
3-Dimensional Graph Visualization of
Mathematical Knowledge

Richard Marcus[0000−0002−6601−6457], Michael Kohlhase[0000−0002−9859−6337],
and Florian Rabe[0000−0003−3040−3655]

Computer Science, FAU Erlangen-Nürnberg

Abstract. We describe TGView3D, an interactive graph viewer opti-
mized for exploring mathematical knowledge as 3D graphs. To exploit
all three spatial dimensions, it extends the commonly-used force-directed
layout algorithms with hierarchical components that are more suitable
for the typical structure of mathematical knowledge. We use different in-
teraction methods to cope with the flood of information and allow users
to alternate between different visualization settings. Our system is ac-
cessible through web browsers and in the form of a desktop application
with optional virtual reality support. TGView3D can communicate with
OMDoc-based knowledge management tools in order to offer semantic,
highly mathematics-specific interaction with the graphs.To demonstrate
the flexibility of TGView3D, we present and discuss multiple case studies
based on different kinds of graphs including large proof assistant libraries
and computer science lecture notes.

1 Introduction

Digital libraries of both informal and formal mathematics have reached enor-
mous sizes. For instance, at least half-a-dozen theorem prover libraries exceed
105 statements. Thus, it is getting more and more difficult to organize this knowl-
edge in a way that humans can understand and therefore access it. While library
sources, generated presentations, and IDEs – e.g. those of PIDE [Wen19] – give
good access to local knowledge structures, global properties of the induced knowl-
edge spaces are very difficult to assess.

This can lead to the duplication of effort because users are unaware of them
or cannot find previous work. Often systems employ modularization features to
introduce a high-level structure that can, in principle, help to navigate through
the libraries. Many of these features can be captured in the language of theories
and theory morphisms as used in, e.g., the OMDoc/MMT format [Koh06; RK13],
which has been used as a uniform representation standard for libraries related
to theorem proving, computation, and mathematical documents. To help users
understand this high-level structure better, we have explored visualizing theory
graphs in the interactive 2D graph viewer TGView [RKM17].

But the sheer size of theory graphs — they can easily contain thousands
of nodes and an order of magnitude more edges — not only complicates the
process of computing structured graph layouts, but also human comprehension.

Beyond, these graphs often have multidimensional structures, i.e., they are
multi-graphs with complex edge relations, possibly including different types of
edges, that are difficult to map to two dimensions, even in smaller graphs. For
example, we have never been satisfied with the visualization and user interaction
features that state-of-the-art tools could provide for our own graph of logic for-
malizations [Cod+11] with (only) a few hundred nodes because its many edges
representing logic translations are a challenge to standard layouting algorithms.
By now, we have identified 3D visualization as a possible solution in order to use
the third spatial dimension to better organize the graph [Bra14]. Extending this
idea, we have experimented with virtual reality (VR) devices to allow a wide
field of view and intuitive ways of interacting with the 3D world.

Related Work With the correct techniques, 3D graphs proved to be a viable
alternative to 2D graphs [WM08], especially in in combination with virtual real-
ity [Kwo+16] have been explored for use in theorem provers [Liu+17]. Generally,
force-directed graph drawing [FR91] is the most popular type of layout algorithm
for organizing large networks. It introduces forces so that nodes repel each other
but at the same time attract connected ones, generating a layout that forms
groups and reduces the edge lengths. However, these do not offer special treat-
ment for directed edges, which are key features of many mathematically relevant
graphs. In the theory graphs, in particular, the inheritance hierarchy is a directed
acyclic graph (DAG) that is a central, cognitive aspect.

To better visualize graphs like this, layered graph drawing [STT81] usually
is the method of choice. This is a 2D algorithm that first places the nodes on
a minimal number of layers so that the edge direction is consistent and then
tries to reduce edge crossings by reordering the nodes within their layers. But
that makes it difficult to incorporate a second type of edges that are undirected
or lead to cycles. The latter in particular is a central feature of using theory
morphisms which routinely lead to cycles, e.g., when showing two theories to be
isomorphic, or use multiple different theory morphisms between the same nodes.
There are some approaches that incorporate hierarchies into force-based layouts
such as [DKM06], albeit only in 2D settings.

