
Maintaining Islands of Consistency
via Versioned Links

Andrea Kohlhase
Jacobs University Bremen

Campus Ring 1
28759 Bremen, Germany

a.kohlhase@jacobs-university.de

Michael Kohlhase
Jacobs University Bremen

Campus Ring 1
28759 Bremen, Germany

m.kohlhase@jacobs-university.de

ABSTRACT
One of the core tasks of technical communication and knowl-
edge management is maintaining the internal and external
consistency of document collections. The design of (techni-
cal) communication infrastructures has to take this into ac-
count from the start. Consistency of static collections is en-
forced by format constraints (e.g. specified in a schema and
validated grammatically). Recently, consistency in mutable
knowledge collections can be supported by change manage-
ment systems, that draw on specified semantics for know-
ledge objects and their relations. But even with machine
support a seemingly minor change can easily cascade into
a major adaptation task. In this paper we argue that the
practice of maintaining “islands of consistency” in mutable
knowledge collections can be supported by versioned links:
Links as first-class elements defined by a triple of versioned
elements (subject/predicate/object). The main idea ex-
plored here is that changes need not be propagated to linked
elements, if those still reference the originally linked object.
With this concept a major adaptation task can be put un-
der user-friendly impact management. We give a model for
versioned links that is easy to embed in existing systems
and show how this concept supports impact management
workflows.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Documentation, Theory, Management

Keywords
Change Management, Consistency Management, Knowledge
Management, Links, References

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGDOC’11, October 3–5, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0936-3/11/10 ...$10.00.

1. INTRODUCTION
The generally accepted model for knowledge management

(KM) assumes that explicit knowledge is represented in some
form of document collections, which we will call knowledge
bases. These knowledge bases range from a project’s col-
lection of documents in various formats as used in [13], over
semantic DITA [5] files, to organizational wikis as suggested
in [19]. It is an implicit assumption that each knowledge
base K is consistent, i.e., satisfies validity conditions of the
representation format and additional semantic conditions.
In particular, knowledge inKmay not lead to contradictions.
In a semantic format like DITA some of the integrity condi-
tions involved in determining consistency may be expressed
in K in the form of links between document fragments. In
contrast, a knowledge base K is a correct description of a
situation S, iff all statements that can be derived from K
hold in S. The consistency assumption for K is largely in-
dependent of the notion of correctness, since it cannot be
defined as a property of K alone. Clearly, correctness is a
very strong desideratum for a knowledge base, but consis-
tency is a precondition, since inconsistencies in K render the
very notion of correctness and must therefore be maintained
at all times.

However, knowledge management processes naturally in-
volve changes — either because the situation S changes or
to improve correctness and/or completeness. Changes can
range from addition of new material, over correction of errors
and refactoring of concepts, to formalization, and deletions
(see e.g. [11]). In the presence of the validity and semantic
constraints mentioned above, even small changes may in-
duce the necessity to adapt other (related) knowledge items
(possibly in other documents) to restore consistency. This
process can cascade a seemingly minor change into a major
adaptation task. As a consequence the KM community has
developed elaborate mechanisms for “change management”
to maintain consistency. These make use of the fact that
semantic formats often explicitly represent the relations be-
tween objects to compute related objects and predict the
way changes affect them; see [12, 15, 3] for recent progress
in this field.

But even with such systems in place, establishing consis-
tency after each change in the collection remains a daunt-
ing prospect, which we will elaborate on in Sect. 2. To
enable the conservation of consistency within typical work-
flows nevertheless, we explore in this paper the new concept
of ‘versioned links’ (introduced and discussed in Sect. 3).
We assume that document collections are stored in a revi-
sion control system as a concession to change, inducing a
notion of ‘versioned object’. Next we elevate the relations

between versioned objects to first-class citizens and obtain
versioned links as triples (subject/predicate/object) in
Sect. 3. Naturally, they are versioned as well, so that links
and their components carry an independent revision num-
ber. The main idea explored in this paper is that changes
need not be propagated to linked objects, but can continue
to reference the originally linked object. Moreover, in Sect. 4
we argue along a DITA use case that versioned links are
closer to current authoring practices with “islands of consis-
tency” that allow for a more flexible change management in
actual workflows. Sect. 5 concludes the paper.

