
FrameIT: Detangling Knowledge Management
from Game Design in Serious Games

Michael Kohlhase[0000−0002−9859−6337]1, Benjamin Bösl1, Richard
Marcus[0000−0002−6601−6457]1, Dennis Müller1, Denis Rochau, Navid
Roux[0000−0002−8348−2441]1, John Schihada1, and Marc Stamminger1

Computer Science, FAU Erlangen-Nürnberg

Abstract. Serious games are an attempt to leverage the inherent moti-
vation in game-like scenarios for an educational application and to trans-
pose the learning goals into real-world applications. Unfortunately, seri-
ous games are also very costly to develop and deploy. For very abstract
domains like mathematics, already the representation of the knowledge
involved becomes a problem.
We propose the FrameIT Method that uses OMDoc/Mmt theory graphs
to represent and track the underlying knowledge in serious games. In
this paper we report on an implementation and experiment that tests
the method. We obtain a simple serious game by representing a “word
problem” in OMDoc/Mmt and connecting the Mmt API with a state-
of-the-art game engine.

1 Introduction

Serious games could be a solution to the often-diagnosed problem that tradi-
tional education via personal instruction and educational documents has seri-
ous scalability, subject specificity, and motivation limitations. A serious game
is “a mental contest, played with a computer in accordance with specific rules,
that uses entertainment to further government or corporate training, education,
health, public policy, and strategic communication objectives” [Zyd05]. Beyond
educational games for students, the term “Serious Game” is used for games that
help to acquire skills in general. This includes training professionals of basically
all industry sectors.

Serious games have the power to effectively supplement technical documents
and online courses and thereby allow students to learn how to apply their knowl-
edge to real world scenarios. Moreover, serious games very elegantly solve the
motivation problem many people experience when studying technical subjects.
Through gamification [Det+11] a serious game can be very entertaining while
at the same time providing educational value to the user.

Unfortunately, serious games for complex subjects like science, technology,
education, and mathematics (STEM), where their motivational effects could be
disruptive, are currently very complex, domain-specific, and expensive. Even
more seriously, developers of such games need to combine the skill sets of game
development, pedagogy, and domain expertise, a rare combination indeed.

To alleviate this, we propose the FrameIT Method, which – instead of us-
ing ad-hoc methods for dealing with the underlying STEM domain knowledge
in the game – uses established mathematical knowledge management techniques
(MKM) and implementations. It loosely couples a game engine for interacting
with virtual worlds with the Mmt system, which performs knowledge represen-
tation and management services, thus separating the domain knowledge inte-
gration from the game development process. The main mechanism involved is
maintaining a mapping between objects of the virtual world and their proper-
ties (“facts”) with represented objects and formal statements in OMDoc/Mmt.
On this basis, learning objects in the form of represented theorem statements
can i) be visualized in the game world (“scrolls”) for the player to understand,
ii) instantiated by the player by establishing a mapping between their universal
variables and game objects, and iii) can together with their instantiations be
represented in Mmt as OMDoc/Mmt views, enabling validity checking and
result computation. These results can then be transferred back into the game
world bringing things full circle.

The goal of the games that result from the FrameIT Method is to understand
the meaning and the application of formulas by applying them in a virtual world.
The player has to solve a task by generating, moving, or selecting objects, and by
applying formulas, visualized as scrolls. In parallel the system builds a descrip-
tion in OMDoc/MMT, with corresponding facts and views, OMDoc/MMT then
derives new facts based on the formulas selected by the player and transfers the
results back to the virtual world. So the player applies abstract laws to concrete
examples and immediately sees the effect.

The Tree Example At this point, we would like to introduce a running example of
an in-game word problem for a serious game. In later sections it deals to further
explain the FrameIT Method as well as our primary playable demonstration in our
implementation.

Word Problem Game Problem

How can you
measure the height
of a tree you cannot

climb, when you
only have a laser
angle finder and a
tape measure at

hand?

Fig. 1: Example Problem

Concretely, in our ex-
ample the player is pre-
sented a tree in a forested
3D world and is asked to
determine its height us-
ing a limited set of gad-
gets; each of those pro-
viding facts about the
world, e.g. acquirable an-
gles and lengths from the
player’s perspective (cf.
Figure 1). The intended
solution is to frame this problem in the language of trigonometry as finding the
length of the opposite side given an angle and the adjacent side. Another possi-
ble solution is to choose an isosceles 45°-45°-90° triangle, for which both legs of
the triangle then have the same length.