To visually separate parts within a graph, it is possible to compute graph
clusters [Sch07] based on different criterions. In contrast to that, TGView3D
uses existing information about node affiliations; for example, we use the folder
and document structure of source files to cluster into related areas that users
are already familiar with.

There are dedicated tools for interactive 3D graph visualization such as
Gephi [BHJ09] or web applications (e.g., based on WebGL) like [3DGV]. Alter-
natively (and this is our choice), we can use general purpose systems, in partic-
ular game engines like Unity. These have the advantage of allowing more flexi-
ble programming environments, cross-platform support and rapid prototyping.
Notably, Unity allows both a WebGL version that we can embed into browser-
based interfaces for casual users like our MathHub portal as well as executables
for power users, which offer better performance and VR integration.

2

Contribution We contribute an adaption of traditional force-directed layout algo-
rithms so that they can represent hierarchies of mathematical knowledge in 3D.
To complement this, we propose interaction and clustering concepts to further
support efficient exploration of the respective libraries. Finally, we have devel-
oped a 3D graph viewer, TGView3D, based on the Unity game engine [UGE],
that implements both of these, offers interoperation with MathHub and supports
VR interactions.

The system is licensed under GPLv3 and is available at https://github.

com/UniFormal/TGView3D. A web application can be found at https://tgview3d.
mathhub.info and a virtual reality demo video can be found at https://

youtube.com/watch?v=Mx7HSWD5dwg. A preliminary demonstration was given
at CICM 2018 as a demo-only presentation, i.e., without any accompanying
write-up.

Overview Section 2 recaps the underlying knowledge representation framework
including theory graphs. Section 3 describes our layout approach and Section 4
the user interaction capabilities of the system. Section 5 presents case studies
and applications, and Section 6 concludes the paper.

Acknowledgments The authors gratefully acknowledge financial support from the
OpenDreamKit Horizon 2020 project (#676541) and the DFG (project OAF;
KO 2428/13-1, RA-18723-1). Furthermore, we are grateful for hardware support
from and very helpful discussions about layout algorithms with Jonas Müller,
Roberto Grosso, and Marc Stamminger.

2 Preliminaries

MathHub https://MathHub.info stores and manages mathematical archives
and libraries across systems and is based on the MMT system. For TGView3D,
it serves as the main source of theory graph interactions: on the one side, users
can find links that open the respective theory graph in TGView3D; on the other
side, TGView3D can link back to specific theories within the MathHub archives.

Theory Graphs are mechanisms for structuring large (formal and informal)
knowledge collections used in many mathematical systems. They consist of graphs
of theories connected by various kinds of theory morphisms. In OMDoc/MMT
[Koh06; RK13] – the knowledge representation format we presuppose in this pa-
per – Theories consist of groups of declarations that describe the respective
theory and theory morphisms are truth-preserving mappings between theories.

The most important theory morphisms in OMDoc/MMT are inclusions for
the inheritance hierarchy and views that express translations, interpretations,
and representation theorems.

In theory graphs, inclusions are the most prevalent type of edges and induce
a directed acyclic subgraph, which is important for understanding the primary
structure and thus needs to be prioritized in the layout. Views may introduce
cycles or connect very distant theories. There are also other kinds of morphisms

3

https://github.com/UniFormal/TGView3D
https://github.com/UniFormal/TGView3D
https://tgview3d.mathhub.info
https://tgview3d.mathhub.info
https://youtube.com/watch?v=Mx7HSWD5dwg
https://youtube.com/watch?v=Mx7HSWD5dwg
https://MathHub.info

in OMDoc/MMT, but from the point of view of graph layouting, they fall into
one these two categories. Additionally, both the nodes and the edges use MMT
URIs for identification.

Running Example: The LATIN Graph The LATIN project [Cod+11] develops
a modular representation of the logical languages of mathematical software sys-
tems as a meta-level theory graph. In LATIN, logics are theories and theory
morphisms are logic inclusions, translations, relativizations, and even models.
The LATIN logic graph has about 1000 theories and views; it can be found at
https://gl.mathhub.info/MMT/LATIN.