2. CHANGE MANAGEMENT AND CONSIS-
TENCY

Change management (CM) comprises all the knowl-
edge management tasks that are concerned with the con-
sequences of modifications, particularly with respect to the
consistency of the underlying knowledge base. For the pur-
poses of this paper we assume that it is organized in three
recursively applicable (and possibly empty) phases:

Change Impact Analysis (CIA) For a given change of
an artifact A, a change impact analysis draws on de-
pendency information for artifacts and results in a set
of affected items. A CIA may be used for multiple
purposes. For example, it can be consulted in order
to assess the acceptability of a change by predicting
the size of its impact (e.g. with a change propagation
index as in [8]). This becomes relevant e.g. in soft-
ware production or migration. Other purposes consist
in acting on found impacts via impact management
processes.

Automatic Impact Management builds on propagation
rules and change patterns afforded by the underlying
ontology and can be automatically executed by the
system. Note that distinct underlying ontologies sup-
ply different relationships between objects and thus
distinct notions of dependency.

Manual Impact Management Here, the user decides for
each potentially affected object found by the CIA whe-
ther they need to be modified or not. This process
needs to be supported by the system and user inter-
faces to be feasible in practice, e.g. with services that
present the relationships leading to this point as in [6].

Typically, a change management process performs a CIA for
an artifact first, then an automatic and thereafter manual
impact management are applied iteratively on the CIA data
(see for example [9, 175ff.]). Note that links are made heavy
use of, but it is not clear what happens if a link itself was
changed: Is the CIA based on the old or the new link or
even both links? We see directly that change management
for links as versioned objects is not sufficient, they rather
need to be treated as first-class objects. The process by
which a change of an artifact yields sequential changes (as
well as its product) is often called propagation of change
in the literature (e.g. [9, 8, 3]).

To get a feeling for the consistency issues involved con-
sider a document collection K of DITA files, which formalize
the scenario “Getting Ready for the Day” as in Fig. 1. In
particular, there are concepts coffeeMachine, and coffee,
which are used in a task morningProcedure, that describes
the suggested procedure for getting ready for the day.

In Fig. 2 we consider three changes with distinct propa-
gation consequences:

• “id” changed: Here, we consider the case where an
author of K changed the value of the id attribute
of the concept coffeeMachine e.g. to “coffeeMaker”.
Then the change results via an automatic impact man-
agement in automatic updates from all references to
coffeeMachine to coffeeMaker. This process of au-
tomatic propagation yields a consistent document
collection.

• “link” changed: Now, let us look at the consequences
if the related link (in the concept coffeeMachine)
to the Wikipedia entry for “Coffeemaker” http://en.
wikipedia.org/wiki/Coffeemaker is changed to“Cof-
feepreparation”. The automatic impact management
can determine that changes in related-links do not
have consequences for tasks using the changed con-
cept, but it cannot decide automatically whether the
corresponding linktext element needs to be updated
or not. Here, we speak of semi-automatic propaga-
tion, which leaves K in a possibly inconsistent state.

• “xref” changed: Finally, we envision a modification
of the reference to the concept coffee within the con-
cept coffeeMachine to a concept decaf. This means
that the coffee machine is modified into a decaf ma-
chine, which might have consequences for the task mor-
ningProcedure. Moreover, the informal descriptions
within conbody might also need to be adapted. Here,
the author herself has to decide on necessary updates,
that is a manual propagation of change is asked for.
As the state of K is unclear, it may or it may not be
consistent.