2

Didactically, the game world is rigged so that the gadgets produce only facts
acquirable from the player’s perspective. For instance, they cannot climb the
tree, and hence the provided measuring tape gadget disallows measuring the
tree’s height. Instead, the user is expected to use scrolls1 to discover new facts
about the world in alternative ways. In the problem at hand, such a scroll on
trigonometry could provide the length of the opposite side of a right-angled
triangle given an angle and the length of an adjacent side – both of which are
acquirable from the player’s perspective.

Contribution In this paper we report on the first playable and extensible imple-
mentation of the FrameIT Method. We have implemented all system components
and developed APIs that allow an integration of the Mmt system with Unity,
a state-of-the-art game engine: the UFrameIT system. With the new framework,
building a serious game should be a matter of formalizing the background knowl-
edge in OMDoc/Mmt and providing the necessary gadgets and scrolls. We con-
firm this hypothesis by instantiating UFrameIT into a very simple serious game:
FrameWorld-1. The project is available on GitHub, we provide a demo video and a
playable prototype; all of these can be found at https://uframeit.github.io/.

Overview In the next section we mainly recap previous work on OMDoc/Mmt.
We then continue describing our approach in a progressive, threefold way. In
Section 3, we first describe the FrameIT Method from a purely conceptional
viewpoint. Then, instantiating that concept, we present and discuss our imple-
mented framework UFrameIT in Section 4. Finally, in Section 5 we show our
realization of the running example within UFrameIT. In Section 6, we give a
short conceptual evaluation of the FrameIT Method and conclude the paper in
Section 7.

Acknowledgements The development of the FrameIT Method has profited from
discussions in the KWARC group, in particular from contributions by Mihnea
Iancu and Andrea Kohlhase. The implementation reported on in this paper
completely re-implements [RKM16] and extends it significantly.

2 Preliminaries

2.1 Learning Object Graphs as OMDoc/Mmt Theories

For the concept and implementation of the FrameIT Method, we require an MKM
system capable of storing, relating, and combining knowledge items in a struc-
tured knowledge graph. In this work, we choose the OMDoc/Mmt language
[RK13] as a fitting theoretical framework together with its reference implemen-
tation in the Mmt system [Rab13], which is a general foundation- and logic-
independent framework for creating formal systems [MR19]. Below, we shortly

1 The name “scroll” is meant to evoke the fact that the knowledge contained in it is
a valuable commodity in the game.

3

https://uframeit.github.io/

recap the language in a way suited for our applications in this paper. Nonethe-
less, our methods are agnostic on the specific choice of an MKM system as long
as it supports the features elaborated below in some way. Indeed, we reflect
the loose coupling of our approach in the structure of this paper by having Sec-
tion 3 detailling the FrameIT Method without assumption of any implementation
details.

Storing OMDoc/Mmt organizes knowledge into theories and relates theories
via views. A theory is essentially a list of typed constant declarations of the
form c : E [= e] [# N]. Here, c is the (theory-local) identifier, the well-typed
expressions E and e the type and definiens, and N some notation. Expressions
are well-formed terms over all previous declarations in scope. By leveraging a
suitable foundation and logic as well as the Curry-Howard correspondence, we
can represent a wide range of formal knowledge including type, function, and
predicate symbols, axioms, theorems, judgements, and inference rules. Moreover,
for structuring purposes, theories can include (import) knowledge of other the-
ories. Since inclusions are a special case of views, we suggestively write S ↪→ T
for a theory S being included in a theory T .

Relating In general, two theories S and T can be related by a view v : S T ,
which is a well-typed map mapping every declaration in S to a T -expression.
Views can be thought of as refinements from some abstract theory S to a more
concrete theory T . For instance, in our running example we could represent a
theory of triangles in S, a concrete game world set up by the player in T , and
utilize a view S T to understand the tree and the shadow cast by it as forming
a triangle. In particular, as a result of well-typedness we get truth preservation
as a metatheorem: under a view, the images of axioms/theorems and proofs in
the domain theory are again theorems and proofs in the codomain theory. In
the context of our example, this enables instantiating abstract theorems, such as
trigonometric identities, in the concrete world, e.g. to compute the tree’s height
by only knowing the shadow’s (projected) width and the enclosed angle.

