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Abstract. An important question in research on logical framework is
whether they can induce a logic-independent automated theorem prover.
While many theorem proving innovations can indeed be generalized to
large classes of logics, practically competitive provers usually require
logic-specific optimizations.

To investigate this question more deeply, we build a suite of modular
logic definitions in a logical framework and generate Prolog-based the-
orem provers for them. We focus on generality and avoid taking logic-
specific knowledge into account. Our generated provers support natural
deduction proof search, including backchaining, as well as tableau provers
and model generators. Even though these efforts have only just started,
we are already able to use the latter in a system for natural language
understanding that combines grammatical with semantic processing.

1 Introduction and Related Work

Logical frameworks like LF [HHP93] and λProlog [Mil] enable prototyping and
analyzing logical systems, using high-level declarative logic definitions based
on higher-order abstract syntax. Building theorem provers automatically from
declarative logic definitions has been a long-standing research goal. But cur-
rently, logical framework-induced fully logic-independent proof support is gen-
erally limited to proof checking and simple search. Competitive proof support,
on the other hand, is either highly optimized for very specific logics, most im-
portantly untyped first-order logic, or obtained by defining logics as DSLs inside
interactive proof assistants like Isabelle [Pau94]. While Isabelle system [Pau94],
which was designed as a generic prover [Pau93], is nowadays primarily used
specifically to Isabelle/HOL.

On the other hand, there has been an explosion of logical systems, often
domain-specific, experimental, or otherwise restricted to small user communities
that cannot sustain the development of a practical theorem prover. To gain
theorem proving support for such logics, proof obligations can be shipped to
existing provers via one of the TPTP languages, or the logics may be defined as
DSLs inside existing provers as is commonly done using Coq [Coq15], Isabelle
[Pau94], or Leo [Ben+08]. If applicable, these approaches are very successful.
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But they are also limited by the language and proof strategy of the host system,
which can preclude fully exploring the design space for logics and prover.

We investigate this question by combining the advantages of two logical
frameworks: To define logics, we use the implementation of LF in Mmt [Rab17b;
Rab17a]. Mmt is optimized for specifying and prototyping logics, providing
in particular type reconstruction, module system, and graphical user interface.
Then we generate ELPI theorem provers from these logic definitions. ELPI [SCT15]
is an extension of λProlog with constraint programming via user-defined rules,
macros, type abbreviations, optional polymorphic typing and more. ELPI is opti-
mized for fast execution of logical algorithms such as type inference, unification,
or proof search, and it allows prototyping such systems much more rapidly than
traditional imperative or functional languages. Both Mmt and ELPI were de-
signed to be flexible and easy to integrate with other systems. Our approach is
logic-independent and applicable to any logic defined in LF. Concretely, we eval-
uate our systems by generating provers for the highly modular suite of logic def-
initions in the LATIN atlas [Cod+11], which includes e.g. first- and higher-order
and modal logics and various dependent type theories. These logic definitions
can be found at [LATINa] and the generated ELPI provers in [GEP].

We follow the approach proposed by Miller et al. in the ProofCert project
[CMR13] but generalize it to non-focused logics. The key idea is to translate each
rule R of the deduction system to an ELPI clause for the provability predicate,
whose premises correspond to the premises of R. The provability predicate has
an additional argument that represents a proof certificate and each clause has a
new premise that is a predicate, called its helper predicate, that relates the proof
certificates of the premises to the one of the conclusion. Following [CMR13], the
definitions of the certificates and the helper predicates are initially left open, and
by providing different instances we can implement different theorem provers. In
the simplest case, the additional premise acts as a guard that determines if and
when the theorem prover should use a rule. It can also suggest which formulas to
use during proof search when the rule is not analytic. This allows implementing
strategies such as iterative deepening or backchaining. Alternatively, the helper
predicates can be used to track information in order to return information such
as the found proof. These can be combined modularly with minimal additional
work, e.g., to return the proof term found by a backchaining prover or to run a
second prover on a branch where the first one failed.

The authors gratefully acknowledge project support by German Research
Council (DFG) grants KO 2428/13-1 and RA-18723-1 OAF as well as EU Hori-
zon 2020 grant ERI 676541 OpenDreamKit.

