy of the
directory tree of a project and an administrative direc-
tory (e.g. .svn) in each directory, storing version con-
trol information. Users edit their working copy locally
and commit their changes to the repository. After a
commit, all other users can access the changes by up-
dating their working copies to the latest revision. For
each file the respective administrative directory stores
the working revision of the file and a time stamp of the
last update. Based on this information, version con-
trol systems can determine the state of the file. The
state of the repository after each commit is called a
revision. To each revision, an identifier is assigned
which identifies the revision uniquely. Without loss
of generality, we follow the Subversion model here,
which uses natural numbers as identifiers and assigns
revisions to the whole tree. A certain file can be left
unchanged through different revisions, i.e. files in a
working copy might have different revisions, but files
in the repository always have the same revision.

Definition 4 (Repository). A repository is a func-
tion % : N 7→ FS. We denote the set of all repositories
with R.

To define a working copy, we need to capture the in-
tuition that every (versioned) fs-tree node comes from
a repository.

Definition 5 (Repository mapping). Let T be a
fs-tree. A repository mapping is a function
ω : V(T ) ⇀ R× Σ∗ × N and we define the operation

µω(v) :=


%(r)�π if r ∈ dom(%) and

ω(v) = 〈%, π, r〉
⊥ otherwise

(5.1)

that computes the corresponding repository node for
v ∈ V(T ). Note that µω ∈ V(ω1(v)(ω3(v))). For
convenience we write ω(v) =%/π@r instead of ω(v) =
〈%, π, r〉.

The correspondence µω is sufficient for versioning:
For a versioned node v in a fs-tree T , there has to
be a repository ω1(v) with a fs-tree at revision ω3(v)
such that ω2(v) is a valid fs-path in ω1(v)(ω3(v)) to
the corresponding node of v.

Definition 6. We call a node v ∈ V(T ) version-
controlled, or versioned, with respect to ω iff v ∈
dom(µω) and a fs-tree uniform iff there exists a % ∈ R
and a r ∈ N such that ω1(v) = % and ω3(v) = r for all
v ∈ V(T ).

2We neglect modeling of access control lists (ACL) for
convenience.

For working copy directories we also want to en-
force that all the contents of the directories are actu-
ally checked out. This ensures that all inode pointers
in a directory file are valid (cf. Example 1).

Definition 7 (Repository complete). Let T =
〈V,E, τ, ν, λ〉 be a fs-tree. We call a versioned node
v ∈ Vd(T ) with ω(v) =%/π@r repository complete
iff for all a ∈ Σ with e′ := (µω(v), w′) ∈ E(%(r))
and λ(e′) = a there exists a w ∈ V(T ) such that
µω(w) = w′, e := (v, w) ∈ E(T ) and λ(e) = a.

The next definition formalizes the previously de-
scribed notion of a working copy as a local reflection
of the respective repository directory tree.

Definition 8 (Working Copy). Let T = 〈V,E, τ, ν, λ〉
be a fs-tree. We call a tuple 〈S , ω,∆〉 a working copy
iff

(8.1) S is a subtree of T (S v T )

(8.2) If v ∈ Vf (S ) then γ(v) = ∆(v, γ(µω(v))).

(8.3) If v ∈ Vs(S ) then λ(v) = ∆(v, λ(µω(v))).

(8.4) If v ∈ Vd(S ) then v is repository complete
and for all a ∈ γ

S
(v) we have a ∈ γ

S′ (µω(v))
and γ

S
(v�a) = ∆(v�a, γ

S′ (µω(v�a))) where S ′ =
ω2(v)(ω3(v)).

(8.5) ∆: Vf×D 7→ D, ∆: Vs×Σ∗ 7→ Σ∗, and ∆: Vd×
P(Σ) 7→ P(Σ).

(8.6) for all v ∈ V(S ) ∩ dom(µω) we have µω(v) =
ω1(v)(ω3(v))�ω2(v).