A theory graph is a multigraph emerging from a collection of theories and
views together. We will use theory graphs as learning object graphs in the
UFrameIT context. They form the fundamental basis for the FrameIT Method as
they allow us to relate different learning objects with each other in a machine
understandable and logical way.

R S

T P

v

y
Fig. 2: Pushout

Combining The final feature we require from an MKM
system for our purposes is to combine knowledge. In the
OMDoc/Mmt language, we can phrase this as computing
pushouts in the category of theories and views. In this cate-
gory, pushouts along inclusions always exist; see Figure 2 for
the general scheme. Intuitively, the pushout P is formed as
the union of S and T such that they exactly share R. In the FrameIT Method,
we make extensive use of pushouts as a way to translate abstract conclusions
in T into the context of a concrete situation in S. This is legitimized by first

4

constructing the upper view v in Figure 2, which serves to frame parts of S as
the abstract preconditions stored in R; hence the name FrameIT.

2.2 Unity: a Multi-Platform Game Engine

Since our goal is the development of a knowledge-based engine for serious math
games, we encounter the need for a correspondent graphics engine twice: once,
to create a system that can interoperate with the MKM system and, once, to
actually implement a game prototype using this framework. To cope with this, we
use the Unity game engine [Uni]. As an industry standard with a big community
– providing materials, assets and tutorials – it meets all our requirements. While
it is easy to learn the basics, it is a powerful and flexible tool, providing the
possibility to deploy to basically every platform, including VR and AR devices.
It greatly reduces the amount of effort to create virtual worlds by largely taking
care of rendering and offering a huge API to implement game interactions and
interfaces. In particular, it also offers an interface for communicating with a
RESTful API, which is important for interacting with an external MKM system.

3 The FrameIT Method

We propose that – at least for the domain of mathematical knowledge – serious
games be implemented with a dedicated MKM system in the background lever-
aged for storing, relating, and combining knowledge. In our concept, we exploit
features provided by the MKM system and expose them to the player by means
of appropriate user interfaces such that players can easily explore, play, com-
pute, and verify solutions to in-game puzzles. From the many conceivable kinds
of applications, in this work we focus on the task of framing puzzles. Such
puzzles challenge the user to frame concrete tasks in the 3D game world, such
as measuring a tree’s height, as abstract problems, such as finding an opposite’s
length in trigonometry.

Fig. 3: The FrameIT Method as a Process – Initializiation

5

3.1 Exemplary Playflow

The main contribution of the FrameIT Method is the division of labor between
game engine and MKM system, which offers several advantages regarding devel-
opment workflows and knowledge management. To get a better intuition of the
method, we will go through the process of solving our tree example step-by-step
showing what goes on in both subsystems (on the left and right of the Figures 3
and 5 to 7). This also allows us to introduce the pertinent concepts by way of
our running example.

Initially in the game, the user is presented our word problem together with
some initial “background knowledge” they are allowed to apply throughout solv-
ing the puzzle (cf. Figure 3). This background knowledge encompasses facts and
scrolls:

Facts are typed and arbitrarily complex knowledge items. For example, la-
belled 3D points marked in the world, such as A := (1, 0, 0), can be facts. They
can originate from multiple sources including level-dependent background knowl-
edge and in-game exploration by the player themself. In our example, the user
initially gets two point facts (namely F and G) marking the tree’s endpoints. As
is the case with all facts, they are kept synchronized with the knowledge side,
which we can observe in Figure 3 as declarations in the situation theory. This
theory is a designated, possibly level-dependent theory encompassing the World
knowledge provided or gained so far.