3 Visualization and Layouting

3D Graph Visualization Before computing a graph layout, we need to define
how the graph should be rendered. Since we often cannot see the end of edges in
3D, it would not be optimal to mark the direction of edges with a single arrow
head. Therefore, we indicate direction with a gradient from light to dark, which
also allows the user to estimate the length of the edge by analyzing how fast the
color fades.

For theory graphs, we color include green, views blue and edges beginning
from MMT namespaces red. We represent theories as spheres and the names-
paces as cubes. We can further visualize the physical hierarchy in the graph by
assigning the same color to nodes of the same cluster and adding a large, under-
lined label so that users can locate clusters by name and target them from afar.
Additionally, we only render labels that are big enough to be readable, which
also prevents the labels from occluding the graph.

Fig. 1: LATIN namespace structure with static Layers

3D Layouting A key benefit of the 3D approach is that can utilize the third
spatial dimensions to devise layout algorithms that cater to the structure of
mathematical knowledge as, e.g., in theory graphs. The main goal here is to
have a layout algorithm that, above all, can present the graph hierarchy without
sacrificing the advantages of force-directed layout algorithms, i.e, that nodes can
form groups and use the available space effectively.

Static layers in the style of layered graph drawing (cf. Figure 1) are prob-
lematic in combination with force-based approaches, as this limits nodes from

4

https://gl.mathhub.info/MMT/LATIN

forming groups horizontally can lead to inefficient use of space, depending on
the node/layer–distribution, e.g. all nodes could be forced into a single layer.
Depending on the use case, though, this still is a valid solution in 3D as there
are still two spatial dimensions left to be used by the force-directed algorithm.
This applies to tree hierarchies like the hierarchic namespaces in our running
example.

Fig. 2: LATIN namespace structure with hierarchic forces

DAGs and trees also allow a less restrictive relative hierarchy, i.e., a consis-
tent edge direction going from bottom to top, which is also much better suited
for combination with force-directed layout algorithms. Accordingly, we add a
force that repels connected nodes either downwards or upwards, depending on
whether they are successors or predecessors. This is already manipulates the
layout sufficiently in many cases but we also added a way to explicitly guarantee
that no successor/predecessor-pair is ordered incorrectly, independently from the
number of iterations: The first step is to position the nodes so that the ordering
is conform with the relative hierarchy — placing all nodes on the same layer,
for example, is a valid initialization. Then, we restrict the node movement dur-
ing each iteration so that successor and predecessor only “overtake” each other
along the correct direction. The drawback is that this may affect the convergence
of the layout negatively, so it is a matter of preference and concrete use case,
whether this constraint should be active or not.

All in all, we achieve our goals to preserve the hierarchy while allowing the
force-directed algorithm to work relatively freely and can also achieve good re-
sults in 2D if the structure is not too complex (cf. Figure 2). In particular,
this also allows us to process non-hierarchical edges by simply ignoring them
during hierarchical force computation. This typically results in the following or-

5

ganization: at the bottom of the graph, we have a tree structure according to
namespaces or the physical file structure. On top of it, the DAG expands, with
remaining relations affecting the horizontal ordering of the nodes by trying to
achieve short edges.

4 Interaction

(a) Dense View Structure (b) View Structure in 3D (c) Inclusion DAG in 3D

Fig. 3: LATIN Graph: Interactive Layout Customization

The main benefit of 3D layouts is interactivity; screenshots or static images
of 3D layouts naturally appear cluttered as the part in the front occlude more
distant parts. By rotating the graph or changing the camera position, a single
computed 3D layout can present an infinite number of 2D projections. For ex-
ample, if we add the view edges to the namespace hierarchy of the LATIN graph
(cf. Figure 3a), the layout seems cluttered and we can only distinguish the edges
by color, looking at the graph from another perspective (cf. Figure 3b), however,
changes this and we can recognize how the view edges occupy the inner part of
the graph and connect different theories. In general, this is especially useful when
the spatial dimensions also have different semantic meanings as in mathematical
libraries, so that the front perspective rather highlights the hierarchy whereas
the top perspective shows groups or other between-node relations.

Graph Exploration However, theory graphs such as the LATIN graph contain
multiple different types of edges. Showing them all at once can result in confusing
layouts, so we need further methods to support the user. We provide these within
the TGView3D UI (cf. Figure 4). For advanced users like developers or library
maintainers, we offer further features to edit the graphs like adding and removing
nodes and edges via context menu, which we also demonstrate in Figure 4. In
the top bar, we offer options to choose the graph to visualize and in the left bar
options for configuring the visualization and other features.