Note that impact management can easily become more
and more complex as new change events are triggered by
propagated changes. In general, there are the following con-
cerns about change management of collections:
• Most changes are rather informal (i.e., concerning in-

formal text “tweaking a bit here and there”) and must
be treated manually (automation would be an AI-hard
problem). As a consequence the triggered (manual)
impact management cascade can easily outgrow the
user’s cognitive limits: Giffin et al. reported for ex-
ample a maximum of 2579 linked changes [8, p. 16]
in a Software Engineering study over an 8-year course.
Fortunately though, they found “the majority [. . . to be

. . .] comprised of less than 10 changes”.
• Even in formal systems rules for automatic modifica-

tion after certain types of change are hard to conceive.
• Automatic impact management might be explicitly ob-

jectionable in many workflows ; for instance, in cooper-
ative mathematical processes different (e.g. evolving)
assumptions in theorems occur frequently and have
distinct consequences. Thus a global consistency may
be cumbersome and even harmful in the creative pro-
cess. An author might willingly commit an inconsis-
tent document collection, as long as the document in
question or some part of it stays consistent, and global
consistency can be achieved for publication.
• Storage with version management alone does not make

consistency management tractable if commit policies
assume semantic validity requirements. In [13] for ex-
ample we resorted to a relaxed formalization tool to

Figure 1: Our CIA Scenario in DITA Format: “Getting ready for the day”

overcome consistency requirements in early develop-
ment phases.

This leaves us with the questions where consistency man-
agement has its rightful place in collection workflows, and
what a sensible scope of it would be. We recommend that
this should be left to the user; the next section provides us
with the necessary tools.

3. CHANGE MANAGEMENT WITH
VERSIONED LINKS

We have seen that inconsistency issues often arise because
changes in one place in a knowledge base K affect linked ob-
jects in other places, which if adapted to the original change
trigger affects at yet another set of linked objects in yet other
places in K and so on. The idea for improved handling of
changes is that changes need not be propagated to linked
objects if the original link itself continues to exist. Instead
of resolving links late, i.e., resolving links according to cur-
rent objects, one can resolve links early, i.e., resolving links
according to the objects one started out with.

Termed this way, one can see easily that the technique of
“late binding” (also called dynamic/name binding) in pro-
gramming languages in Software Engineering, where the me-
thod being called upon an object is looked up by its name at
runtime, is used in a similar situation. Indeed, it comes with
similar problems of inconsistencies, which often lead directly
to compiler errors. There, late binding problems are treated
e.g. by links to versioned packages. Packages are collections
of inter-related files intended for re-use in other packages,
their internal references are kept in sync. When a new ver-
sion of a package is released, dependent packages may be

ported to it. In the packages approach links are treated
as package metadata and deployment problems are miti-
gated by specialized package management systems building
on this metadata. The introduction of versioned links to a
document collection K can be seen as a carry-over of a late-
binding-problem solution developed in Software Engineering
extended by a finer granularity.

Concretely, we suggest to make use of two facts: i) Revi-
sion control systems (RCS) give access to old revisions, in
particular, access to objects in old revisions to which other
objects are consistently linked.1 ii) The advent of versioned
query interfaces like [21, 7] enable access to versioned ob-
jects. In particular, the (platonic) concept of “the” object
with identifier O is refined to the set of (concrete) objects
O with distinct revision numbers, therefore links can point
to such versioned objects.

To make the discussion more precise, we will now define
the concepts involved more formally, starting out with a
simplified version of the notion of fs-trees and version control
systems developed in [15], which we will review now.

3.1 fs-Trees and RCS Repositories
We will use fs-trees as a unifying notion of file system

trees and semi-structured (XML) documents that abstracts
from particular file system implementations and encodings.

In a nutshell, an fs-tree is an ordered, typed, labeled tree,
whose edges are labeled with (directory/element) names and
its leaves with strings (which either correspond to text files

1In this paper we assume a concept of global revisions as
employed e.g. in the Subversion system [17]. There, any
commit to the repository increments the revision number.

Figure 2: Change Management and Consistency

or text nodes in XML)2. The node types distinguish nodes
into directories, files, XML elements, and XML attributes,
and carry constraints that make them faithful models of file
systems and XML files.