Equation (8.1) specifies a locality condition for
working copies. That is, working copies are “local”
in sense of accessible within the current fs-tree, e.g.
the current file system. Equations (8.2) – (8.4) en-
sure for each node the value is equal to the value
of the corresponding node modulo any local modifi-
cations. The difference function ∆ may be consid-
ered as a parameterized collection of transformation
functions δv : D 7→ D for each node v ∈ V(T ), such
that ∆(v, γ(µω(v))) = δv(µω(v)) = γ(v). For exam-
ple, think of Subversion: After a fresh working copy
synchronization we have δv = id for all v ∈ V . Equa-
tion (8.6) ensures that every versioned working copy
node corresponds to the correct repository node.

Lemma 9. Let T be a fs-tree. If 〈S , ω,∆〉 is a working
copy in T , then 〈S |π, ω,∆〉 is a working copy in T for
all fs-paths π in S.

Proof. Given that S |π v S v T and (8.2) – (8.6)
are universal, all conditions are inherited by S |π,
in particular, repository completeness. Consequently
〈S |π, ω,∆〉 is a working copy in T .

Note that it is not all subtrees of working copies are
working copies themselves since they may run afoul of
directory completeness.
Example 3 (Working Copy). Let us consider the work-
ing copy structure depicted in Fig. 3. The fs-tree T
constitutes a local file system tree and the subtree
S v T a working copy 〈S , ω,∆〉 in T at φ. Here
we have ω1(v) = %, ω2(v) = π/ψ where ψ ∈ Σ∗ such
that S�ψ = v and µω(v) = %(r)�π�ψ, and ω3(v) = r for
all v ∈ V(S). Hence 〈S , ω,∆〉 is a working copy. Note,
working copies are not uniformly versioned. Hence,



T

S

φ

ψ v

%(r)

S ′
π

ψ µω(v)

µω

Figure 3: A working copy for%/π@r in T at φ.

switching repositories and/ or revisions within a ver-
sioned fs-tree is legal, however, invalid path label-
ings are restricted due to repository completeness and
equation (1.4).

We are now in a position to understand the how to
map common versioning commands like add, update
, remove, and commit to fs-trees: Recall that for a
file system entry f a Subversion add command adds
repository mapping information for the entry to the
respective administrative directory. An update com-
mand on a versioned file f retrieves from the repository
the difference δkf between the working copy revision of
f and the specified revision k and merges it into f . A
remove command deletes the repository mapping in-
formation from the administrative directory. Finally,
a commit command communicates the differences be-
tween the repository revision of f (cached in the ad-
ministrative directory) and the potentially modified
working copy entry to the repository, where it is incor-
porated into the data store and updates the meta-data
in the administrative directory (for details about these
commands see [Collins-Sussman et al., 2004]).
Definition 10 (Version Commands on fs-trees). Let
〈S , ω,∆〉 be a working copy and v ∈ V (S). The ver-
sion control command “add v” extends the repository
mapping ω by a new pair (v, ω1(v)/ω2(v)�a@ω3(v)),
where a is the name of v.

An “update -r k” changes ω3(v) to k, and merges
δkf into ∆(v) so that (8.6) is maintained.

A “remove v” command deletes the pair (v, o) from
ω.

A “commit v” command communicates ∆(v) to the
repository ω1(v) which extends the repository %′ : =
ω1(v) with a new pair (k,S ′), where k = max(dom(%))
and S ′ is derived from %(k − 1) by replacing w : =
%(k − 1)�π with ∆(v, w).

The remaining versioning commands copy, or
switch are modeled accordingly.

4 Version Control with Properties
and Externals

The ability to mix various working copies with respect
to corresponding repositories and/ or revisions gives
us the notion of nested working copies. That is a
working copy n inside another working copy w , but
the respective fs-tree edge connecting the root node u
of n to a leave node v of w is not versioned in the cor-
responding repository %(r) of w , i.e. (µω(v), µω(u)) 6∈
E(%(r)).

