THE UNIVERSITY OF BIRMINGHAM
School of Computer Science

Edgbaston, Birmingham B15 2TT, England

URL: http://www.cs.bham.ac.uk/

Mechanising Partiality without
Re-Implementation

Manfred Kerber and Michael Kohlhase

Published as: Proceedings of the 21st Annual German Con-
ference on Artificial Intelligence, KI'97, p.123
134, Springer Verlag, LNAI 1303

Mechanising Partiality without
Re-Implementation

Manfred Kerber! and Michael Kohlhase?

! The University of Birmingham, School of Computer Science
Birmingham, B15 2TT, England
e-mail: M.Kerber@cs.bham.ac.uk
WWW: http://www.cs.bham.ac.uk/ mmk

2 Universitiit des Saarlandes, FB Informatik
D-66041 Saarbriicken, Germany
e-mail: kohlhase@cs.uni-sb.de
WWW: http://jswuw.cs.uni-sb.de/ kohlhase

Abstract. Even though it is not very often admitted, partial functions
do play a significant role in many practical applications of deduction sys-
tems. Kleene has already given a semantic account of partial functions
using a three-valued logic decades ago. This approach allows rejecting
certain unwanted formulae as faulty, which the simpler two-valued ones
accept. We have developed resolution and tableau calculi for automated
theorem proving that take the restrictions of the three-valued logic into
account, which however have the severe drawback that existing theo-
rem provers cannot directly be adapted to the technique. Even recently
implemented calculi for many-valued logics are not well-suited, since in
those the quantification does not exclude the undefined element. In this
work we show, that it is possible to enhance a two-valued theorem prover
by a simple strategy so that it can be used to generate proofs for the the-
orems of the three-valued setting. By this we are able to use an existing
theorem prover for a large fragment of the language.

1 Introduction

Many practical applications of deduction systems in mathematics, philosophical
logic and computer science rely on the correct and efficient treatment of par-
tiality. For instance, in order to describe formally the semantics of computer
programs, the logic has to be able to model that real programs may crash (i.e,
are only partial functions from inputs to outputs). For example, one would like to
distinguish the faulty type description of the tail function “I:list = tail(l): list”
from the correct one “I:list | # [] = tail(l): list”. Such differences can be made
formal in the VDM language (see for instance [Jon90, p.68ff] or [BFL*94, p.3]).
Unfortunately up to now there is no efficient mechanisation of reasoning with
partiality in VDM.

There are different approaches — ranging from workarounds for concrete situ-
ations to a proper general treatment — to model partiality. For an overview', we

! For a more detailed discussion of the different approaches compare [Far90].

will introduce the main approaches and exemplify their advantages and disad-
vantages by some trivial examples from arithmetic. We have chosen this domain
for its clarity, even though for mathematics a logical treatment of partiality
might successfully be replaced by a workaround.

We will recall the four main options of treating partiality and then advocate
the fourth one. In the first approach, undefined expressions like 1/0 are syntac-
tically excluded, for instance by using a sorted logic. In the second approach,
partiality is either disregarded or bypassed, for instance, a value is assigned to
1/0, either a fixed value (e.g. 0) or an undetermined one. In both cases it is
necessary to tolerate undesired theorems, in the first case, for instance, 1/0 = 0,
or in the second case from 0 -z = 0 the instance 0 - 1/0 = 0. This approach
is not satisfying if such theorems are unwanted and that is normally the case in
mathematics.

In the third and fourth, partiality is taken seriously and this is reflected in
the semantics and the calculus. While the third considers undefined terms only,
but atomic formulae are evaluated either to false or true, in the fourth, atomic
formulae can be undefined too, that is, be evaluated to a third truth value “un-
defined”. Concretely, in the third approach terms of the form 1/0 are treated as
undefined and all atomic formulae containing such a meaningless term are evalu-
ated to false. This has the advantage that partial functions can be handled within
the classical two-valued framework. However, the serious drawback is that the
results of these logic systems can be un-intuitive to the working mathematician.
For instance in elementary arithmetic the following sentence

T
VIR, YR, ZR- 2 = " ST =y*z

is a theorem of such systems since the scope is true for the case y # 0 and for
the case y = 0, the formula z = z/0 obtains the truth value f which in turn
makes the implication true, too. However, it is mathematical consensus that the
equation should only hold provided that y is not 0. In the fourth approach, which
has, in particular, been investigated by Kleene in [Kle52], this is not a theorem.
In this approach atomic formulae containing meaningless terms are evaluated to
undefined. In particular, the example above is not a theorem in the three-valued
approach, since for the instantiation y = 0 the formula evaluates to undefined.

