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Abstract—In this manifesto, we develop the “Flexiformalist
Program”. This may be thought of as a modern extension of
Hilbert’s “Formalist Program”, which solved the foundational
crisis of mathematics but remained purely theoretical: Even
though formal representations are a prerequisite for computer
support in mathematics, formalization is a possibility that is
usually unconsummated and thus does not have any practical
influence on day-to-day mathematics.

The Flexiformalist Program aims to change this and calls for
1. The development of a regime of partially formalizing

a. mathematical knowledge into a modular ontology of math-
ematical theories (content commons), and

b. mathematical documents by semantic annotations and links
into the content commons (semantic documents),

2. The establishment of a software infrastructure with
a. a distributed network of archives that manage the content

commons and collections of semantic documents,
b. semantic web services that perform tasks to support current

and future mathematic practices
c. active document players that present semantic documents

to readers and give access to respective
3. the re-development of a comprehensive part of mathematical

knowledge and the mathematical documents that carries it
into a flexiformal digital library of mathematics (FDLM).

We believe that such a flexiformal digital library will signif-
icantly empower mathematicians, scientists, and engineers in
research, education, and application. Our experiences with early
approximations of the FDLM show that the approach can be
profitably transferred to other domains in science, technology,
and engineering.

Index Terms—???????,??????

I. INTRODUCTION

Mathematics plays a fundamental role in science, technol-
ogy, and engineering (STEM). Mathematical knowledge is
rich in content, sophisticated in structure, and technical in
presentation. Its conservation, dissemination, and utilization
constitutes a challenge for the community and an attractive
line of inquiry. In this manifesto, we will take an MKM
(Mathematical Knowledge Management) view. MKM is an
interdisciplinary field at the intersection of mathematics, com-
puter science, Semantic Web, library science, and scientific
publishing that develops representation formats, methods, and
tools to facilitate the creation of a “universal digital library of
mathematics” and empower its users with added value services
(see [Far05] for an introduction). It is a driving intuition for
the MKM community that mathematical knowledge consti-
tutes an attractive “test tube” for structure research and tool
development and that results and tools can be generalized to
all of STEM.

Most of mathematical knowledge is currently recorded in
the form of informal (see below) documents – ranging from
journal papers over preprints to sketches on blackboards. We
can distinguish three levels of representation in electronic
documents:

1) digitized (usually from printed material): such documents
are essentially electronic images of their printed precur-
sors and can be distributed electronically to be read by
humans

2) presentational: i.e. electronically encoded text inter-
spersed with presentation markup – meta-level commands
that describe the visual (or auditory) appearance of layout
of the document and its components (e.g. formulae and
tables).

3) semantic: i.e. text interspersed with content markup that
makes the meaning conveyed by the document explicit
and thus machine-actionable: document components are
classified by their function, and relations between them
and other objects are marked up with standardized or
machine-actionable vocabularies.

It is a crucial observation that documents at the higher
levels can easily be transformed into documents at the lower
level, while transformations up the hierarchy currently require
human intervention and can only be automated heuristically,
e.g. by optical character recognition (OCR) from 1. to 2.
and computational linguistics from 2. to 3. Also note that
computer support for access, aggregation, re-use, application,
and verification is (largely) restricted to the semantic level,
except for relatively shallow information retrieval methods.

Efforts are currently under way to digitize and possibly
OCR large parts of the published mathematical literature and
turn them into generally accessible “Digital Mathematical
Libraries”. We claim that the digitization/OCR effort should
be complemented by a flexiformalization effort that makes
the DMLs semantically accessible and turns mathematical
documents into active documents. This manifesto makes a
concrete proposal on how to deal with STEM documents at
the semantic level.

II. FORMALITY?, INFORMALITY?, FLEXIFORMALITY!

As all machine support is based on syntactic manipula-
tions (until we achieve artificial intelligence) we need some
formalization if we want to enlist computers in mathematics.
Machine support in mathematics and STEM is advantageous,
since humans and machines have complementary strengths and
weaknesses. Humans have unmatched abilities in exploring



mathematical theories while developing deep insights into
the key properties and inherent invariants, which allow them
to conjecture key statements and drive proofs via accurate
intuitions. Machines excel at systematic analysis of large
structures – e.g. for verifying large and convoluted proofs or
indexing large datasets for search. We claim that mathematics
research and application will be strongest, if we employ a
combination of human and machine strengths. In particular,
machine support will allow us to break the one-brain barrier
of STEM research and application – to progress and make
connections, all relevant knowledge must be co-located in one
brain.

To start off our discussion, we recap the notions of formal
informal representations in mathematics.