However, as mentioned at the beginning, sometimes
it is useful to construct working copies made out of a
number of different subdirectories to come from differ-
ent locations in a repository, or from different reposi-
tories altogether. One could set up such a structure of
nested working copies by hand, but if this structure is

important for everyone else using the respective repos-
itory, every other user would need to perform the same
manual setup.

To support those structures of working copies with-
out the need for manual reconstruction, we are going
to formalize the well-known construct of external def-
initions (aka. externals). Basically, an external defini-
tion is a property defined on a working copy, mapping
a directory to a URL and a particular revision of an-
other versioned directory. Hence, externals themselves
are nested working copies, but with the decided ad-
vantage of being versioned themselves. That is, once
defined on a working copy, all other users benefit by
updating their working copies to the latest revision.
When we refer to a “nested working copy” we mean
nested working copies defined by external definitions.

To capture the notion of defined nested working
copies, we first extend fs-trees by properties to even-
tually adapt the definition of a repository and working
copy, respectively, through to external definitions.

Definition 11 (fsp-tree). Let P be an arbitrary set.
A fsp-tree is a fs-tree T together with a property
function β : V(T) × P ⇀ D. We call elements of P
property names and denote the set of all fsp-trees
with FSP.

Property functions, or “properties” for short, are
custom meta-data attached to an fs-tree. Note that
we cannot map fsp-trees directly to file system trees.
Version control systems solve this situation by admin-
istrative directories, though, we assume an equivalent
file system structure. Regarding XML documents, the
mapping is straightforward: properties become XML
attributes in the obvious way.

Most version control systems provide a distinguished
property for external definitions, we will assume the
existence of a property name ext ∈ P with a specific
signature: a symbol is associated with a repository
entry at a specific (remote) path and revision.

Definition 12 (External Definition). Let T be an
fsp-tree, and v ∈ V(T ). An external definition
is a property function ξ(v) := β(v, ext), such that
ξ(v) : Σ+ ⇀ R × Σ∗ × N. We call elements of ξ(v)
externals.

We consider an external 〈π�d,%/ρ@r〉 ∈ ξ(v) to be
well-defined iff %(r)�ρ is defined, otherwise dan-
gling.

An external 〈π�d,%/ρ@r〉 ∈ ξ(v) is admissible iff
well-defined and there is a u ∈ V(T ) such that u = v�π
and u�d = ⊥. We call ξ(v) admissible iff all e ∈ ξ(v)
are admissible.

The well-definedness criteria ensures that the repos-
itory referring to actually exists and admissible speci-
fies π�d is relative to v and the symbol d has not been
versioned yet.

External definitions are not local to a working copy,
but global in sense of all working copies of the respec-
tive repository obtain these properties. Thus external
definitions have to be stored in repositories. Note, in
case of Subversion’s external definitions, they extend
the working copy they are defined on. That is, the un-
derlying fs-tree of a working copy is extended by the
underlying fs-tree of the externally defined working
copy. In the following we naturally extend reposito-
ries and working copies to externals.



T

S
φ
w

ζ

vψ

%(r)

ϑ(k)

ψ

κ

v′

µω

µω

Figure 4: A working copy for %/ε@r in T with an ex-
ternal forϑ/κ@k.

Definition 13 (Repository with Externals). A
repository with externals is a repository whose ex-
ternals are admissible.
Definition 14 (Working Copy with Externals). Let
T = 〈V,E, τ, ν, λ, β〉 be a fsp-tree. We call a working
copy 〈S , ω,∆〉 a working copy with externals if
and only if
(14.1) β(v, k) = ∆(v, β(µω(v), k)) for all v ∈ V(S ) and