Now we address the question which price has to be paid for the proper
treatment in the three-valued approach. Indeed in unsorted mechanisations of
Kleene’s approach by Tichy [Tic82], Lucio-Carrasco and Gavilanes-Franco [LG89],
it is necessary to pay a high computational price. In [KK94 KK96] we have
developed a sorted three-valued logic SK£* and corresponding resolution and
tableau calculi RPF? and TPF? carefully integrating ideas from sorted dy-
namic logics as introduced by Weidenbach [W090,Wei95] and from many-valued
truth-functional logics as mechanised by Hahnle [Hah94] as well as by Baaz
and Fermiiller [BF95]. In these logics the additional computations are relatively
modest and in many cases proofs in the two-valued logic can be the structurally
isomorphically transformed into proofs in the three-valued logic.

The main contribution of this paper is the result that for a large class of
SKL?-theorems (which are also classical theorems by construction) the 7PF?

and RPF? proofs can be transformed into classical sorted tableau and resolution
proofs and vice versa conserving the structure and size of the proofs. Furthermore
we can show that by adding a simple strategy in proof search for two-valued
theorems, it is possible to use a two-valued theorem prover for proving SK£3-
theorems. However, unlike to the first of the four above-mentioned approaches,
ours does not trivialise undefinedness information in a way that it would become

decidable.

2 Strong Sorted Kleene Logic (SKL?)

In [Kle52] Kleene presents a logic, which he calls strong three-valued logic for
reasoning about partial recursive predicates on the set of natural numbers. He
argues that the intuitive meaning of the third truth value should be “undefined”
or “unknown” and introduces the truth tables shown in Definition 1. Similarly
Kleene enlarges the universe of discourse by an element L denoting the undefined
number. In his exposition the quantifiers only range over natural numbers, in
particular he does not quantify over the undefined individual (number).

In [KK94] we have made Kleene’s meta-level discussion of defined and unde-
fined individuals explicit and presented a formal syntax and semantics that we
will now present informally.

The universe of discourse is structured into the sort A for all defined indi-
viduals and an error element L; all functions and predicates are strict, that is,
if one of the arguments of a compound term or an atom evaluates to L, then
the term evaluates to L or the truth value of the atom is u respectively. Just
as in Kleene’s system, our quantifiers only range over individuals in A, that is,
individuals that are not undefined. Since SK£* needs the sort A for bounded
quantification anyway, it is no further effort to give the full sorted system. The
further use of sorts gives the well-known advantages of sorted logics for the
conciseness of the representation and the reduction of search spaces.

Terms in SKL? are ordinary first-order terms. Atomic formulae are defined
as usual, in addition, there are atomic formulae of the kind t<S, where ¢ is a
term and S a sort symbol. Here, t<S stands for “t has sort S”. Formulae are
built up from atomic formulae by the usual connectives, and a unary connective
! with the intended meaning that !A is true, whenever the value of A is not
u. Furthermore, all quantifications are bound by a sort S (i.e., are of the form
Vrs. A or Jzg. A).

The three-valued semantics for SK£? has a “undefined individual” L in the
universe of discourse. Note that this is similar to the classical flat CPO con-
struction [Sco70], but Kleene’s interpretation of truth values does not make u
i Most logic-based accounts of partiality only treat partiality for functions correspond-

ing to the mathematical notion of a partial function, defined as a right-unique rela-
tion opposed to a total function which is left-total and right-unique. Indeed, at first
glance there seems to be no need for having partial relations as well, since relations
are defined as subsets of Cartesian products. However, most mathematicians would
agree that the relation x > y does not make much sense for arbitrary complex num-
bers (rather than saying that it is false for most complex numbers), while z > y is
perfectly well-defined for real numbers.

minimal. The standard notion of value function, ¥-algebra and assignments di-
rectly carry over to the partial-function case. The only interesting part is the
non-classical truth functions for the connectives and quantifiers.