2 Natural Deduction Provers

Logic Definitions in MMT/LF While our approach is motivated by and appli-
cable to very complex logics, including e.g. dependent type theories, it is easier
to present our ideas by using a very simple running example. Concretely, we will
use the language features of conjunction and untyped universal quantification.
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Their formalized syntax is shown below relative to base theories for propositions
and terms.

Props = {prop : type} Terms = {term : type}
Conj = {include Props, and : prop→ prop→ prop}
Univ = {include Props, include Terms, univ : (term→ prop)→ prop}

Below we extend these with the respective natural deduction rules relative
to a theory ND that introduces a judgment to map a proposition F : prop to the
type ded F of proofs of F :

ND = {include Props, judg ded : prop→ type}
ConjND = {include {ND, Conj}, andEl : ΠA,B:propded (A ∧B)→ ded A, . . .}
UnivND = {include {ND, Univ}, univE : ΠPΠX:termded ∀P → ded (PX), . . .}

For brevity, we only give some of the rules and use the usual notations for
the constants and and univ. Note that judg tags ded as a judgment: while this
is irrelevant for LF type checking, it allows our theorem provers to distinguish
the data from the judgment level. Concretely, type declarations are divided into
data types (such as prop and term) and judgments (such as ded). And term
declarations are divided, by looking at their return type, into data constructors
(such as and and univ) and rules (such as andEl and univE).

Generating ELPI Provers Our LF-based formalizations of logics define the well-
formed proofs, but implementations of LF usually do not offer proof search
control that would allow for automation. Therefore, we systematically translate
every LF theory into an ELPI file. ELPI is similarly expressive as LF so that a
naive approach could simply translate the andEl rule to the ELPI statement

ded A :− ded (and A B)

Note how the Π-bound variables of the LF rule (which correspond to implicit
arguments that LF implementations reconstruct) simply become free variables
for ELPI’s Prolog engine to instantiate. 3 However, this would not yield a use-
ful theorem prover at all — instead, the depth-first search behavior of Prolog
would easily lead to divergence. Therefore, to control proof search, we introduce
additional arguments as follows:
– An n-ary judgment like ded becomes a (1 + n)-ary predicate in ELPI. The

new argument, called a proof certificate, can record information about the
choice of rules and arguments to be used during proof search.

– A rule r with n premises (i.e., with n arguments remaining after discarding
the implicit ones) becomes an ELPI statement with 1 + n premises.

3 As ELPI (like Prolog) is untyped and does not require names to be declared, trans-
lating only rules would already yield a theorem prover for the simple examples of
this paper. But in general, our provers also reason about typing, e.g., to synthesize a
well-typed term to instantiate a typed universal quantifier. For that, we use a binary
ELPI predicate for typing and generate one typing statement for each data type and
each data constructor. We omit those here.
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The additional premise is a predicate named rhelp, i.e., we introduce one helper
predicate for each rule; it receives all certificates and formulas of the rule as
input. A typical use for rhelp is to disable or enable r according to the certificate
provided in the input and, if enabled, extract from this certificate those for the
recursive calls. An alternative use is to synthesize a certificate in output from
the output certificates of the recursive calls, which allows recording a successful
proof search attempt. This is possible because λProlog is based on relations,
and it is not fixed a priori which arguments are to be used as input and which
as output. The two uses can even be combined by providing half-instantiated
certificates in input that become fully instantiated in output.

For our running examples, the following ELPI rules are generated along with
a number of helper predicates:

ded X2 F :− help/andEl X2 F G X1, ded X1 (and F G).
ded X2 X3 :− help/univE X2 X3 P X X1, X3 = P X, ded X1(forall P ).

Iterative Deepening Iterative deepening is a very simple mechanism to control
the proof search and avoid divergence. Here the certificate simply contains an
integer indicating the remaining search depth. A top-level loop (not shown here)
just repeats proof search with increasing initial depth. Due to its simplicity, we
can easily generate the necessary helper predicate automatically:

help/andEl (idcert X3) F G (idcert X2) :− X3 > 0, X2 is X3 − 1.