OppositeLen Scroll

Find a b

c
α such that]abc = 90°

then a b

c

α =⇒ |bc| = |ab| · tan(α)

Fig. 4: The OppositeLen Scroll

Scrolls complement the concept
of facts via a mechanism to ob-
tain new facts from existing ones –
much like mathematical theorems.
The game provides the user with
the OppositeLen scroll (see Figure 4),
which operationalizes the mathe-
matical theorem the game wants
to teach. Namely, it requires three
point facts a, b, c, the angle]cab,
and the knowledge of]abc = 90° as input and in return provides an identity
about |bc|. This way, we see that scrolls can serve us as learning objects in seri-
ous games. On the knowledge side, we can represent them as Problem/Solution
theory pairs (cf. Figure 5), where the problem theory encapsulates the scroll’s
universal variables and preconditions, and the solution theory contains the de-
sired assertions (results) in context of the former. In the process below, we will
see that theorem application then becomes pushout computation in our sense.

In the second step, the user explores the virtual world and experiments with
the given facts and scrolls. In some serious games, this happens off-band by the
player with pen and paper. By contrast, the FrameIT Method actively encourages
in-game exploration and even requires it to solve puzzles. World exploration can
involve marking new points and lines in the world, possibly guided by scrolls like
the OppositeLen scroll our player has been presented. Concretely, we imagine
they use the pointer gadget in the game UI to mark a point E on the ground
and the line gadget to mark a triangle through E and the tree’s endpoints.

6

.

Fig. 3: The FrameIT Method as a Process

Fig. 5: The FrameIT Method as a Process – Step 2

Moreover, they measure]GEF = 45° and]EFG = 90° using some protractor
gadget. On the side of the MKM system in Figure 5, we see that the collected
facts are communicated to the MKM system as soon as they are created: the
situation theory grows.

.

Fig. 3: The FrameIT Method as a Process

Fig. 6: The FrameIT Method as a Process – Step 3

In the third step, the player frames the in-game word problem in terms of
the OppositeLen scroll by mapping every scroll input to a game world object.
Here, the inputs for the point facts a, b, c, the enclosed angle]cab, and the
right angle]abc are mapped to the facts E, F , G,]GEF = 45°, and]EFG =
90°, respectively. This assignment is communicated to the MKM system which
establishes that it constitutes a view – we call it the application view. Critically
for our serious game use case, it establishes the precondition that4abc is a right-
angled triangle which justifies the application of the OppositeLen scroll. If the
player frames the game problem with an assignment that does not lead to a
view – e.g. if the ground the tree stands on is not horizontal and thus the angle
]EFG is different from 90° – the MKM system will reject the framing and can
pinpoint exactly where the error lies.

In the final step (cf. Figure 7), the MKM system computes the pushout of
the application view over the inclusion of the problem into the solution the-
ory. Moreover, it simplifies terms, computes values, and reports to the game

7

engine that the user has solved the puzzle. Concretely, success was determined
by checking whether the fact |FG| simplifies to a numeric value in context of the
pushout theory. This formal notion corresponds to the intuitive puzzle objective
of finding that length.

.

Fig. 3: The FrameIT Method as a ProcessFig. 7: The FrameIT Method as a Process – Step 4

Having solved the puzzle, the player can now proceed to choose a new puzzle
to play. Importantly, the knowledge gained so far is not thrown away, but kept
for future use by the player. For example, the player can use the tree’s height
as input for other scrolls in subsequent puzzles. This effect is easily achieved by
updating the pointer to the situation theory to the computed pushout theory in
the course of the last step.

Playing in Practice Note that we presented an idealistic chronological order
for simplicity only. In general, players might do several steps simultaneously,
make mistakes in framing, and repeat previous steps. Moreover, levels might
come bundled with multiple scroll libraries for the user to apply and choose
from. All in all, much in the spirit of a working mathematician, the tasks of
exploration, scroll application, and success are blurred in practice. See Section 5
for a realization of a game that allows to do all of these.

3.2 Acquiring Facts and Using Scrolls

Facts are a central part of the FrameIT Method. In our running example, we
have so far only seen facts being acquired by marking/measuring things in the
3D world and by scroll application. Below, we give an extended, though non-
exhaustive, compilation of ways to acquire facts.
– Exploration of the 3D World: Players can explore the 3D world by means

of gadgets, which are a mechanism in the game UI to mark or measure
things of interest in the game world. Our implementation includes gadgets
to mark points, lines, angles and distances among others. Upon usage, all
these gadgets generate facts.

– Scroll Application: Successful scroll application leads to one or more facts
being output.