The main property we will use in this paper is that any
node/subtree in an fs-tree T can be addressed by a unique
name path, i.e., a sequence π = a1/ · · · /ak of names ai.
We write T /π for the fs-subtree of T rooted at π. Note
that for a given fs-tree T , a subtree T /π is either a direc-
tory, a file, or an XML fragment/subtree. Note furthermore,
that name paths in fs-trees directly map to (file) URIs with
XPath fragment identifiers. Thus any name path π is of the
form δ/ρ, where δ is a directory path (i.e., a name path
where all names are directory names) and ρ is a fragment
identifier (i.e., a name path, where all names are XML
element names).

If we denote the set of all fs-trees by FS, we can rep-
resent a version control repository as a partial function
R : N ⇀ FS that maps revision identifiers (without loss
of generality an initial segment of N) to fs-trees. For a repos-
itory R and n ∈ dom(R), where dom(R) is the domain of
R, we call the fs-tree R(n) the revision n of R; this notion
extends to fs-subtrees: We say that a subtree of R(n) is at
revision n. Finally, we say that D is a document in R, if
D = R(n)/δ for some directory path δ and revision n.

Given this vocabulary, the correspondence to knowledge
management in the large can be seen as in Fig. 3. We employ
repositories to model the development of document collec-
tions over time, where the collection K at a concrete time
point corresponds to a revision R(n) of the repository R,

2The original fs-trees had the notion of symbolic links and
repository externals which we do not need here.

and document collections, documents, and objects are real-
ized as fs-tree fragments (subtrees of the revision) R(n)/π.
From now on we will use the concepts in Fig. 3 modulo the
correspondence relation given by the dotted lines.

Document Collection over time

Document Collection K

Document D

Object O

Repository

Revision

Fragment

R

R(n)

R(n)/π

Figure 3: A Realization of Document Collections
over Time

3.2 Versioned Links
Before we can define the concept “versioned link”, we need

to think about the status of links in semantic representation
formats.

Definition 1 Let T be an fs-tree, then we define an (un-
versioned) link in T to be an RDF triple (see [14]) where
subject, predicate, and object are name paths in T . We
distinguish intra-document links, where subject and ob-
ject are in the same document, from inter-document links
where they are not.

For the time being we will disregard links outside of a doc-
ument collection K = R(n) for some n; as all practical re-
vision control systems encode file paths as URIs, our notion
of links is a special case of RDF triples, if we assume that
the predicates are documented in the collection, which we
can without loss of generality.

The set of links induced by a document collection K is
determined by the representation format of the documents
in K. Instead of making this formal, we will appeal to the
intuition of the reader by giving some examples:

i) conref links in DITA files induce document links for a
predicate “input”, which tells the formatting engine to
replace the value of its href attribute (which resolves
into a URI to a specific DITA object) with the title of
its object.

ii) Similarly, \input statements in TEX/LATEX induce doc-
ument links for the predicate “input”, which tells the
formatting engine to replace \input{〈〈fileURI〉〉} with a
file referenced by 〈〈fileURI〉〉.

iii) 〈〈label〉〉 in HTML in-
duces a link for the predicate “display”, which tells the
browser to display the fragment referenced by 〈〈URI〉〉
in the browser when the user left-clicks 〈〈label〉〉 (details
specified by 〈〈attribs〉〉).

Note that all of these links rely on name paths in K (realized
as URIs) for identification of resources (nodes in K). Note
furthermore, that all of these induce links whose predicate
is pre-determined by the document format, i.e., given by the
special syntax and induces a URI referencing a relation from
the document ontology and whose subject is the resource
containing the syntax that induces the link. We will call
such link-inducing syntax in a format F an F-reference.
Even though F-references dominate in semantic formats, we
will also cover proper links represented in any RDF repre-
sentation format; they sometimes exist as standoff markup
in KM systems.

Let R be a repository, n ∈ dom(R) a revision identifier,
and π ∈ R(n) a name path, then we call a pair 〈π, n〉 a
versioned name path in R. Note that 〈π, n〉 identifies a
resource in a repository R. Building on this, we can finally
define the concept of a versioned link.