Definition 1. The value of a formula dominated by a connective is obtained
from the value(s) of the subformula(e) in a truth-functional way. Therefore it
suffices to define the truth tables for the connectives:

t = !
flfut flt flt
uluut ulu ul| f
t|ttt t|f t|t

As usual the semantics of formulae with respect to an interpretation Z and an
assignment ¢ is defined recursively. The atomic formulae of the form ¢t<S are
treated like expressions of the form S(t). For the quantifiers it is defined with
the help of function V and 3 from the non-empty subsets of the truth values in
the truth values. We define

T,(Qrs. A) = QUTy asa)(A) | Z(S)(a) = t}),

where Q € {V,3} and ¢, [a/z] coincides with ¢ away from 2 and maps = to a.
Furthermore we define

N t forT={t}orT=0 t forteT
Y(T):=<¢u for T={t,u} or {u} 3IT):=<u for T ={f,u} or {u}
f forfeT f forT={f} or T =10

Note that with this definition quantification is separated into a truth-functional
part Q and an instantiation part that considers members of the universe ac-
cording to the sort S (that is, those members for which Z(S)(a) = t). Note
furthermore, that although there is no semantical difference between sorts and
unary predicates, by the definition of the semantics of the quantifiers, only those
elements are considered where the sort is defined and evaluates to t. According
to this semantics, the relativisation R(Vzs. A) is Vz. S(z)AlS(z) = R(A4) and
not just V. S(z) = R(4).

Finally, quantification never considers undefined values and therefore can-
not be truth-functional even for the unsorted case. As a consequence, we can-
not directly use the methods developed for truth-functional many-valued logics
from [Hah94,BF95].

Finally, the “tertium non datur” principle of classical logic is no longer valid,
since formulae can be undefined, in which case they are neither true nor false. We
do, however, have a “quartum non datur” principle, that is, formulae are either
true, false, or undefined, which allows us to derive the validity of a formula by
refuting that it is false or undefined. We will use this observation in our calculi.

While in classical logic, the consequence relation is directly connected to
the implication by the deduction theorem, in SK£? things are a little bit more
difficult, since the classical deduction theorem is not valid. In particular, when

proving mathematical theorems, it is quite usual to do this with respect to some
background theory (axioms and definitions), which can no longer simply be taken
in the antecedent of an implication. Actually, the SK£* deduction theorem has
the form ® U {A} = B iff ® = ANA = B.

Now, the definedness connective ! for formulae does not have an explicit
counterpart in informal mathematical practice, instead definedness assumptions
are implicitly made in the assumptions. Hence for mathematical applications we
will consider so-called consequents, that is, pairs consisting of a set of formulae
® and a formula A, in which all formulae in ® are assumed to be defined. We
call a consequent ® = A valid if A is entailed by ® in all ¥-models.

In fact the tautologies in the -free fragment of SK£?, i.e., valid consequents of
the form) |= A, where A does not contain any !, are very limited. The only atoms
that are defined in an empty context are of the form t<A. Therefore the set of
tautologies can be generated by adding disturbances to classical propositional
tautologies, where the propositional variables have been replaced by such atoms,
for instance (<A = t<A) V A for arbitrary formulae A.

Now we can come back to the example from the exposition. The assertion
is not a theorem of SKL?, since the instance 1 = % = 1=0-1is not a valid
formula (in any reasonable axiomatisation of elementary arithmetic). While the
antecedent of the implication evaluates to u, the succedent evaluates to f, hence
the whole expression to u.

Example 2 (Extended Example). We will formalise an extended example
from elementary algebra that shows the basic features of SK£?. Here the sort R*
denotes the real numbers without zero. Note that we use the sort information to
encode definedness information for inversion: % is defined for all z € IR*, since
the formula A2 is taken as an axiom. Naturally, we give only a reduced formali-
sation of real number arithmetic that is sufficient for our example. Consider the
consequent {A1,A2 A3 A4 A5} =T with

Al Vog.z # 0= z<R* ﬁg :ﬂflR- :yIR- T — y<_|R0 -
A2 Vag-. 1<R* TR VYR T —y=0=>z=y

2
A3 Vo 22 >0 T V.?:|R.Vy|R..7:7éy:>(!) >0

z—y
In an informal mathematical argumentation why T is entailed by {A1,..., A5},
the Ai are assumed to be true, that is, neither false nor undefined. Let = and
y be arbitrary elements of R. If x = y, the premise of T is false, hence the

whole expression true (in this case the conclusion evaluates to u). For z # y the

2
conclusion (T%y) > 0 can be derived from A1 through A5.

3 Tableau

In our tableau calculus, a labeled formula A® means that A has the truth value a.
For the purposes of this paper, it is essential to make use of multi-indices [Hdh94]
(semantically A%? is equivalent to A%V A%, however syntactically, on the calculus
level it is treated specially.). This not only gives us notational conciseness, but
also drastically improves our calculus over a single-index variant, since we can
introduce special rules for their treatment. So in general we think of the labels

as truth value sets, which may be singletons. Note that we normally do not have
to treat triple-indices as in A™t, since that would correspond to a three-valued
tautology, which cannot contribute to a refutation.