8

– Discovery, Awards, and Trade: Serious games could be designed such
that a player can stumble upon and discover facts within the world, e.g.
by “talking” to non-player characters. Moreover, in more elaborate story
designs, levels may come with a prize fact to earn upon success, which is then
required for subsequent levels. Finally, assuming some kind of multiplayer
mode, we might also allow players to share and trade facts.
Common to all ways of obtaining facts is that upon acquisition they are

synchronized with the MKM system. Namely, it is supposed to serve as a single
source of truth for all knowledge items. We will discuss the implementation of
an appropriate framework next.

4 The UFrameIT Framework (Implementation)

We have implemented the FrameIT Method as a prototypical serious game frame-
work we call UFrameIT. Concretely, we extend the existing Mmt system with an
interface for incremental fact synchronization and implement a general infras-
tructure for fact managment, gadgets, scrolls, and framing in the C#-based API
of the Unity game engine.

We have also instantiated the UFrameIT framework with a simple proof-of-
concept game FrameWorld-1, which we describe in the next section. We separate
the two concerns – even though they were developed together – to give an intu-
ition of the relative efforts.

Figure 8 shows the main parts of the UFrameIT framework: the environment,
the first-person player, the problem definition, as well as facts and scrolls at work
in FrameWorld-1. It also shows the Framing UI, which allows Framing and
tool selection. We describe this in detail below. Lastly, in the middle we can see
the laser angle finder gadget at work after it has been selected from the gadget
bar at the bottom of the screen.

4.1 Extending Unity with Facts, Scrolls, Gadgets, and Framing

To incorporate the FrameIT Method we mainly need two things: gadgets and an
interactive user interface.

Gadgets and Facts On a technical level, gadgets consist of the following parts:
– To identify tools within the game, they need Graphical Representations.

Currently, we only use a planar icon for the UI, but in the future, we plan
to have 3D objects to show the gadgets in the virtual world.

– The activation of a gadget triggers Gadget Events that initialize or update
its internal state. These events are used for communication between the
player and the gadget.

– Gadgets give feedback to the player via Gadget Visual Effects, e.g. for
showing assisting previews during fact creation

– Finally, gadgets trigger Fact Events to initiate the creation of the appro-
priate facts.

9

Fig. 8: Measuring Facts about the World

Facts are managed by Mmt but, just as gadgets, they have graphical com-
ponents: a Unity GameObject for interaction in the virtual world and an icon
for interaction in the UI.

In order to develop a new gadget, there are three main modules which have to
be extended: FactManager, FactSpawner and VisualEffectsManager. These mod-
ules cope with the different gadget parts described above. The FactManager is
aware of the currently active gadget and handles the gadget-specific inputs made
by the player. If necessary, it delegates work to the other modules. For instance,
when a gadget was used successfully, it updates the global fact list (by addition
or removal) and triggers the FactSpawner to arrange for the facts’ in-game vi-
sualization. Moreover, for visualizing assisting previews in the course of using
a gadget, the FactManager delegates and transmits the neccesary data to the
VisualEffectsManager. All of the modules assume that suitable fact types and
gadgets procuding instances of them have previously been established. Addi-
tionally, every fact type needs to be given a formalized counterpart on the Mmt
side. Hence, if a new gadget exceeds the current range of functionality, these
parts may also need adaptation.

Framing UI On the lower edge of the screen, players can find the Gadget Tool-
bar, which allows access and activation of the respective gadgets. To interact
with the measured facts, the user can activate an overlay that freezes the under-
lying game and gives access to framing (cf. Figure 8). Facts are depicted as small
tiles and are collected in the fact inventory on the top left. Complementarily,
available scrolls are shown on the right edge, of which the currently active scroll
is shown beneath the fact inventory. Players can then fill the scrolls with facts via
drag & drop. When the player clicks the “Magic” button, UFrameIT constructs

10

and transfers the application view to Mmt, which computes the pushout after
successful verification and hands back the resulting facts.

4.2 Communication

To allow Mmt to process information and give feedback according to the FrameIT
Method, we use a very fine-grained communication approach. The back-end
server provides a RESTful-interface with endpoints to add facts (one endpoint
per fact type), generate views, request pushout computations, and to list avail-
able scrolls. The corresponding payloads are transmitted in the JSON data for-
mat. There are three different types of events that trigger communication with
the server:

– Game World Triggers automatically send requests during interaction with
the game world but are not used for our simple example.