k ∈ P.
(14.2) for all v = S�ϕ with 〈ζ,Θ〉 ∈ ξ(v) we have

ω(S�ϕ�ζ) = Θ.
Similar to (8.2) – (8.4), equation (14.1) ensures for

each versioned node the property value is equal to the
property value of the corresponding node modulo any
local modifications with respect to property names.
This restriction does not refer solely to external def-
initions, but to properties in general. In the follow-
ing we will always assume that repositories and work-
ing copies, respectively, have externals without further
mention.
Example 4 (Working Copy with External). Let us
consider the working copy with externals depicted in
Fig. 4. The fsp-tree T constitutes a local file system
tree and the subtree S v T a working copy 〈S , ω,∆〉.
The node node w = S�φ has an externals definition
with ξ(w) = 〈ζ,ϑ/κ@k〉. Here we have ω1(v) = ϑ,
ω2(v) = κ/ψ, and ω3(v) = k where ϑ(k)�κ�ψ = µω(v)
and v = S�φ�ζ�ψ. Hence 〈S , ω,∆〉 is a working copy
with externals.

Thanks to version control systems, external defini-
tions are stored in administrative directories as well
and therefore we do not have to modify the previously
introduced mapping between file systems (with exter-
nals) and fsp-trees.

In case of XML documents, however, we have to
perform some adaptations: for each XML element in-
duced by a fsp-tree node, we have to identify the corre-
sponding node in the respective repository to guaran-
tee a fine-granular version control for XML fragments.
To encode the information about the components of ω
we propose to extend the elements in the respective
XML format by three attributes:
• the fsp:rep attribute3 specifies the repository

root URL

• the value of the fsp:path attribute is the respec-
tive remote path, and

3As most XML applications allow foreign namespaces,
we place the new attributes in our own name space fsp,
which we map to http://kwarc.info/projects/locutor.

• the revision is stored in the fsp:rev attribute.

The XML attributes fsp:rep and fsp:rev are inher-
ited by XML child elements, but may be individually
overwritten. This enables authors to mix XML frag-
ments within one XML document from various repos-
itories and revisions. In this case XML fragments act
like nested working copies. The fsp:path attribute
has to be annotated to the XML root element and
is implicitly defined for all descendants (relative to
the XML root). XML elements defined by external
definitions are specified by fsp:ext attributes in the
respective XML parent element. The value of a fsp

<paper fsp:rep="https://kwarc.info/repos/locutor"
fsp:path="/doc/mkm08" fsp:rev="@HEAD">

<header><title>fs-trees</title>...</header>
<body
fsp:ext="2 https://kwarc.info/repos/MiKo/impl.xml#ex1@512">
<xi:include href="U"/>
<example xml:id="ex1"> . . . </example>

</body>
</paper>

Figure 5: An XML document with externals.

:ext attribute is a semicolon separated list of tuples.
The first component represents the XPath position of
the “external” XML child relative to the XML par-
ent. The second component specifies the fully quali-
fied repository URL and the respective revision. For
example, Fig. 5 depicts our example XML document
enriched with versioning meta-data. In the XML root
element paper the repository root URL, the remote
path, and the revision are presented. The body ele-
ment is extended by an external definition. In contrast
to XInclude statements externals are copied into the
XML document. The fsp:ext attribute in the body
element assures the identification of the example ele-
ment to be an external. We assume, without loss of
generality, that XML elements externally linked do
not corrupt XML documents with respect to XML
validity.

We are now in a position to implement the version
control commands from Definition 10 to XML files to
achieve the seamless operation of version control across
the file/file system border.

Definition 15 (Version Control on XML files). Let X
be a versioned XML file that admits the fsp attributes
and e an element in X. Then the version control com-
mand “add e” annotates e by fsp attribute fsp:rev
="k", where k is current revision. Note that the fsp
:rep and fsp:path attributes are inherited from the
parent. Dually, a remove command just removes the
fsp attributes.

A “commit” command computes the XML-
differences δe (see [mdpm, 2008] for a XML-aware dif-
ferencing algorithm) between e and and the cached
repository copy e′4 communicates them to the repos-
itory in fsp:rep, which creates a new repository re-
vision by adjusting the fsp attributes in X ′ and its
original in the repository.

4For this, we assume that the underlying version control
stores a cached repository copy X ′ of X in the administra-
tive directory. From this, we can take the element e′ that
is the cached repository copy for e.