Definition 3 (Tableau Rules). The tableau rules consist of the traditional
tableau rules for the propositional connectives, augmented by the case of the
label u.

(Av B)t (Av B)" (Av B)f (Av B)ut (Av B)f
At ‘ Bt Afu Af Aut | But Afu
Bfu Bf Bfu
4| By

The negation rules just flip the labels in the intuitive way.

(-4 (-4 (~4) (-4 (~A)"

Af Au At Afu Aut

The ! rule for the u case closes the branch (we use an explicit symbol * for that),
since (!4)Y is unsatisfiable in SKL.

(14)" (14)" (14)f (14)" (14)" AR
AT x AY AR AY AfT AT

iii

The last rule is a splitting”" rule reflecting the definition of multi-index ft as
a disjunction. We only need this one splitting rule, since we have treated the
multi-indices ut and fu explicitly in the rules.

The quantifier rules for the classical truth values and multi-indices are very
similar to the standard rules ({zs,y!,...,y"} are the free variables of A and f is
a new function symbol of arity n), with the exception that the sort of the Skolem
function has to be specified. The rule for the case u has a mixed existential and
universal character: for yg the value of A is undefined or true (that is there is
no instance, which makes the formula false) and there is at least one defined
witness for the undefinedness.

(Vrs. A)* (Vrs. A)" (Vos. A)f
lys/zs] A" [f(y's . y™) [os]AY [Flyt, oy fes] AT
(fly', ..., y™")<8S) (fly', ..., y™<S)"
lys/zs]A™
(Vg A)Yt (Vs A)f
lys/zs] A [F' .y fes] A

(fy's...,y™)<S)t

il Note that the inverse rule that merges literals A* and A? into a multi-literal A>3
is not present in the calculus and merging is also not carried out implicitly.

The rules for connectives and quantifiers above can now be used to reduce com-
plex labeled formulae to literals.

Now we only need tableau closure'v rules: Undefined definedness literals can
be used to close the tableau due to the fact that the predicate A is defined
everywhere. In the rules total, cut and strict

A c
(t<A)ve BP o (t<A)f ”
(t<A)™ A28 | & (o) x| L(o)
we require that v C {ft} and o = [t\/zg],...,[tn/z¢] is the most general

unifier of A and B or the most general unifier of the term ¢ and a subterm s of
C, respectively. Note that the cut rule is only non-redundant if « N3 is a proper
subset of both @ and (; we will assume this in the following.

In both cases the sort constraint SC(o) = ((t1<S1)A... A (t,<S,))M insures
the correctness of the instantiations. We have employed the notation of writing
the substitution o next to the tableau schema, to indicate that the whole tableau
is instantiated by o during the application of the rule.

A tableau is built up by constructing a tree with the tableau rules starting
with an initial tree without branchings. We call a tableau closed iff all of its
branches end in *. Note that the disjunct * in the succedent of the rules above
is only needed if the set of sort constraints is empty. Then this rule closes the
branch without residuating.

Definition 4 (Tableau Proof). A tableau proof for a formula A is a closed
tableau constructed from the initial tree consisting of the labeled formula Af.

A tableau proof for a consequent ® = A is a closed tableau constructed from
Pty {AN}.

The tableau proof of a consequent ® = A essentially refutes the possibility that
A can be undefined or false under the assumption that all formulae in ® are
true. By the quartum non datur rule, we can then conclude that A is entailed
by ®. The soundness of the TPF> rules can be verified by a tedious recourse
to the semantics of the quantifiers and connectives. Completeness is proved by
the standard argument using a model existence theorem for SKL®. For details
see [KK96].

Example 5 (continuing Example 2). Taking the above example we give a
proof for {A1,A2,A3,A4, A5} = T using the above tableau rules. The proof
is shown in Fig. 1. Applying the closure rule in the case of non-empty sort
constraints, we omit the x branch for simplicity reasons. Note that the unsorted
unifiers [¢ — d/uR], [¢/xR], and [d/yRr] have to be applied to the whole tableau.
For display reasons, however, we only add the relevant formulae to the tableau
instead of replacing them, that is, correctly (F8) and (F13) have to replace (F3)

and (F9) respectively.

v We define that a literal A? closes a branch of the tableau and denote it with .