Definition 2 For a given repository R we call an RDF
triple a versioned link in R, iff its subject, predicate,
and object are versioned name paths in R. Versioned
F-references are defined accordingly. We distinguish ver-
sioned links into inter-revision links/references, iff they
involve at least two different revisions, and intra-revision
links/references otherwise.

The purpose of versioned links and references is to avoid
situations, where the meaning or functionality of an object
changes unintentionally due to a change in an object it ref-
erences; e.g. a mathematical theorem may be invalidated, if
the definition of a concept it uses is changed. Intuitively, a
versioned link to the definition insulates the theorem against
the change.

Note that versioned links generally involve four revisions:
The revisions of the subject, predicate, and object as
well as the revision of the link itself (e.g. given by the revi-
sion of the file that contains the representation of the RDF
triple). For versioned F-references this revision variety is
restricted by their special syntactic structure. In particular,
the revisions of subject and link are necessarily identical,
and the revision of the predicate is given by the format F ,
it is therefore uniform over the document. Note that this
observation has an implication on the design of document
formats: If we want to escape the version identifications of
links, we need to use standoff links.

Versioning systems usually reserve a special, intensional
“revision identifier” for the respective youngest revision (cal-

led the head revision and denoted with ↑). Therefore, we
define a versioned name path as head path, iff it is of the
form 〈π, ↑〉 for some name path π. To formally differentiate
between versioned and unversioned links, we call a versioned
link a head link, iff all of its three versioned name paths
are head paths.

Wikipedia, for example, uses an underlying versioning sys-
tem. It strongly advises using versioned references for citing
articles (see [20]), on the other hand all links between ar-
ticles are head links. To understand the advantages and
disadvantages of using versioned links, we discuss and ex-
emplify workflows with and without versioned links in the
next section.

4. ISLANDS OF CONSISTENCY WITH
VERSIONED LINKS

Consider the following situation: Author Mike of the“Get-
ting Ready for the Day” DITA scenario (Fig. 1) wants to
update morningProcedure.dita to reflect his personal habit
change from brewing only real coffee in the morning to also
brewing decaf for his girl-friend. He realizes that the con-
cepts in file HotDrinks.dita do not yet distinguish between
coffee and decaf. He modifies the concept coffee to in-
clude only ‘real’ coffee and adds a concept coffee-generic
to hither relink all present coffee references (see Fig. 4 in
the propagation phase). The transformation of concerned
links into versioned links means, that these links are frozen
to point at the object versioned last. Without the use of
versioned links, the whole set-up is now inconsistent as the
relinking changes are not yet propagated to morningProce-
dure.dita. Note that consistency restraints (with respect
to reality reflection wrt. Mike’s changed habit) were fulfilled
before the refinement. If Mike were in a hurry now and if
he thus checked the file into a version management system,
then this inconsistency were manifested which might yield
consequences for collaborators. But let’s say, Mike still has
time to follow up on consequential changes.

The change impact analysis (if present and enabled) re-
turns a list of potential conflict locations. In this small ex-
ample the CIA already contains the concept coffeeMachine
in HotDrinks.dita, the keydef element coffee in morning-
.ditamap, and a conref element in morningProcedure.di-
ta. For use of DITA Priestley suggests to “factor out any

context-specific elements” [18], which is practically done by
using a DITA map for defining keydef and the (keys/href
attributes in the) topicref elements to contain context-
specific information and to reference hither from everywhere
else. To achieve broadest possible consistency Mike thus
starts propagating the change with modifying the keydef
element in morning.ditamap. Note that he probably over-
sees that term elements are only interpretation help for a
locally set string (here: “coffee”) and therefore need further
attention to keep consistency. If this new change triggers
a new CIA yielding a list of all parents of affected term
nodes, then transforming them into versioned links would
allow Mike to work the remnant propagation requirements
first. Again, without versioned links Mike has to hope that
he can finish the entire propagation before check-in into the
version management system, otherwise he starts to manifest
rather complex (i.e., more and more dependent and inter-
related) consistency issues. We also like to point out, that
without versioned links the original CIA needs to include all
potential subsequent changes as it is supposed to show the