In fact, we already have shown a very effective exploration method in Fig-
ure 3, namely filtering edges by type. This has two uses: first, simply hiding not
required edges. Different types of relations in theory graphs have very specific

6

Fig. 4: TGView3D User Interface

meanings and users often only want to work with one type of edges at a time,
e.g., the file structure of the LATIN graph (cf. Figure 1 to navigate to a cer-
tain file, or its include hierarchy (cf. Figure 3c) to track inheritance relations.
Second, it can be of interest, how certain combinations of edge types affect the
layout. The user can then start from a certain layout, e.g. the file structure (cf.
Figure 2), request another edge type like views and watch in realtime how the
layout algorithm reorganizes the structure to achieve short edges — effectively
moving related namespaces close to each other.

(a) Distant parts cause occlusion (b) Clear view after hiding distant parts

Fig. 5: LATIN Graph: Local Exploration of include/view structure

Alongside this way of analyzing global graph structures, it is often even more
important to explore local structures in the graph as these actually represent
the direct relations between theories. TGView3D offers several methods: Firstly,
the user can scale the graph: this changes the node spacing and thus breaks
up densely connected node bundles or, the other way around, makes it easier
recognize them as such. In the case of our running example, the user may have
identified the dense view structure in Figure 3a as area of interest and now
decides to analyze it. Therefore, he enables the include hierarchy and zooms
into the graph until he reaches the nodes in Figure 5a. To prevent distraction by
the background, the user can hide distant parts of the graph (cf. Figure 5a) and
then move through the graph in “slices”. To obatin more information about the
current nodes, the user can select a node, this highlights its direct neighborhood

7

(a) Neighborhood (b) Big Bicone of TypedZF (c) Small Bicone

Fig. 6: LATIN Graph: Subgraph Exploration

(cf. Figure 6a), even when the respective edge types are set as hidden. Based
on this interaction, the user can now crawl through the graph and perform a
custom selection. To come full circle and return to the global structure analysis,
it is also possible to visualize the hierarchy position of a selected node within
the graph. We call this the node bicone, as it hides all edges of nodes that do
not belong to either the reachable subgraph or the dependency subgraph of the
node — creating one dependency cone upwards one downwards. In particular,
this also indicates whether a node is very central to the graph (cf. Figure 6b) or
not (cf. Figure 6c).

Hierarchical Clustering Many graphs contains information about the source or
the physical location of a node. This introduces a physical hierarchy by way of
the division into packages, folders, files, etc. that is orthogonal to the logical
hierarchy induced by inclusion/inheritance.

The physical structure is most helpful to form clusters of nodes, which sig-
nificantly improves graph exploration. We have already described this partly in
Section 3 but we also collapse whole node cluster into a single bigger node to
reduce graph complexity.

Fig. 7: LATIN Graph:
Hierarchic Clustering

To preserve as much information as possible, we then
perform edge propagation: we add the edges of the
collapsed nodes to the new cluster node. Given that
such clusters can also contain further clusters, the user
can explore the hierarchy by expanding and collapsing
the graph interactively. This is extremely important to
effectively reduce the graph to a size where humans can
recognize clear structures. In our running example, we
can see the first hierarchy level of the LATIN as clusters
in Figure 7, which compresses the graph effectively and
can act as starting point for further exploration.

VR Interaction While humans usually are very accus-
tomed to working with 2D content, these skills do not

8

necessarily transfer to 3D navigation with keyboard and
mouse, which may require a high number of simultaneous user inputs.

VR headsets, come with special input devices or even offer hand tracking
and gesture support. Once the user is familiar with these, graph interactions can
be implemented very intuitively. For example, the user can move the graph by
performing push or pull gestures or literally grab nodes to select them. Exploring
the 3D graph also becomes more efficient because of the stereoscopic nature of
VR: the user basically has access to an infinite screen by simply looking around
and actually perceives the depth of the 3D world.