– Fact List Modification We report all changes to the fact list to the server.
Most prominently, these changes are triggered by gadgets. Each gadget-
generated fact entails sending an HTTP request including the fact details to
the server. On the Mmt side, the putative fact is first checked for validity,
then upon success stored as corresponding declaration(s) in the situation
theory, and lastly, its generated declaration identifier is sent back to Unity.

– Attempt of Scroll Application When the player tries to apply a scroll,
a test for applicability is started: The mappings of the filled scroll are sent
to the server and packaged into a putative view by Mmt. The latter is then
run through the type checker, whose outcome is reported back to the game
engine. Upon success, the game engine requests the pushout computation
wrt. the Problem/Solution theory pair representing the current scroll and
updates the UI with the results.

5 FrameWorld-1: A Simple Serious Game in UFrameIT

FrameWorld-1 is a simple game instantiating the UFrameIT framework into a
proof-of-concept game that is inspired by our running example and the playflow
from Section 3.1. As most of the infrastructure comes from UFrameIT, the only
“game contents” we had to develop for FrameWorld-1 were the game world,
the problem-specific gadgets, a formalization of the background theory of 3D
geometry and trigonometry, and appropriate scrolls.

5.1 A simple Virtual World

To build a game, we require a world for the player to explore. With Unity, we
simply added an object serving as ground together with the default first-person
camera asset for navigation. To simplify the process of applying basic geometry,
we kept the ground of the world completely flat for our first game. To bring the
scene to life, we populated the scene with assets that are freely available at the
Unity asset store.

11

Fig. 9: Visual Effects:
Measuring Angles

Gadgets and the Facts in FrameWorld-1 Gadgets
are the core way of interacting with the world; for
FrameWorld-1 we had to create three gadgets.

The pointer gadget marks a point in the game
world and produces a new fact that declares a la-
belled point. Upon activation, objects in the envi-
ronment that shouldn’t be markable, e.g. the sky
or other pre-existing points, are set to be ignored.
Moreover, snap zones are activated. Placing a
point within these zones positions it exactly at the
center of the zone, which is necessary to accurately mark the root and the top
of the tree.

Fig. 10: Success

The user can then relate two or three differ-
ent points by measuring the distance between them
with a measuring tape gadget or the angle be-
tween them with the laser angle finder. An angle
is defined by the selection of three existing point ob-
jects. Every single selection triggers an event that
updates the internal state of the gadget. After the
second point is selected, we preview the angle by
following the mouse pointer until the third point
has been fixed (cf. Figure 9). Distance measuring is
implemented analogously, in this case, with a pre-
view line following the cursor. Importantly, we let
the line only follow the cursor up to the height of the
player and prevent connection with points which are
higher than that. Even though these three gadgets
were developed for FrameWorld-1, it is clear that

they are generally useful for problems based on 3D geometry and can thus be
shared with subsequent games.

Playing the Game The player automatically obtains a set of scrolls by starting
FrameWorld-1. They learn about the puzzle they need to solve by talking to the
non-player character and by subsequent exploration of the world by the means
of the FrameIT Method. Delivering the height of the tree to the character talked
to completes the game and triggers some visual feedback indicating success –
the fireworks in Figure 10.

5.2 Domain Knowledge and Scrolls

For FrameWorld-1 we have extended the MitM Ontology [Mit] by seven theories
for 3D geometry and trigonometry, which can be found in [UFM]. We decided
on 3D instead of planar geometry as the virtual world is 3D and a mapping to
its 2D variant would engender an additional transformation step that we would
have to communicate to the player. Additionally, this allows us to implement
more advanced 3D geometry scrolls in the future.