Figure 4: Our CIA Scenario 1 with Propagation of Change (marked grey)

impact of a change. Therefore, the use of versioned links
reduces the overall-complexity of changes to a step-by-step
complexity. This propagation would have been easier for
Mike, if he had consistently used conref elements for refer-
encing as the resp. string is generated from the title of the
link target. Here, he will realize only after controlling all
the items found by the second CIA, that no further change
is needed. Generally, we envision that using CIA as a tool
will drastically change DITA best practices.

Before Mike started the whole process, he talked about
his plans to Andi by which Andi was motivated to create
her own morningProcedureAndi. As the communicated idea
was to refine the old generic concept coffee to a new specific
concept coffee and otherwise to relink coffee references to
coffee-generic ones, she assumed the concept coffeeMa-
chine to become generic as well. Therefore, in order to write
her own task, she added the concept decaf to HotDrinks.di-
ta and copied and modified the original task morningPro-
cedure accordingly into morningProcedureAndi. Unfortu-
nately, Mike thought it obvious that with the refinement of
coffee comes along the refinement of coffeeMachine. If he
has not transformed the links of his first CIA into versioned
links (updating her task document by that), this misunder-
standing now hinders collaboration on the document collec-
tion as the concept coffeeMachine is used inconsistently in
Andi’s task. Unfortunately, if Andi is authoring her refer-
ence after he refined coffee, then the misconception might
live on anyway.

To sum up, versioned links allow new, much more flexible
workflows. In particular, the complex recursive propagation
of change becomes time- and order-independent.

4.1 Islands of Consistency
This example exhibits many typical aspects commonly

found in the human, informal development and change pro-
cess of technical documents. Conceptually, we can divide
this into two phases:

• Knowledge Exploration In this phase knowledge
items are created, In particular, concepts are formed
and put down in definitions, conjectures about the con-
cepts are proven, and local narrative structures that
motivate and connect all of these are established. Note
that the consistency of inter- and intra-document links
is not the foremost concern here.

• Codification Published knowledge, however, certainly
should aim for consistency. The exploration phase thus
is followed by a codification phase, when the practice of
reorganizing knowledge in documents to streamline the
elegance and beauty of arguments happens. In partic-
ular, in the codification phase documents are brought
into the form of a coherent document (collection) ad-
dressed at a particular audience.

Actually, in real life, document development and change
usually proceed in multiple phases, interleaving the explo-
ration and codification phases, gradually shifting emphasis
from the former to the latter, and from local codification
to global coherence concerns, but the conceptual division
of these two phases remains useful. Even in the knowledge
exploration phase, a (possibly temporary) document form
is usually chosen to write down the knowledge items. Note
that in these “development documents”, global consistency
is usually not a primary concern in the early exploration-
heavy stages, since this is deferred to the codification phase.
In the middle phase of the document development and mod-
ification process, when concepts, definitions, and links start
stabilizing and attention shifts to detail and codification, we

observe that authors start establishing document fragments
that are internally consistent, but may be inconsistent with
other parts of the document collection under development.
We call such document fragments islands of consistency
and observe that much of the codification proceeds by en-
larging these islands and merging them until a globally con-
sistent document (collection) is reached.

We claim that humans implicitly use versioned links in
the development and change of technical documents, since
they allow us to organize consistency in mutable document
collections by fixing revisions and thus insulating against
the effects of changes in linked objects. In our elaboration
of the “Getting Ready for the Day” scenario, this was also
evidential. Explicit versioned links (as presented in Sect. 3)
enable the process of maintaining and developing islands of
consistency without time or order constraints. Additionally,
Haramundanis reports a new modularization paradigm for
the information engineer in [10]. This means in particular,
that the amount of links is dramatically rising and with it
the number of potential inconsistency issues. The under-
lying reason for this modularization is a growing need for
collaboration on document collections. We have outlined in
our use case how islands of consistency come in here espe-
cially handy.