The proof in Fig. 1 shows an interesting feature, namely it corresponds in
length and structure to a proof of the theorem in a two-valued variant of TPF>.
This observation has a more general background: [H§h94] shows that for so-
called regular truth functional logics (all our connectives and quantifiers except
for ! are regular), the sets-of-signs method allows a presentation of the tableau
system in Smullyan’s universal notation, varying only the closure conditions, i.e.,
the structure is isomorphic to the classical tableau system. However, this result
is not directly applicable, since SK£? is not truth-functional (we have to consider
bounded quantifiers) and we assume strictness.

Definition 6 (7PF?). Formally this proof system (we will call it TPF?) can
be obtained from TPF? by removing all inference rules for the ! connective, the
total rule and all connective and quantifier rules that contain the label u. This
is essentially a tableau variant of [WO90] in the style of [Wei95].

o(Al) Vog. ¢ £ 0 = 2<R*)*
3(A5) (VR Vyr o —y=0= z =y)'

Fig. 1 Tableau proof sketch

¢(T) (VaR VYR v # y = (I y)z > 0)f
$(A1) (uR # 0 = ug<R*)* V(A1)
$(A2) (= <R Vi(A2)
+(A3') (wk~ > 0)" Vt(A3)
$(A1) (sg — tR<R)" VE(A4) (2 times)
$(A5) (zr —yr =0= 2R = yR)" V'(A5) (2 times)
¢+(T1) (c<R)t vU(T) (2 times)
¢(T2) (d<R)t v(T) (2 times)
H13) e=dv () > 0)" V() (2 times)
$(T3') (c=)2 vi(T3)
413" ((-) > 0) v (T3)
$(F1) (=5 <RH)M «(T3" A3")
"\K) (¢ —d<R") *(F1,A2")
¢ (F3) (ur =0)* (F4) (ur<R*)* VE(AL)
F5) ((c — d)<R)™ «(F4,F2)
(F7) (d<R)™ «(F5,A4")
* «(F6,T1), *(F7,T2)
u\@) (c—d=0)" o(F3,[c — d/u])
3(F9) (zr — yr = 0V A(F10) (zr = yR)" VH(A5')
F11)(c<R)™ (F12) (d<R)™ *(F10,T3")
* x «(F11,T1), #(F12,T2)
$(F13) (c —d =0)' o (F9,[c/x]. [d/y])
I «(F13,F8)

The correspondence mentioned above can be realised by replacing all multi-
indices fu in 7PF? by the truth value f in TPF?. The formal reason that this
is possible, lies in the fact that in 7PF? the tableau rules for R* and R*" have
exactly the same structure for @ € {f,t} and R € {Vv,—,V}.

In other words the simple measure of using rules for truth-value sets provides
proofs that are as short as in the two-valued case. If, however, truth-value sets
are not used, certain parts of the proofs must be duplicated. This relationship
can only hold for so-called normal problems of course, that is, problems which do
not contain any ! connective, since formulae containing a ! do not make any sense
in classical two-valued logic. Let now SFL? be a two-valued sorted logic, that is,
the same logic as SKL? with two truth values and without the ! connective.

Theorem 7 (Conservativity). Each TPF?-tableau proof for a normal prob-
lem ® = A in SKL? can be transformed into a TPF>-tableau proof in SFL.

Remark 8. Obviously, the converse of the above theorem does not hold. Not
each TPF? proof can be transformed into an TPF? proof even if there is a TPF>
proof. Consider for example the relation {A} = A V (B V —B) which holds in
SKL? as well as in SFL?. An TPF2-proof is given in Fig. 2.

p(A) ()

+(T) (Av (BV -B))f

$(F1) (A)f vi(T)
+(F2) (B vV -B)f vi(T)
+(F3) (B)f vi(F2)
+(F4) (-B) vi(F2)
$(F5) (B)* ~f(F4)

! * *(F5,F3)

Fig. 2. Counterexample to the converse conservativity

This proof cannot be transferred since in SK£?* (T), (F1), (F2), (F3), (F4), and
(F5) are labeled by the truth value u in addition, hence applying the closure
to (F5) and (F3) leaves a label u in SK£* and does not lead to *. This comes
from the fact that B V —B is not a tautology in SKC*. However, the other
straightforward closure of the tableau by applying the closure rule to (A) and
(F1) can be applied in SFL? as well as in SKL.