12

theory tan problem : ?geometry =
meta scrollname ”OppositeLen” ||||
meta solutionTheoryURI ?tan solution ||||
meta scrollDescription ”Given a triangle ABC right−angled at C,
the distance AB can be computed from the angle at B and the distance BC” ||||

pA: V |||| pB: V |||| pC: V |||| // points ||||
pDistBC v: R ||||
pDistBC: DF pB pC pdistBC v ||||// arbitrary distance between B and C ||||
pAngleABC v: R||||
pAngleABC: AF pA pB pC pangleABC v ||// arbitrary angle between A, B and C ||||
pAngleBCA: AF pB pC pA 90.0 ||// exact 90.0° angle between B, C and A ||||||||||||

theory tan solution : ?geometry =
include ?tan problem ||||
distCA v: R || = (tan pangleABC v) · pdistBC v ||||
tangentScroll : V → V → V → DF pA pC distCA v ||||
distCA: DF pA pC distCA v ||= tangentScroll pA pB pC ||||||||||||

Fig. 11: Mmt Problem/Solution theory pair (modified for readability)

For the scroll in the running example, we use the Problem/Solution theory pair
shown in Figure 11. The problem theory defines the required abstract situation of
the scroll: a right-angled triangle, one known angle and the respective adjacent.
The solution theory describes the output of the scroll: the length of the opposite
calculated through the tangent function. The problem theory contains meta-
annotiations to tag as the problem theory of the OppositeLen scroll, establish the
link to the solution theory and contain the scroll description, which is showed in
game.

Recall that scrolls may represent theorems and in those cases they should
only be applicable on situations fulfilling the theorem’s preconditions. In partic-
ular, we can leverage Mmt as an MKM system to enforce such conditions. For
example, our background theory provides us a separate distance type for every
real value of distance and two points. Using such a distance type for pDistBC

in the problem theory allows us to enforce that only correct distance facts get
mapped to it. For instance, a putative view mapping a distance fact for |AC| or
even |CB| to pDistBC would lead to a typing error. We follow a similar approach
for angle facts (cf. pAngleABC and pAngleBCA). Note that for pAngleBCA we fix
the only correct angle of 90.0° directly in the type. In contrast, for the previous
distance fact pDistBC and for pAngleABC, we used extra (unconstrained) dec-
larations, which make the actual value being mapped as the distance and the
angle freely selectable. After all, these values are universally quantified over in
the theorem statement.

Taking a step back from these practical experiences, we return to a conceptual
level in the next section and evaluate the FrameIT Method.

13

6 Conceptual Evaluation

The core distinguishing feature of the FrameIT Method as a serious game frame-
work is explicit knowledge formalization in an MKM system. This has several
benefits over treating the domain knowledge implicitly within program code of
the game engine:

– Development Workflow Separation: Traditionally, the game developer
has to model complex problems within the game world, relying on frequent
communication to ensure that all aspects are implemented correctly. By
encapsulating the knowledge integration, we can reduce the probability of
mistakes during the knowledge transfer between domain experts and devel-
opers.

– Reusing Knowledge: As the (mathematical) background knowledge is in-
dependent from the game implementation itself, it does not rely on any
specific programming language or game engine. This means that the knowl-
edge formalization process only needs to happen once and different games
can make use of it. Indeed OMDoc/Mmt has been designed to support
knowledge re-use in practice.

– Reusing Game Design: This is dual to the point above. Given a suffi-
ciently declarative implementation API of the game engine side, the FrameIT
Method allows the game to be updated by simply adapting the theory graph.

Further advantages stem from the way we formalize knowledge within the
FrameIT Method. By exploiting the features of an MKM system, we can effi-
ciently integrate complex knowledge in a way from which the game implemen-
tation profits as well:

– Dependency Handling: The MKM system can be used to track formal-
ized dependencies of game world objects that have been given a suitable
counterpart on that side. Thus, after knowledge integration, developers can
often avoid to reimplement these kinds of relation handling.

– Feedback: The MKM system can detect at which point a player’s solution
fails and to some extent also why. This allows to give feedback helping players
to spot and rectify problems while solving puzzles.

– Multiple Solutions: With careful implementation of puzzle objectives in
the MKM system, the game can be made agnostic to solution paths. Thus,
if there are multiple ways to complete the game, the user is free to do so by
default.

– Compound Problems/Solutions: By treating facts and puzzle objectives
in a uniform way, we can naturally construct compound problems asking for
facts to be obtained by subproblems. We have presented a simple exam-
ple, but it is not difficult to think of more advanced examples that require
multiple scroll applications.