But maintaing islands of consistency has hidden costs: It
introduces inter-revision links – which finally have to dis-
appear – in a document collection and thus weakens its co-
herence.3 Therefore, in a sense all what the introduction
of versioned links does is that it allows to move parts of
the problem of consistency management in the exploration
phase into one of coherence management in the codification
phase. In this respect versioned links are closer to current
scientific publication behavior where we almost only refer-
ence archival papers which never change. In particular, new
versions of publications are considered as distinct entities
with different “URIs”4.

5. CONCLUSION
We have presented the concept and practices of using ver-

sioned links as a tool for managing change in document col-
lections including knowledge repositories, particularly as a
tool for maintaining “islands of consistency”. Essentially the
introduction of versioned links allows to move parts of the
problem of consistency management in the exploration phase
into one of coherence management in the codification phase.
However, we contend that this allows for much more flexible
and natural workflows, and is thus well worth the (minimal)
effort in extending the representation formats to versioned
links.

We loosely built our discussion on the model of a cen-
tralized RCS like Subversion. At first glance, one may be
tempted to think that distributed RCS (DRCS) like Git or
Mercurial already support the “islands of consistency” prac-
tices versioned links are designed for (to get an overview
of their differences see e.g. [16]). Indeed, one can see and
use each local repository in a distributed network as such
an island, and the practice of pulling changes from local

3We could define/measure the “revision coherence” of a doc-
ument collection as the number of intra-revision links.
4In situations, where this practice is lax (e.g. in editions of
books), this has been known to lead to problems, see [4] for
an example, where the loci of branch cuts in definitions of
special functions vary between editions of [1].

repositories as a coherence management process. But note
that this approach only supports the equivalent of file-level
versioned links and is therefore too course-granular for tech-
nical knowledge which requires object-level links. Inciden-
tally, programming languages mainly support file-level links,
so DRCS fit the versioned packages development model in
Software Engineering. We conjecture that in this case, a
repository network is essentially isomorphic to a flattened
repository with versioned links. It seems possible to mimic
versioned links in DRCS, if we are willing to break apart
documents into object-size files using an inclusion technique
like XInclude, but this seems a larger intervention than the
introduction of versioned links we propose. We used the
centralized model in this paper, since we have the TNTBase
system [21], that offers efficient access to versioned XML ob-
jects, given a similar XML-fragment-access-enabled DRCS,
studying the interaction of versioned links with distribution
will probably lead to even more natural workflows.

In this paper we have defined the concepts and looked
into the workflows afforded by versioned links. The eventual
practicability of the extension will of course only become
apparent when versioned links are supported in editing and
knowledge management environments. For instance, editors
could have a configuration option that allows to specify the
default behavior when no revision is given, that is either we
assume head revision or the current revision. Similarly, the
underlying revision control system could be extended to au-
tomatically introduce versioned links; Consider a situation,
where an object b is referenced by an object c. In this case,
the RCS can change the head link in c to a versioned link
to b at the last revision before the change. It is easy to see
that versioning all such references to b conserves consistency.
This behavior is essential in multi-author situations, for ex-
ample, if the author of b does not have write access to c and
only its authors can propagate the changes to upgrade the
reference on c to b to a head link again. So in this case,
the RCS would probably notify the authors of c of a coher-
ence enhancement opportunity. For the codification phase
we wish for a coherence management module in editors. It
could step through inter-revision links and jointly present
difference-marked up versions of subject, predicate, or ob-
ject, for instance. Then it might offer the author the choice
between upgrading the link revision or copying the object.
For collective authoring situations in larger document col-
lections we could imagine a notification system for revision
updates.

6. REFERENCES
[1] M. Abramowitz and I. A. Stegun, editors. Handbook of

Mathematical Functions (with Formulas, Graphs, and
Mathematical Tables). Applied Mathematics Series.
National Bureau of Standards, 1964.

[2] ACM Special Interest Group for Design of
Communication. Proceedings of the 28th ACM
International Conference on Design of
Communication, SIGDOC ’10, New York, NY, USA,
2010. ACM Press.