Fig. 8: VR node interaction

To access the multitude of filtering and ex-
ploration features, we attach a virtual, touch-
able UI to the right hand. Touching the labels
opens a website in the browser that contains
information about the respective node, which
we then stream into the application as a vir-

tual touch screen, shown in Figure 8.

Performance In interactive applications, performance is an important consider-
ation. We have not conducted a systematic performance evaluation or an opti-
mization of the code at this point. Therefore, we just provide some indicative
timings in Table 1 (taken without clustering or other preprocessing steps on an
AMD Ryzen 2600X with 100 iterations).

#Nodes 23 223 739 3972
#Edges 52 637 2851 17769
Time [ms] 87 236 1635 39318

Table 1: Time measurements
of base layout algorithm

As we see, depending on the size of the
graph, the initial layouting can become expen-
sive; without multithreading, big graphs can
take several minutes to load. In the next sec-
tion we will show that this is only partly an
issue as humans struggle to effectively process
these big amounts of data. So we need informa-
tion filtering methods that reduce graph sizes anyway.

5 Case Studies

To test TGView3D in practice, we have experimented with multiple different
data sets and extracted graphs from them. Concretely, we present four use
cases here: formal libraries of proof assistant, narrative documents for lecture
notes, and two domain-specific applications — attack graphs from argumenta-
tion frameworks [BGG18] and model pathway diagrams (MPDs) [Kop+18] from
mathematical models of physical systems. Each of them profits from the core
features of TGView3D but also introduces unique interactions.

5.1 Formal Libraries

Because of the vast amount of data in formal libraries such as the Coq libraries
or the Isabelle AFP, it is usually impractical to show the full library as a static

9

graph. To cope with this, we make extensive use of hierarchical clustering. Espe-
cially graph visualizations of big theorem prover libraries can benefit from this
because the sources are already carefully structured in this way. For example, a

(a) Clusters expanded once (b) Clusters fully collapsed

Fig. 9: Isabelle AFP with clustering and edge propgatation (type ulo:uses)

top level setting as in Figure 9a can reveal insights about hubs or node groups
and, starting from a single theory allows users to track dependencies or similar
relations like in our running example, e.g. in Figure 6. In Figure 9, we can see
how clustering allows us to handle huge libraries like Isabelle AFP: even though
Figure 9a shows around 4000 nodes, it actually is already heavily clustered. Each
node represents a cluster that may contain further clusters. The final clustering
step (Figure 9b) reduces the enormous library to only a few hundred nodes, still
preserving relations through edge propagation as described in Section 4.

Theory Graphs The main intended use of TGView3D is to visualize theory
graphs. We have already analyzed such a theory graph in the form of the running
example, so we will focus on the MMT integration here.

Fig. 10: Theory: ZFC

The graphs are provided by the MMT system
(which runs separately) and can be opened in
TGView3D via HTTP. The MMT API fur-
ther allows loading subgraphs, e.g., related to
a project group, a single project or the MMT
namespace. Hence, we do not need to load the
entire archive and then extract the subgraph
afterwards. This is used when accessing indi-
vidual graphs from MathHub but also within TGView3D. For example, when
nodes have edges that point “outside”, i.e., that the target node is not part of the
graph that is loaded currently, we can request to load in addition to or instead
of the current one (cf. Figure 11). Note, however, that we do lose information
as the outside pointing edges cannot fully replace the missing structure. For ex-
ample, Figure 11a exhibits a strong connection between the namespaces church

10

and zfc; even if add the outside pointing edges to Figure 11b, there will be no
information regarding the internal structure of the church namespace within the
isolated zfc subgraph. In turn, such an compact visualization allows the user to
fully focus on the available structure which often can remain quite complex.

Finally, we can also use MMT URIs to access information about the node,
e.g., what it represents and the underlying theory structure (cf. Figure 10).

(a) http://latin.omdoc.org/foundations (b) .../foundations/zfc

Fig. 11: LATIN Graph: MMT namespace subgraphs

RDF Graphs The Upper Library Ontology ULO[Con+19] specifies proper-
ties and relations for theorem prover libraries in general, including the library
structure, semantic relations, cross-references, and metadata. This information
is then the basis for different types of nodes and edges in TGView3D. Our sys-
tem can visualize the ULO export of theorem prover libraries such as for Isabelle
and Coq in [Con+19] and even mix the ULO information into the archive graphs
presented above.