Backchaining Here, the idea is to be more cautious when trying to use non-
analytic elimination rules like andEl, whose premises contain a sub-formula not
present in the conclusion. To avoid wrongly guessing these, Miller [CMR13]
employs a focused logic where forward and backward search steps are alternated.
We reproduce a similar behavior for our simpler unfocused logic by programming
the helper to trigger forward reasoning search and by automatically generating
forward reasoning clauses for some of our rules:

help/andEl (bccert X3) F G (bccert (bc/fwdLocked X2))
:− bc/val X3 X4, X4 > 0, X2 is X4 − 1, bc/fwdable (and F G).

bc/fwdable :− ded/hyp T, bc/aux T A.

Here we use two predicates that are defined once and for all, i.e., logic-
independently: bc/fwdable (and F G) asks for a forward reasoning proof of
(and F G); and ded/hyp T recovers an available hypothesis T .

Finally, bc/aux T A proves A from T using forward reasoning steps. Its
definition picks up on annotations in LF that mark forward rules, and if andEl
is annotated accordingly, we automatically generate the forward-reasoning clause
below, which says that X5 is provable from (and F G) if it is provable from F :

bc/aux (and F G) X5 :− bc/aux F X5.
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Proof Term Tracking In this case, we use the auxiliary predicate to build the
proof term by recording the rule application. Moreover, we generate ELPI con-
structors that take the Cartesian product of the helper predicates. This allows
combining proof terms tracking with any other theorem prover. Note that in
that case, one part of the product is treated as input (to guard the rule applica-
tion) while the other is treated as output (to track the proof term). This works
without problems due to the Prolog-style behavior.

For example, we can obtain an NDproof for (A ∧ B) ⇒ A by combining
backchaining with proof term tracking:

ded (prodcert (bccert 2) (ptcert R)) (impl (and a b) a)

R contains afterwards the proof term

impI (and a b) a (andEl a b (i (and a b)))

3 Tableau Provers

Logic Definitions in MMT/LF The formalizations of the tableau rules for our
running example are given below. The general idea is to represent each branch
of a tableau as an LF context; the unary judgments 1A and 0A represent the
presence of the signed formula A on the branch, and the judgment ⊥ represents
its closability. Thus, the type 0A → ⊥ represents that A can be proved. For
example, the rule and0 below states: if 0 (A ∧ B) is on a branch, then that
branch can be closed if the two branches extending it with 0A resp. 0B can.

Tab = {include Props, judg 1 : prop→ type, judg 0 : prop→ type,
judg⊥ : type, close : ΠA:prop1A→ 0A→ ⊥}

ConjTab = {include Tab, include Conj,
and0 : ΠA,B:prop 0 (A ∧B)→ (0A→ ⊥)→ (0B → ⊥)→ ⊥, . . .}

UnivTab = {. . . , forall1 : ΠPΠX:term 1(∀P )→ (1(PX)→ ⊥)→ ⊥}

Generating ELPI Provers We use the same principle to generate ELPI state-
ments, i.e., every LF-judgment receives an additional argument and every LF-
rule an additional premise.

To generate a tableau prover, we use the additional arguments to track the
current branch. This allows recording how often a rule has been applied in order
to prioritize rule applications. For first-order logic, this is only needed to allow
applying the relevant quantifier rules more than once.

For theorem proving, branches that are abandoned when the depth-limit is
reached represent failed proof attempts. But we can just as well use the prover
as a model generator: here we modify the helper predicates in such a way
that abandoning an unclosed branch returns that branch. Thus, the overall run
returns the list of open branches, i.e., the potential models.

Note that the ND theorem prover from Section 2 is strong enough to prove
the tableau rules admissible for the logics we experimented with. If this holds up,
it makes prototyping proof support for logic experiments much more convenient.
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4 Inference for Natural Language Pragmatics

In the previous section we have seen how logics and calculi can be described in
MMT and how ELPI provers can be generated from the calculi. Here, we will
take a look at a variant of the tableau provers with a different application in
mind: model generation for natural language understanding.