A. Formality

Since the foundation debate in mathematics almost a century
ago, “formal mathematics” has been defined as comprising
reifications of mathematical knowledge expressed in a “formal
system”, i.e. in a well-defined logical language with a syntactic
proof system, where grammaticality of expressions and the
verification of proofs is decidable. Moreover, formal systems
are usually expected to have a well-defined model theory, into
which expressions interpreted compositionally.

Formal developments of mathematics fix a foundation: a
logical system L and a foundational theory F , e.g. first-
order logic with descriptions and ZFC set theory. Based on
this foundation, mathematical objects are specified via axioms
and/or definitions (special L-expressions), and their properties
stated in form of “assertions” (L-expressions again) which
are justified by proofs (again L expressions; we assume L
to contain a proof system).

These concepts were developed in Hilbert’s “Formalist
Program” which established that all of contemporary math-
ematics could in principle be formalized in first-order logic
and axiomatic set theory (the commonly accepted foundation
of mathematics). Contrary to the aim of Hilbert’s program, it
was also established that foundations cannot be complete (all
valid statements can be proven in L) and no foundation can be
proven consistent – inconsistency would render all statements
true and the foundation useless. These foundational constraints
notwithstanding various foundations of mathematics1 have
remained empirically without contradictions for almost a cen-
tury.

Note that we can also view programming languages as
foundations for mathematical objects, they also provide base
vocabularies for expressing mathematical objects, but favor
operational aspects of meaning over set-theoretic models and
apply these to the automation of simplification and com-
putation rather than that of inference and entailment. The
last decades have seen the development of foundations that
integrate computation and inference in a single foundation;
the calculus of inductive constructions [BC04] is a particularly

1Note that foundations need not be first-order set theories, but can be type
theories (often constructive) or based on category theory.

influential example that integrates computation into construc-
tive logic and the SPAD/Aldor [JS92] one that integrates
axiomatics into computation.

B. Informality

In the sense above, almost all mathematical documents are
informal in at least four ways:
I1. The foundation is unspecified: mathematical documents

usually leave the foundation open.
I2. The language is informal: mathematical vernacular is a

mixture of natural language with formulae and discourse-
level cues on the epistemic status of text fragments (def-
inition, theorem, proof, etc.). This is informal, as we
do not have decision procedures for grammaticality or
interpretation.

I3. Even formulae are informal: as they are in presen-
tation markup that specifies the layout, and not the
logic/functional structure of the mathematical object or
property represented. For instance f(a + b) could denote
the application of a function f to the sum of a and b or
the product of a scalar f with a+ b.

I4. Context references are underspecified: mathematical ob-
jects and concepts are often identified by name without
making the references to context explicit. This applies
both to the natural language part, the formulae, and at
the statement level (citations of definitions, theorems, and
proofs).

In a world, where mathematical documents are exclusively
addressed at human readers, all of these informalities are fea-
tures, not bugs, since they avoid spurious over-specifications
(e.g. most foundations are essentially equivalent, and most
arguments can be formalized into most foundations). The
mathematical community has developed the standard of “rig-
orous developments” for the subset of documents that could
be formalized in some foundation given enough resources.

But this underlying assumption of formalizability is almost
never consummated in practice, even though (as we have
argued above) this would be the prerequisite of machine
support. We claim that there are two main reasons for this:
P1. The services of symbolic software systems have largely

been restricted to
• symbolic computation, which restricts itself to the ma-

nipulation of (representations of) mathematical objects
and largely ignores the levels of statements and theo-
ries, and

• proof verification, which fixes a solved problem –
peer review works for all relevant mathematical results.
Verification of safety-critical systems, whose properties
can be expressed as mathematical statements and whose
proofs are non-intuitive and massive in size are a
different matter. There, formalization and machine-
support in proof-construction and -checking is already
industrial practice.

In both cases formalization poses a problem as it becomes
a difficult problem to decide whether the formalization
corresponds to the initial, informally given problem.
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Fig. 1. Full Formalization vs. Flexiformalization

P2. In particular, the significance of proofs in mathematical
documents is two-fold: they not only act as a certificate
for validity, but first and foremost as form of commu-
nication about the key properties and inherent invariants
of the mathematical objects in question (see [Asp12] for
a discussion). In fact the proofs are the main triggers of
determining these properties and invariants.

P3. The situation is compounded by the fact that formality
is an all-or-nothing property, so formalization is a big
investment since it has to overcome at least the four
sources of informality shown above.

To solve P3, we need to develop a notion of graded formal-
ity, which allows multi-dimension, stepwise formalization, so
that instead of having to fully formalize documents in one long
jump documents can be incrementally made more formal to
the desired level in a step-by-step process possibly involving
multiple players (see Figure 1). But note that Pi are inter-
related; we will discuss them in the next two sections starting
with the last, since it is the most fundamental.