˜/stex/ https://kwarc.info/repos/stex root@512
˜/stex/LaTeXML/ https://mathweb.org/repos/LaTeXML/trunk ext@815
˜/stex/stex/ local
˜/stex/stex/lib/ https://kwarc.info/repos/stexc/slides/lib ext@4711
˜/stex/stex/omdoc/ https://kwarc.info/repos/stexc/slides/omdoc ext@4711
˜/stexc/ https://kwarc.info/repos/stexc root@4711
˜/stexc/slides/ local
˜/stexc/slides/lib/ local
˜/stexc/slides/omdoc/ local
˜/stexc/stex/ https://kwarc.info/repos/stex ext@512
˜/stexc/stex/LaTeXML/ https://mathweb.org/repos/LaTeXML/trunk ext@815
˜/stexc/stex/stex/lib/ https://kwarc.info/repos/stexc/slides/lib ext@4711
˜/stexc/stex/stex/omdoc/ https://kwarc.info/repos/stexc/slides/omdoc ext@4711
˜/stexc/www/ https://kwarc.info/repos/www root@16676

Figure 6: Instance Structure of Working Copies

An “update -r k” changes fsp:rev to k, and
merges5 δkf into e. The property versioning commands
like propset, propdel are modeled by the obvious fsp
attribute movements.

5 Redundancy Resolution

Version control systems allow us to manage files and
directories that change over time. This allows authors
to access older versions of files and examine the history
of how and when data changed. Unfortunately, all
features are restricted to individual working copies at
a time, so to keep several working copies in sync with
central repositories, authors have to update each one
by its own.

For example let us consider the structure of work-
ing copies depicted in Fig. 6. The first column rep-
resents the local working copy directories, the second
one the respective fully qualified remote working copy
URL, and the last one describes the checkout type
and revision. If a directory is the root of a work-
ing copy checkout the type is root, if a directory
is an external definition it is ext, otherwise local.
The revision is suffixed to the type separated by an
@ character. For instance, the directory ~/stex con-
stitutes the root directory of a working copy checked
out in revision 512 from the Subversion repository
at https://kwarc.info/repos/stex. The subdirec-
tories /LaTeXML, /stex/lib, and /stex/omdoc are ex-
ternal definitions. The directory ~/stex/stex is lo-
cal. Note, as to Definition 14 subdirectory /www, is
not an external definition but constitutes the root di-
rectory of a working copy manually checked out in
revision 16676 from the Subversion repository at
https://kwarc.info/repos/www. In the following we
call the first working copy root sTEX and the second
one sTEXC. Apparently, in order to keep sTEX as well
as sTEXC in sync with the central repositories, we have
to update both by invoking the respective version con-

5Note that we are not specifying here how the merge
actually works and appeal to the intuition of the reader.
In fact, we are currently working on an extension of XML
merge algorithms to include format equality information
and fs-tree property attributes. Note that given suit-
able merging algorithms, we can execute the merge on the
client, since Subversion (and thus locutor ) caches base
revisions in a private part of the working copy.

trol update command in each root directory. A simple
approach to solve this problem could be a shell script
updating all working copies within the respective di-
rectory. Redundant externals (LaTeXML, stex/lib,
stex/omdoc, and stex in our example), are updated
more than once, which wastes time, bandwidth, and
space. Moreover, we also have to perform local com-
mits to propagate changes. Otherwise, for example,
changes to sTEX are not immediately available in ~/
stexc/stex, a constant source of errors and confusion
in practice. Managing a structure of related working
copies is a complex task, and automating this would
foster logical separations of multiple repositories via
external definitions.

Definition 16 (Redundancy). Let T be a fsp-tree,
w = 〈S , ω,∆〉 a working copy in T and v ∈ V(T ).
We call v redundant to S (v ≺ S ) iff there is a
w ∈ V(S ) such that ω(w) = ω(v). We call a working
copy m = 〈S ′, ω,∆〉 redundant to w (m ≺ w) iff v ≺ S
for all v ∈ V(S ′).