7 Conclusion

We have presented a novel application of MKM technology: knowledge manage-
ment in serious games that, e.g., teach the application of simple mathematical

14

models to geometric problems by simulating them in virtual worlds. Our pro-
totype implementation of the FrameIT Method shows that combining a game
engine with an MKM system is not only possible but indeed useful: The ex-
plicit representation of the underlying domain knowledge and the situation in
the MKM system allow for checking the applicability of the model on the MKM
side. Consequently, our framework creates separated workflows and encourages
reuse of content.

We have instantiated the UFrameIT framework to obtain FrameWorld-1, a
simple serious game which challenges players to solve basic geometric problems
using “scrolls” derived from 3D geometry and trigonometry. For the knowledge-
concerned parts, the OMDoc/Mmt language and the Mmt system served as our
basis, only adding userland code, i.e., no modifications were necessary. Similarly,
we were able to implement the game generically by building “gadgets”, thus
requiring no knowledge about geometry.

References

[Det+11] Sebastian Deterding et al. “From Game Design Elements to Gamefulness:
Defining “Gamification””. In: Proceedings of the 15th International Aca-
demic MindTrek Conference. MindTrek ’11. New York, NY, USA: ACM,
2011, pp. 9–15. doi: 10.1145/2181037.2181040.

[Mit] MitM/core. url: https : / / gl . mathhub . info / MitM / core (visited on
01/18/2020).

[MR19] Dennis Müller and Florian Rabe. “Rapid Prototyping Formal Systems in
MMT: 5 Case Studies”. In: LFMTP 2019. Electronic Proceedings in The-
oretical Computer Science (EPTCS), 2019. url: https://kwarc.info/

people/frabe/Research/MR_prototyping_19.pdf.
[Rab13] Florian Rabe. “The MMT API: A Generic MKM System”. In: Intelligent

Computer Mathematics. Ed. by Jacques Carette et al. Lecture Notes in
Computer Science 7961. Springer, 2013, pp. 339–343. doi: 10.1007/978-
3-642-39320-4.

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”. In: In-
formation & Computation 0.230 (2013), pp. 1–54. url: http://kwarc.

info/frabe/Research/mmt.pdf.
[RKM16] Denis Rochau, Michael Kohlhase, and Dennis Müller. “FrameIT Reloaded:

Serious Math Games from Modular Math Ontologies”. In: Intelligent Com-
puter Mathematics – Work in Progress Papers. Ed. by Michael Kohlhase
et al. 2016. url: http://ceur-ws.org/Vol-1785/W50.pdf.

[UFM] Formalizations for UFrameIT FrameWorld. url: https://gl.mathhub.
info/FrameIT/FrameWorld (visited on 03/19/2020).

[Uni] Unity Technologies. Unity Realtime Development Platform. Version 2019.3.6.
url: https://unity.com/ (visited on 03/19/2020).

[Zyd05] M. Zyda. “From visual simulation to virtual reality to games”. In: Computer
38.9 (2005), pp. 25–32. doi: 10.1109/MC.2005.297.

15

https://doi.org/10.1145/2181037.2181040
https://gl.mathhub.info/MitM/core
https://kwarc.info/people/frabe/Research/MR_prototyping_19.pdf
https://kwarc.info/people/frabe/Research/MR_prototyping_19.pdf
https://doi.org/10.1007/978-3-642-39320-4
https://doi.org/10.1007/978-3-642-39320-4
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://ceur-ws.org/Vol-1785/W50.pdf
https://gl.mathhub.info/FrameIT/FrameWorld
https://gl.mathhub.info/FrameIT/FrameWorld
https://unity.com/
https://doi.org/10.1109/MC.2005.297

	FrameIT: Detangling Knowledge Management from Game Design in Serious Games
	Introduction
	Preliminaries
	Learning Object Graphs as OMDoc/MMT Theories
	Unity: a Multi-Platform Game Engine

	The FrameIT Method
	Exemplary Playflow
	Acquiring Facts and Using Scrolls

	The UFrameIT Framework (Implementation)
	Extending Unity with Facts, Scrolls, Gadgets, and Framing
	Communication

	FrameWorld-1: A Simple Serious Game in
	A simple Virtual World
	Domain Knowledge and Scrolls

	Conceptual Evaluation
	Conclusion