III. FLEXIFORMALITY

In [KK11] we have introduced the concept of flexiforms
for representations of mathematical knowledge of flexible
formality, and the concept of flexiformalization for any act
of disambiguation by explicit markup.

We take the ‘meaning’ of a document to be the set of all of
its possible formal representations. But even the space of fully
formal reified mathematical knowledge is large and difficult to
grasp — it contains all well-formed expressions in all logics,
so we conceptualize it as a two-dimensional space F: Let L
be the set of all logical systems, then the space F of formal-
izations can be constructed as F := {〈L, e〉 | e ∈ L ∈ L}, and
any formal representation as a point in F.

We consider documents as underspecified representations
of formalizations, so for any document D, there is a set
I(D) ⊆ F it could be formalized as. Note that I(D) is non-
empty, since we postulate documents to be formalizable (in
principle) and indeed I(D) is usually quite large, since even
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Fig. 2. Stepwise Flexiformalization of Documents

rigid mathematical documents omit many aspects and details
of the formalizations. In particular, mathematical objects can
be formalized in different logics, and in a given logic as
different expressions — these include different concretizations
of the concept as well as logically equivalent formulations of
a concretization.

In Figure 2 we have depicted the space F as a plane on
the right hand side, and alternative sequences of documents
with their interpretations depicted as cones based in F. We
understand this sequence as a stepwise flexiformalization pro-
cess, beginning with a document D. In our example, each
successive formalization step will fix certain formal aspects,
restricting the set of possible formalizations further and further.
Following this intuition we can define that a document D is
more formal than D′ (write D′ ≪ D), iff I(D) ⊆ I(D′).
This relation on documents and objects is a partial ordering
relation (because the subset relation is) and provides an answer
to the question of graded formality raised above. Fragments
of a document D correspond to sub-formalizations of I(D),
so we can extend the ‘more formal than’-relation to document
fragments and the objects of formalization.

IV. SEMANTIC SERVICES

To judge possible machine support for STEM research and
application we need to realize that many services do not
require full formalization (as computation and verification
do in P1). For instance, screen readers for mathematical
documents only require presentational markup of formulae,
definition lookup (see below) or formula search only content
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Fig. 3. Functionality of Flexiformal Services

markup2, and management of change an explicitly represented
dependency relation. The full situation is probably best under-
stood in terms of the diagram in Figure 3, where we graph
the functionality of services against the level of formality of
the documents/knowledge representation they act on. Semantic
search can give a high return even on relatively informal
documents. For instance the DBPedia system [Aue+07] gets
by with screen-scraping Wikipedia fact boxes – here the
systematic arrangement in the fact boxes serves as a kind
of formalization from which RDF triples can be harvested,
which can be used for querying via description logic inference
systems. At the far other end of the scale we find systems like
Wolfram Alpha [Wol], which is based on a full formalization
of various knowledge sources in the Mathematica language3

and can give answers that combine complex computations
with chaining inferences. For change management, the sit-
uation is similar, but less pronounced, since any non-trivial
method needs an explicitly represented dependency relation, so
methods range from industrial requirements tracing [Jar98] to
automated change management techniques in formal methods,
e.g. [Aut+00; IR12]. On the other side of the (imaginary)
diagonal of Figure 3 we have proof search and proof checking,
where – somewhat counter-intuitively – the latter has a more
convex gradient since proof search only requires the formali-
zation of the conjecture, whereas in proof checking the proof
has to be fully formalized as well.

V. ACTIVE DOCUMENTS, SEMANTIC LIBRARIES

To enable an optimal collaboration between man and ma-
chine, we need at the same time to keep close to established
workflows of mathematicians and give algorithms the explicit
representations needed for computation. For the first goal we
want to keep traditional documents as “user interfaces” and

2in the sense of content MathML [Aus+10, Chapter 4] and Open-
Math [Bus+03], i.e., semantic annotations of the functional structure of
formulae and disambiguation of symbols by reference to their definition

3A task worth hundreds of person years carried out over the better part of
a decade.
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augment them with embedded services that activate the content
for interaction and adaption (we call such enhanced documents
active documents). Whereas the documents themselves are
essentially tree-structured, the knowledge reified in them is
best structured as a hypergraph, where the nodes are math-
ematical objects, statements, and theories, whereas the edges
are given by the content-structural relations among them – e.g.
the “inheritance” and “views” relations between theories, the
“justification” of theorems by proofs, and the “dependency”
of new concepts on the concepts in the definienda. We call
such a hyper-graph structure the Content Commons, since
we envisage it as a shared, communal resource.