Lemma 17. Let T be a fsp-tree and w = 〈S , ω,∆〉 a
working copy in T .

(i) We have S ≺ v for all v ∈ V(S ).

(ii) If m = 〈S ′, ω,∆〉 is a working copy, S ,S ′ are
uniform, and r is root of S ′ with r ≺ S then we
have m ≺ w .

Proof. Choose w = v for (17.i) and (17.ii) is a conse-
quence of Lemma 9.

Back to our example in Fig. 6, we can now identify
redundant working copies: the external definition stex
on ~/stexc/ is redundant to ~/stex due to equiva-
lent repository root URL, remote path and revision.
Note that this task is less trivial than it seems at first
glance. For instance, replacing redundant entries with
symbolic forced us to introduce update scopes to avoid
infinite loops inside svn commands. Indeed the exam-
ple in Fig. 6 already shows such a dangerous loop.

In the locutor system we have implemented re-
dundancy identification as well as resolution on file
system level via an XML registry. That is, redundant
externals are transformed to symbolic file system links
(transex) during an update or checkout versioning
command. To emphasize raison d’être of transformed
externals we performed the following case study: one



of the authors has mirrored all of his local working
copies in two directories: ~/svn and ~/locutor. The
command du -sh ~/svn returned 6.8G and du -sh
~/locutor, however, returned only 3.7G after redun-
dancy resolution.

6 Conclusion & Outlook

We have presented an abstract theory of collabora-
tive content management and version control for col-
lections of semi-structured documents. In particular,
we have defined version control algorithms on our fs-
tree model and extended version control to arbitrary
XML formats that allow foreign-namespace attributes
thus extended them to seamlessly work across the file/-
file system border. Furthermore, we have shown how
to control redundancy and confusion induced by du-
plicate links and externals.

Currently we are developing the mdpm system, a
collection of model-based diff, patch, merge algo-
rithms. These are document format dependent algo-
rithm, comprising respective notions of dependency,
dependency and change types, and propagation based
on corresponding equality theories. The mdpm com-
ponents will identify Infoms for fine-granular change
identification, compute less intrusive edit-scripts, and
compute “long-range effects” of changes based on the
fsp-trees. The currently most finished mdiff compo-
nent is for LATEX and XML. In the former case vari-
ous LATEX coding styles are identified to be equal, e.g.
whitespace, line breaks and empty lines. The latter
one is an improvement of [Radzevich, 2006].

As the transformation of externals may also be per-
formed offline, we think of another sub-command like
transex. This sub-command would analyze all exter-
nals of local working copies and if applicable transform
these to symbolic links.

Acknowledgements Our special thanks goes to the
KWARC research group for all their assistance, espe-
cially for providing us with their huge and complex
Subversion repositories utilizing virtually all possi-
ble — at least popular — versioning features.

References
[Allen et al., 2002] Stuart Allen, Mark Bickford, Robert

Constable, Richard Eaton, Christoph Kreitz, and
Lori Lorigo. FDL: A prototype formal digi-
tal library – description and draft reference man-
ual. Technical report, Computer Science, Cornell,
2002. http://www.cs.cornell.edu/Info/Projects/
NuPrl/html/FDLProject/02cucs-fdl.pdf.

[Asperti et al., 2001] Andrea Asperti, Luca Padovani,
Claudio Sacerdoti Coen, and Irene Schena. HELM and
the semantic math-web. In Richard. J. Boulton and
Paul B. Jackson, editors, Theorem Proving in Higher
Order Logics: TPHOLs’01, volume 2152 of LNCS, pages
59–74. Springer Verlag, 2001.