With TGView3D, we can now visually compare different libraries or try to
get insights by exploring them. We can also use it to debug the representations of
large libraries. For example, a small bug in the RDF generation led to a naming
discrepancy that resulted in disconnected subgraphs and redundant nodes. This
was quickly noticed in the visualization but would have been very difficult to
detect otherwise, especially, considering that each of the 4000 nodes in Figure 9a
can again contain up to hundreds of nodes an order of magnitude more edges.

5.2 Course Materials

A related, but different application of TGView3D for is active course mate-
rials: the second author has written all of his lecture materials (slides, course
note, and background) in STEX, a semantic variant of LATEX, which can be trans-
formed into OMDoc/MMT. The resulting documents mix document structures
with aspects of OMDoc/MMT theory graphs and cross-link into other resources.

11

Fig. 12: IWGS lecture graph

Note that any knowledge item covered
in a course is subject to a triple context:
i) the intrinsic knowledge context given
by the theory graph of concept inheritance
(includes) and interpretation (views), ii) the
document context given by its position
in the document structure (e.g. sectioning),
and its relation to auxiliary materials, such
as problems, master solutions, or clarifica-
tions/explanations on the course forum, and
iii) the course progress (how far has the lec-
ture already progressed).

This suggests exporting visualizations
that allow students to navigate the joint context intuitively; Figure 12 shows
an example that uses chapters for clustering. The graph has been partly ex-
panded and contains around 600 nodes and 1200 edges. The knowledge context
is theory-graph structured, so the discussion above applies. The course progress
can be visualized by either hiding “future knowledge” or specifying clusters ac-
cordingly. Eventually, it will also be possible to jump from the graph to the
respective chapters or contents within the document via URIs.

But there are also benefits for the document creator. On a technical level, he
can easily catch incorrect relations inside the documents because the graph visu-
alization is often broken in these cases, e.g. there are loops when there should be
none or parts of the graph are fully disconnected. On a semantic level, the cre-
ator can obtain insights regarding how well the lecture is structured by analyzing
how the hierarchy is presented in the graph visualization.

5.3 Argumentation Theory

An argumentation framework specifies classes of attack graphs consisting
of arguments and attack relations between them; see [BGG18] for an overview.

(a) Grounded (b) Stable

Fig. 13: C attacks A and B,
which attack each other

One of the interests of argumentation theory is
whether an attack graph contains subgraphs con-
taining only the arguments that should be ac-
cepted. These are called extensions under a given
semantic. We can use TGView3D to visualize
extensions of attack graphs by labeling (or col-
oring) nodes (and in some argumentation frame-
works supporting/undercutting/. . . edges). The
argumentation structures we show in this paper
are formalized in OMDoc/MMT, so TGView3D
is directly applicable. Figure 13 shows an exam-
ple, where we use TGView3D to compare the
grounded with the stable semantics. In the for-

12

mer, A and B are rejected (red) and in the latter
they are undecided (yellow).

(a) Attack graph: Roe v. Wade, (1973) (b) Reasoning with Tweety the penguin.

Fig. 14: Attack graphs with attacks and inclusions

Generally, the resulting graphs are rather small but they are a prime exam-
ple for multidimensional graphs. Beside the attack edges, they also may have
include edges to express logical reasoning (compare Figure 14b). Complex ar-
gumentation structures, in particular, often result in layouts with geometrical
structures (Figure 14a).

Attack graphs profit from advanced interactions: modifying single edges or
nodes affects whether arguments are accepted or not. While it is possible to per-
form these operations within TGView3D, we currently do not directly change
the underlying OMDoc/MMT formalizations. Instead, the user can edit the OM-
Doc/MMT file accordingly and request the updated graph afterwards.

5.4 Model Pathway Diagrams

MPDs are a novel type of diagram for understanding mathematical models of
physical systems and simulation algorithms that use these models.