Tableau provers start with a negated formula and attempt to close all branches
to prove the original formula. Instead, we can also start with a positive formula
and look at the branches that remain open when the tableau is fully saturated.
These open branches correspond to Herbrand models that satisfy the original
formula [LP93].

4.1 Tableaux Machines for Natural Language Understanding

Tableaux machines [KK00] use this mechanism to generate (Herbrand) models
for natural language discourse. Due to the ambiguity of natural language, there
is a combinatorial explosion in the number of models as the discourse gets longer.
Instead of generating every branch (model), the tableaux machine only maintains
one model – the “best” one according to some heuristic – and backtracks if it
encounters a contradiction and the branch closes. Arguably, this mirrors the
mental processes of a human reading a text. It is at least compatible with the
psycholinguistic literature [de 95; Sin94; GML87].

Example 1. Now imagine Jane – a researcher in computational linguistics who is
well-versed in logic, but has little implementation experience – wants to experi-
ment with this idea. She is specifically interested in modeling anaphor resolution,
but rather than doing the experiment on paper, she want to actually implement
it in a formal system (after all it is 2020). This prevents her from glossing over
details that may be much less trivial than expected and allows her to try out
larger examples. To make the experiment as complete as possible, she wants to
be able to enter actual English sentences, not just their translation into logical
expressions. Her first example is
(1) “John talks to Mary. Sasha is sad. He loves her.”
The tableaux machine will have to guess to whom “he” and “her” refer. The
plan of the experiment is to use information from further sentences to force it
to re-evaluate these guesses.

Fortunately, with a combination of the technology from Section ?? and pre-
vious work by the authors we can offer Jane exactly the system she needs for
her experiment. Fig. 1 shows the system architecture/components of the GLIF
system (Grammatical/Logical/Inferential Framework) and illustrates the pro-
cessing pipeline with a simple sentence – we will stick to first-order logic for
simplicity.

The first two processing steps make up the Grammatical Logical Framework
(GLF) from [KS] that implements a Montague-style semantics construction pro-
cess [Mon70]. For the syntactic analysis step GLF uses Ranta’s Grammatical
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stdin
Parser
(GF)

concrete
grammar

abstract
grammar

Sem. Constr.
(MMT)

AS logic

Tabl. Mach.
(ELPI)

ru.elpi tm.elpi

stdout
string parse

tree
logical
expr.

current
model

“he is sad” ∃X.male(X) ∧ sad(X)

viewgen gen

fem(j)0

male(j)1

· · ·
sad(j)1

Fig. 1: The GLIF pipeline from the input of a sentence to the output of a model.
Note that the tableaux machine is the only component that has to maintain a
state, because we update the model incrementally.

Framework (GF) [Ran11] that modularly represents grammars as LF-based the-
ories and abstract syntax trees as corresponding expressions. GLF passes these to
MMT, which executes a semantics-construction view1 to obtain logical ex- EdN:1
pressions. We can feed the resulting logical expressions into the tableaux machine
implemented as an ELPI program tm.elpi. This generates Herbrand models
from the logical expressions.

As the ELPI-based tableaux machine is the main contribution to GLIF, we will
now look at this in more detail. Fig. 2 illustrates an example run of the tableaux
machine. Usually, the tableaux machine needs some background knowledge. In
this case, we provide some information about genders. Then we can start feeding
it sentences. The first sentence is “John talks to Mary”, which GLF translates to
talkto(j,m). This simply adds one entry to the model in the tableaux machine.
“Sasha is sad” also just adds an entry. The next sentence – “He loves her” – is
more interesting. The tableaux machine tries to use the most recently mentioned
people as referents for “he” and “her”. In this case, Sasha was mentioned most
recently. Since Sasha can’t be both male and female at the same time, that
branch closes. The next best guess is that “he” refers to “Sasha” and that “her”
refers to “Mary”. This doesn’t result in a closed branch, so it is picked as the
new model. We can force the tableaux machine to backtrack on this decision by
entering another sentence stating that “Sasha is a woman”, i.e. that “he” can
refer to “Sasha”. The real-life equivalent of this is a misunderstanding that gets
clarified.