[Ausbrooks et al., 2008] Ron Ausbrooks, Bert Bos, Olga
Caprotti, David Carlisle, Giorgi Chavchanidze, Ananth
Coorg, Stphane Dalmas, Stan Devitt, Sam Dooley,
Margaret Hinchcliffe, Patrick Ion, Michael Kohlhase,
Azzeddine Lazrek, Dennis Leas, Paul Libbrecht, Mano-
lis Mavrikis, Bruce Miller, Robert Miner, Murray Sar-
gent, Kyle Siegrist, Neil Soiffer, Stephen Watt, and
Mohamed Zergaoui. Mathematical Markup Language

(MathML) version 3.0. W3C working draft of march
april 9., World Wide Web Consortium, 2008. Available
at http://www.w3.org/TR/MathML3.

[Baraniuk et al., 2002] R.G. Baraniuk, C.S. Burrus, B.M.
Hendricks, G.L. Henry, A.O. Hero III, D.H. Johnson,
D.L. Jones, J. Kusuma, R.D. Nowak, J.E. Odegard, L.C.
Potter, K. Ramchandran, R.J. Reedstrom, P. Schniter,
I.W. Selesnick, D.B. Williams, and W.L. Wilson. Con-
nexions: DSP education for a networked world. In
Acoustics, Speech, and Signal Processing, 2002. Pro-
ceedings. (ICASSP ’02). IEEE International Conference
on, volume 4 of ICASSP Conference Proceedings, pages
4144–4147. IEEE, 2002.

[Buswell et al., 2004] Stephen Buswell, Olga Caprotti,
David P. Carlisle, Michael C. Dewar, Marc Gaetano, and
Michael Kohlhase. The Open Math standard, version
2.0. Technical report, The Open Math Society, 2004.
http://www.openmath.org/standard/om20.

[CNX, 2007] Connexions. Project homepage at http://
www.cnx.org, seen February 2007.

[Collins-Sussman et al., 2004] Ben Collins-Sussman,
Brian W. Fitzpatrick, and Michael Pilato. Version
Control With Subversion. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2004. online version avail-
able at http://svnbook.red-bean.com/nightly/en/
svn-book.html.

[DARCS, 2008] darcs, seen January 2008. available at
http://darcs.net/.

[Fogel and Bar, 2003] Karl Franz Fogel and Moshe Bar.
Open Source Development with CVS. Paraglyph Press,
2003.

[Franke and Kohlhase, 2000] Andreas Franke and Michael
Kohlhase. System description: MBase, an open math-
ematical knowledge base. In David McAllester, edi-
tor, Automated Deduction – CADE-17, number 1831 in
LNAI, pages 455–459. Springer Verlag, 2000.

[GIT, 2007] Git - Fast Version Control System, seen
September 2007. available at http://git.or.cz/.

[Kohlhase, 2006] Michael Kohlhase. OMDoc – An open
markup format for mathematical documents [Version
1.2]. Number 4180 in LNAI. Springer Verlag, 2006.

[locutor, 2007] locutor : An Ontology-Driven Manage-
ment of Change, seen June 2007. system homepage at
http://www.kwarc.info/projects/locutor/.

[mdpm, 2008] mdpm : A Collection of Model-based diff,
patch, merge Algorithms, seen March 2008. sys-
tem homepage at http://www.kwarc.info/projects/
mdpm/.

[Müller and Wagner, 2007] Normen Müller and Marc
Wagner. Towards Improving Interactive Mathematical
Authoring by Ontology-driven Management of Change.
In Alexander Hinneburg, editor, Wissens- und Er-
fahrungsmanagement LWA (Lernen, Wissensentdeckung
und Adaptivität) conference proceedings, pages 289–295,
2007.

[Müller, 2006] Normen Müller. An Ontology-Driven Man-
agement of Change. In Wissens- und Erfahrungsman-
agement LWA (Lernen, Wissensentdeckung und Adap-
tivität) conference proceedings, pages 186–193, 2006.

[Radzevich, 2006] Svetlana Radzevich. Semantic-based
Diff, Patch and Merge for XML-Documents. Master’s
thesis, Universität des Saarlandes - Saarbrücken, 2006.

[reiser4, 2008] Reiser4. http://en.wikipedia.org/wiki/
Reiser4, seen July 2008.