Fig. 15: A Model Pathway Diagram

The nodes represent physical laws
(cubes labeled with a MathML render-
ing of the main formula that consti-
tutes the law) and the physical quan-
tities (spheres); edges connect these
laws with the quantities they involve.
From the layout perspective, the key
difference is that the topological struc-
ture of the graphs carries informa-
tion about the possible simulation al-
gorithms. Since such a careful – man-
ual – layout helps understanding, mod-
eling practitioners like to generate raw

13

layouts from OMDoc/MMT-encoded
models and then hand-tweak them for didactic clarity. Accordingly, we allow
the user to reposition the nodes manually and store this layout within the graph
file.

6 Conclusion and Future Work

We have presented an interactive 3D graph viewer that can handle hierarchical
relations in multigraphs efficiently. Our layout algorithm makes use of the third
spatial dimension to preserve the hierarchy and, simultaneously, optimize the
node organization in a force-directed manner. Users can interact with theory
graphs in 3D either traditionally via a screen and a mouse or via virtual reality
devices. The proposed methods to explore the resulting structures globally and
locally can break up the information density of large libraries.

Future work will focus reaching a wider audience. In addition to continuous
improvements to the graph viewer itself, we want to create an ecosystem that
simplifies the process of importing different kinds of graphs into TGView3D.
TGView3D offers a variety of methods to visualize and explore different kinds
of graphs. Extending this, we want to allow more customizability and offer pre-
configured builds that are tailored towards domain-specific use cases. These can
then also incorporate ways to interoperate more closely with the respective tools
or libraries.

References

[3DGV] 3D force-directed graph component using ThreeJS/WebGL. url: https:
//github.com/vasturiano/3d-force-graph (visited on 03/11/2020).

[BGG18] P. Baroni, D. Gabbay, and M. Giacomin. Handbook of Formal Ar-
gumentation. College Publications, 2018. url: https : / / books .

google.de/books?id=_OnTswEACAAJ.
[BHJ09] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. “Gephi:

an open source software for exploring and manipulating networks”.
In: Third international AAAI conference on weblogs and social me-
dia. 2009.

[Bra14] Richard Brath. “3D InfoVis is here to stay: Deal with it”. In: 2014
IEEE VIS International Workshop on 3DVis (3DVis). IEEE. 2014,
pp. 25–31.

[Cod+11] Mihai Codescu et al. “Project Abstract: Logic Atlas and Integra-
tor (LATIN)”. In: Intelligent Computer Mathematics. Ed. by James
Davenport et al. LNAI 6824. Springer Verlag, 2011, pp. 289–291.
url: https://kwarc.info/people/frabe/Research/CHKMR_

latinabs_11.pdf.
[Con+19] Andrea Condoluci et al. “Relational Data Across Mathematical Li-

braries”. In: Intelligent Computer Mathematics (CICM) 2019. Ed.
by Cezary Kaliszyck et al. LNAI 11617. Springer, 2019, pp. 61–76.
doi: 10.1007/978-3-030-23250-4.

14

https://github.com/vasturiano/3d-force-graph
https://github.com/vasturiano/3d-force-graph
https://books.google.de/books?id=_OnTswEACAAJ
https://books.google.de/books?id=_OnTswEACAAJ
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
https://doi.org/10.1007/978-3-030-23250-4

[DKM06] Tim Dwyer, Yehuda Koren, and Kim Marriott. “Drawing directed
graphs using quadratic programming”. In: IEEE Transactions on
Visualization and Computer Graphics 12.4 (2006), pp. 536–548.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. “Graph draw-
ing by force-directed placement”. In: Software: Practice and Experi-
ence 21.11 (1991), pp. 1129–1164. doi: 10.1002/spe.4380211102.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
spe.4380211102.

[Kal+19] Cezary Kaliszyck et al., eds. Intelligent Computer Mathematics. LNAI
11617. Springer, 2019. doi: 10.1007/978-3-030-23250-4.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathe-
matical documents [Version 1.2]. LNAI 4180. Springer Verlag, Aug.
2006. url: http://omdoc.org/pubs/omdoc1.2.pdf.

[Kop+18] Thomas Koprucki et al. “Model pathway diagrams for the represen-
tation of mathematical models”. In: Journal of Optical and Quantum
Electronics 50.2 (2018), p. 70. doi: 10.1007/s11082-018-1321-7.