We had already some first successes using generated ELPI code (Section 3) for
the tableau machine, but more work is needed to steer the handling of quantifiers.
A demo with hand-written rules can be found at [GD].

1 EdNote: MK: introduce views in Section ??
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∀x.fem(x)⇒ ¬male(x)
male(j)
fem(m)

talkto(j,m)

sad(s)

love(s, s)
male(s)
fem(s)
⊥

love(s,m)
male(s)

love(s, j)
male(s)
fem(j)
⊥

love(j, s)
fem(s)

love(j,m)

fem(s)
⊥ · fem(s)

⊥ ·

Background Knowledge

“John talks to Mary.”

talkto(j,m)

“Sasha is sad.”

sad(s)

“He loves her.”
∃X.male(X)∧

∃Y.fem(Y ) ∧ love(X,Y )

“Sasha is a woman.”

fem(s)

“John doesn’t love Sasha.”

¬love(j, s)

Fig. 2: Example tableau for a few sentences. For conciseness, only atomic state-
ments that are marked true are shown.

4.2 Experimenting with GLIF: The Method of Fragments

GLF is a direct implementation of Richard Montague’s “Method of Fragments”
[Mon70] which postulated that to model a linguistic phenomenon one should
first precisely delineate a language fragment that includes it via a grammar G,
then provide a set of (compositional) translation rules from G-induced (abstract
syntax) trees to logical formulae, which would then represent the meaning of
an utterance. The system in Fig. 1 extends this with a configurable tableaux
machine; an inferential component that allows to model the influence of context
e.g. in anaphor and ambiguity resolution, conversational implicatures, etc. –
linguistic pragmatics. Thus the processing pipeline in Fig. 1 represents a full
Natural Language Understanding (NLU) system that starts with NL utterances
and ends with a logical representation of the information conveyed.

Note that the systems in the pipeline are fully general and Jane’s linguistic
model only comes in from the resources in the pipeline (on the top in Fig. 1). Note
furthermore that all the resources are both declarative and logic-based, which
allows Jane to experiment with them easily. Thus we can think of GLIF as a
general NLU experimentation framework; in fact we anticipate that the relative
ease of experimentation has the chance to re-invigorate logic-based semantics
in general and the method of fragments in computational linguistics. The latter
has mostly been seen as a methodological in linguistics and language philosophy
so far, not a practical research tool; GLIF can change that. 2EdN:2

2 EdNote: MK: maybe save some of these arguments for the conclusion.
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One extended experiment might be to integrate propositional attitudes into
the linguistic model, e.g. by adding epistemic modalities in the grammar and –
correspondingly – extending the logic from first-order logic to some first-order
version of KD45. This is relatively easy, since GF provides a resource gram-
mar [GFR] that incorporates modalities for most of its ca. 35 languages, and the
LATIN atlas [Cod+11; LATINb] provides MMT theories for many modal logics.
So, the only real work left for Jane is to extend the model generation rules to
epistemic modal logic, e.g. following [GN08]. Other experiments can follow the
same lines.

5 Conclusion and Future Work

We have revisited the question of generating theorem provers from declara-
tive logic definitions in logical frameworks. We believe that, after studying such
frameworks for the last few decades, the community has now understood them
well enough and implemented them maturely enough to have a serious chance
at succeeding. The resulting provers will never be competitive with existing
state-of-the-art provers optimized for a particular logic, but the expressivity and
flexibility of these frameworks allows building practically relevant proof support
for logics that would otherwise have no support at all.

Our infrastructure already scales well to large collections of logics and multi-
ple prover strategies, and we have already used it successfully to rapidly proto-
type a theorem prover in a concrete natural language understanding application.
In the future, we will develop stronger proof strategies, in particular better sup-
port for equational reasoning and advanced type systems. We will also integrate
the ELPI-based theorem provers as a backend for Mmt/LF in order to provide
both automated and interactive proof support directly in the graphical user in-
terface. A key question will be how the customization of the theorem prover can
be integrated with the logic definitions (as we already did by annotating forward
rules) without losing the declarative flavor of LF.
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