In the Active Documents Paradigm (ADP see Figure 4
for an overview and e.g. [Koh+11] for details) both structures
are read by a document player: a software application that
generates document presentations that are instrumented with
controls for user interactions (the active documents). It is
crucial for the ADP that the documents are semantically
annotated (we call them semantic documents), usually by
classifications of text fragments and references into the content
commons that serves as an explicit semantic context. For
instance, symbols in formulae or technical terms in a text could
be linked to rigorous definitions; the link is an example of a
formalization of the informal context references discussed in
clause I4 above. Having such formal links directly translates
into an active-document service: “definition lookup”, which
displays the definition induced by a click (or hover) on the
symbol or technical term and invites the reader to explore the
context from the definition.

We call a collection of semantic documents together with
a content commons a semantic library and remark that
active documents only make sense as members of semantic
libraries. Semantic libraries can arise in multiple ways and
depths (of formalization). One example is the OSCAR3 sys-
tem [CMR06], a tool for shallow, chemistry-specific parsing
of scientific documents which attempts to identify chem-
ical names, ontology terms, and chemical data and aug-
ments documents with links and elaborations. The Science-
WISE [ScW13] project system is similar, but concentrates
on semantic navigation via ontology relations and crowd-
sources the semantic annotations. A math-oriented approach



is to analyze digital mathematical documents and recover
semantic structures, e.g. by transforming LATEX documents into
HTML5, transforming the relations given in the functional
LATEX markup into RDFa annotations which can then be
harvested into a content commons realized as a triple store
(RDF database); see [Sta+10] for details and [Gin+09] for
linguistics-based analysis methods. On the other side of the
flexiformality spectrum are presentation workflows that start
from completely formal representations and generate semantic
documents from that: For instance, the Mizar Mathematical
Library [MizLib] – which contains over 1000 “articles” with
over 50000 theorems and over 10000 definitions – is published
in the Journal of formalized Mathematics (JFM [JFM]). JFM
articles are generated from formal “Mizar articles” in an
automated presentation process;the JFM still misses out on the
chance to make them active, but the Mizar Wiki [Urb+10] does
not. Our group has developed the Planetary system [Koh+11;
PDF], a generic active document player that can be instantiated
to all levels of flexiformality.

VI. AN ACTIVE, SEMANTIC LAYER FOR STEM LIBRARIES

Mathematical documents are at the same time i) precision
tools optimized for the efficient communication of mathe-
matical knowledge among specialists who share a common
knowledge context and ii) formidable obstacles to be overcome
to build up this shared context which is a prerequisite for
understanding. The understanding problem is aggravated by
the fact that mathematical knowledge has been growing ever
more diverse and intricate over time. The current digitization
efforts (e.g. EuDML [Eud] and Google Books) go a first step
towards wider adoption of mathematical knowledge by provid-
ing universal access to the mathematical literature. With the
emerging technologies of flexiformal, semantic libraries and
active documents, we have a way to make the mathematical
literature more accessible to non-specialists4, by giving access
to crucial aspects of the context at the “points of pain” (i.e.
in the documents) at the cost of partial flexiformalization
of technical documents and the establishment of a content
commons.

This already reveals the main non-technical problem in-
volved in semantic mathematical libraries: unless there is an
initial investment into a core content commons to link into,
the cost of semantic annotation of documents outweighs the
benefit from active documents. We claim that by an act of
technology adoption by a major player (a professional society,
charitable foundation, funding agency, or major publisher),
we can achieve method standardization and a critical mass
of content that kickstarts active mathematical documents and
semantic libraries. There is precedent in this: a bold (at the
time) move of the AMS of requiring TEX/LATEX in its jour-
nals brought about the improvement in mathematical/scientific
typesetting we still profit from by setting a standard and
creating critical mass of know-how and tools. We conjec-
ture that the induced network effect will lead to widespread

4and we are all non-specialists for most of mathematics

flexiformalization5, and that we will see additional synergy
effects, such as the following one: As soon as a larger body
of mathematical theories becomes available (by marking up
concepts and axioms) we can automatically search for “views”
(aka. representation theorems) that allow to import all the
theorems of the source theory of the view into the target
theory (after translation with the view’s signature morphism).
We conjecture that systematic automated search will reveal
many long-distance views that could not have been found
otherwise, as the chance that humans know source and target
theories well enough to notice the structural similarities (a
one-brain constraint) is slim in today’s highly specialized
sciences. Methods for this search exist [NK07], we only lack
the semantic libraries.

In conclusion we can state that the relaxation of the black-
and-white distinction of formality and informality to the
flexiformality continuum opens up considerable opportunities
for machine support in STEM research and applications. The
flexiformalist manifesto suggests three concrete steps to reap
these benefits: i) foundational research in the concept of
flexiformality, ii) joint representation formats and tool stacks,
and iii) a large case study to evaluate applicability and practical
utility of flexiformalization. We have already seen first steps
in all three directions, and propose flexiformalization as an
exciting and integrating topic of meta-scientific research.
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