[3] S. Autexier and N. Müller. Semantics-based change
impact analysis for heterogeneous collections of
documents. In M. Gormish and R. Ingold, editors,
Proceedings of the 10th ACM symposium on Document
engineering, DocEng ’10, pages 97–106, New York,
NY, USA, 2010. ACM.

[4] R. Corless, J. Davenport, D. Jeffrey, and S. Watt.
According to Abramowitz and Stegun. SIGSAM
Bulletin 2, 34:58–65, 2000.

[5] OASIS Darwin Information Typing Architecture
(DITA).

[6] DocTIP.

[7] G. Fourny, D. Florescu, and D. Kossmann. A time
machine for XML. Technical report, ETH Zürich,
Switzerland, 2011. available at
http://www.dbis.ethz.ch/research/publications/
timemachinexml.pdf.

[8] M. Giffin, O. de Weck, G. Bounova, R. Keller,
C. Eckert, and P. J. Clarkson. Change propagation
analysis in complex technical systems. Journal of
Mechanical Design, 131(8):081001, 2009.

[9] J. Han. Supporting impact analysis and change
propagation in software engineering environments. In
Proceedings of the Eighth IEEE International
Workshop on Software Technology and Engineering
Practice, pages 172–182. IEEE Computer Society,
1996.

[10] K. Haramundanis. Experience report: modularization
- the new paradigm for the information engineer. In
B. Mehlenbacher, A. Protopsaltis, A. Williams, and
S. Slatterey, editors, Proceedings of the 27th annual
ACM international conference on Design of
communication (SIGDOC), pages 151–154, New York,
NY, USA, 2009. ACM Special Interest Group for
Design of Communication, ACM Press.

[11] K. Haramundanis. Modularizing in glossaries: an
experience report. In Proceedings of the 28th ACM
International Conference on Design of
Communication [2], pages 131–134.

[12] D. Hutter. Semantic management of heterogeneous
documents (invited talk). In Proceedings of the
Mexican International Conference on Artificial
Intelligence (MICAI-2009), number 5845 in LNAI,
pages 1–14. Springer, 2009.

[13] A. Kohlhase, M. Kohlhase, and C. Lange. sTeX – a
system for flexible formalization of linked data. In
A. Paschke, N. Henze, T. Pellegrini, and H. Weigand,
editors, Proceedings of the 6th International
Conference on Semantic Systems (I-Semantics) and
the 5th International Conference on Pragmatic Web.
ACM, 2010.

[14] F. Manola and E. Miller. RDF Primer. W3C
Recommendation, World Wide Web Consortium
(W3C), Feb. 2004.

[15] N. Müller. Change Management on Semi-Structured
Documents. PhD thesis, Jacobs University Bremen,
2010.

[16] B. O’Sullivan. Making sense of revision-control
systems. Communications of the Association for
Computing Machinery (CACM), 52(9):57–62, 2009.

[17] C. M. Pilato, B. Collins-Sussman, and B. W.
Fitzpatrick. Version Control With Subversion.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2
edition, 2008.

[18] M. Priestley. Scenario-based and model-driven
information development with xml dita. In SIGDOC
’03: Proceedings of the 21st annual international
conference on Documentation, pages 45–51, New York,
NY, USA, 2003. ACM.

[19] F. Sousa, M. Aparicio, and C. J. Costa. Organizational
wiki as a knowledge management tool. In Proceedings
of the 28th ACM International Conference on Design
of Communication [2], pages 33–39.

[20] Wikipedia. Citing wikipedia — Wikipedia, the free
encyclopedia, 2011. [Online; accessed 05-Jan-2011].

[21] V. Zholudev and M. Kohlhase. TNTBase: a versioned
storage for XML. In Proceedings of Balisage: The
Markup Conference 2009, Balisage Series on Markup
Technologies. Mulberry Technologies, Inc., 2009.
available at
http://kwarc.info/vzholudev/pubs/balisage.pdf.