[Kwo+16] O. Kwon et al. “A Study of Layout, Rendering, and Interaction
Methods for Immersive Graph Visualization”. In: IEEE Transac-
tions on Visualization and Computer Graphics 22.7 (2016), pp. 1802–
1815. doi: 10.1109/TVCG.2016.2520921.

[Liu+17] Jian Liu et al. “VMDV: A 3D visualization tool for modeling, demon-
stration, and verification”. In: 2017 International Symposium on
Theoretical Aspects of Software Engineering (TASE) (2017), pp. 1–
7.

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”.
In: Information & Computation 0.230 (2013), pp. 1–54. url: http:
//kwarc.info/frabe/Research/mmt.pdf.

[RKM17] Marcel Rupprecht, Michael Kohlhase, and Dennis Müller. “A Flexi-
ble, Interactive Theory-Graph Viewer”. In: MathUI 2017: The 12th
Workshop on Mathematical User Interfaces. Ed. by Andrea Kohlhase
and Marco Pollanen. 2017. url: http://kwarc.info/kohlhase/
papers/mathui17-tgview.pdf.

[Sch07] Satu Elisa Schaeffer. “Graph clustering”. In: Computer science re-
view 1.1 (2007), pp. 27–64.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. “Methods for Visual Under-
standing of Hierarchical System Structures”. In: IEEE Transactions
on Systems, Man, and Cybernetics 11.2 (1981), pp. 109–125. doi:
10.1109/TSMC.1981.4308636.

[UGE] Unity Game Engine. url: https://unity3d.com (visited on 03/07/2019).
[Wen19] Makarius Wenzel. “Interaction with Formal Mathematical Docu-

ments in Isabelle/PIDE”. In: Intelligent Computer Mathematics (CICM)
2019. Ed. by Cezary Kaliszyck et al. LNAI 11617. Springer, 2019,
pp. 1–15. doi: 10.1007/978-3-030-23250-4.

[WM08] Colin Ware and Peter Mitchell. “Visualizing graphs in three di-
mensions”. In: ACM Transactions on Applied Perception (TAP) 5.1
(2008), pp. 1–15.

15

https://doi.org/10.1002/spe.4380211102
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380211102
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380211102
https://doi.org/10.1007/978-3-030-23250-4
http://omdoc.org/pubs/omdoc1.2.pdf
https://doi.org/10.1007/s11082-018-1321-7
https://doi.org/10.1109/TVCG.2016.2520921
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
https://doi.org/10.1109/TSMC.1981.4308636
https://unity3d.com
https://doi.org/10.1007/978-3-030-23250-4

A Enlarged Versions of some of the Images

For convenience in a print-out, we re-iterate some of the images that are relatively
small in the text. We hope to get an additional page in the final version, so that
we can enlarge them there are well.

Fig. 16: Figure 3a “Dense View Structure”

16

Fig. 17: Figure 3b “View Structure in 3D”

17

Fig. 18: Figure 3c “Inclusion DAG in 3D”

18

Fig. 19: Figure 3a “Dense View Structure”

19

Fig. 20: Figure 3b “View Structure in 3D”

20

Fig. 21: Figure 3c “Inclusion DAG in 3D”

Fig. 22: Figure 8 “VR node interaction”

21

Fig. 23: Figure 9a “Clusters expanded once”

22

Fig. 24: Figure 9b “Clusters fully collapsed”

23

Fig. 25: Figure 11a “http://latin.omdoc.org/foundations”

Fig. 26: Figure 11b “.../foundations/zfc”

24

Fig. 27: Figure 12 “IWGS lecture graph”

25

(a) Grounded (b) Stable

Fig. 28: Figure 13 “C attacks A and B, which attack each other”

26

Fig. 29: Figure 14a: Attack graph: Roe v. Wade, (1973)

Fig. 30: Figure 14b “Reasoning with Tweety the penguin”

27

Fig. 31: Figure 15 “A Model Pathway Diagram”

28

	3-Dimensional Graph Visualization of Mathematical Knowledge
	1 Introduction
	2 Preliminaries
	3 Visualization and Layouting
	4 Interaction
	5 Case Studies
	5.1 Formal Libraries
	5.2 Course Materials
	5.3 Argumentation Theory
	5.4 Model Pathway Diagrams

	6 Conclusion and Future Work
	A Enlarged Versions of some of the Images