Certainly it would be nice to have the property that for each classical SFL>
proof there exists an SKL? proof which is as short as the classical (of course only
if the classical theorem is also an SK£* theorem). The example above shows that
this property does not hold in general, for instance, replace the assumption set
{A} by a set from which A can be derived in 20 steps only. On the other hand
this example is rather artificial insofar as the theorem would normally not be
stated in this form in mathematics, because mathematical theorems are normally
not redundant in the way that two true statements are linked by an “V”, on the
contrary usual mathematical theorems employ preconditions as weak as possible
and consequences as strong as possible. For instance, in a mathematical context

we would expect theorems like A, BV =B, AA (BV —B). While a proof for the
first (from the assumptions A) can be transferred from SFL? to SKL?, the latter
two are not theorems in SK£*. Hence we expect that for usual mathematical
theorems the proof effort in SK£* will not be bigger then in SFL?.

If we look again at the counterexample above, we see a general principle,
how it is possible to generate a classical proof that cannot be lifted to a TPF?
proof, essentially closing the tableau by two complementary formulae, which both
stem from the theorem. In such a case the branch can be closed on two formulae,
labeled t and f in the two-valued setting, but in the three-valued setting they
are labeled by tu and uf, so the closure results in a formula labeled by u only.

In the following, we want to give a formal definition of a control strategy
for TPF? that avoids these pitfalls. For this, we mark theorem nodes with U/
and leave assumption nodes unmarked. Marking the nodes generated by the
application of a TPF? rule ® is carried out as follows: Add the truth value u
to the labels of the premises and apply ®, then mark the new nodes with U, iff
their formulae contain the truth value u. It is a simple exercise to check, that the
labeling of a node in a TPF? tableau only depends on its origin (i.e., whether it
descends from the theorem or not).

Definition 9 (U/3-Strategy). The applicability of all rules except cut remains
unrestricted by U3, while the cut rule is restricted to the case, where at most
one of the parent nodes is in U.

Lemma 10 (Completeness of U?). U is a complete strategy for TPF? on
the normal fragment of SKC*.

Note that in ¢3-tableaux no node can have the singleton label u, and that
hence the connective and quantifier rules for that label are redundant in 7PF?
for the normal fragment of SKL?.

Since, the TPF* and TPF? rules are identical in structure, and the marks
U only depend on the origin of formulae, they can also be computed for TPF2-
tableaux, if we leave formulae of the form <A unmarked, irrespective of their
origin. This move imitates an application of the total rule that does not exist in
TPF?. Let U? be that strategy for TPF>-tableaux that forbids cut on formulae
marked with U.

Theorem 11 (Lifting). Fach U*tableau can be lifted to an isomorphic U
tableau.

Obviously, the strategy U? is not complete for SF£?, and indeed we do not
want it to be, since SKL* was developed to eliminate formulae from the set of
formulae that are provable in SF£? and thus in classical first-order logic, but that
are generally not considered as mathematical theorems (like 1/0 =0V 1/0 # 0).

Actually, we show the adequacy of U{%-tableau for the normal fragment of
SKL3. To see that U? is sound let 7 be a closed U{?-tableau for a consequent
® = A, then it can be lifted to a closed U3-tableau by Theorem 11, by the
soundness of TPF? the consequent must be unsatisfiable. The completeness of
U3-tableau, Lemma 10, for the normal fragment of SKC?, directly entails the

10

completeness of U? with respect to the three-valued (mathematical) semantics
by conservativity, Theorem 7.

Theorem 12. The TPF? calculus with the U? restriction strategy is an adequate
calculus for the normal fragment of SKL.

Now, we can ask, what is lost by restricting ourselves to the normal fragment
of SKL?. Tt is not that we cannot specify definedness assumptions for the math-
ematical objects. This is always possible in the assumption part of consequents,
even without an explicit !-connective since (!A)' is equivalent to (A V —A)". In
the theorem part, this is not possible, since the presence of the label u blocks the
equivalence. Thus it is not possible to prove theorems about the undefinedness
of formulae such as 1/0£A = —=!P(1/0). Note that we can still prove assertions
about the definedness of terms, like in 1/0£A |= f(1/0)£A. So in fact SFL?
with ¢/2-tableau is a very good approximation of SK£2.

As discussed in Remark 8 proofs in SKL£* may be inevitably longer than
proofs in SFL?. This, however, does not mean that short proofs are excluded by
the U2-strategy if they exist in the three-valued calculus, since the truth value
set tf in TPF? proofs does not occur for the normal fragment of SKL®.

In the resolution calculus RPF® [KK94], we have a similar conservativity
and strategy result. One reason for that is that the clause normal form trans-
formations directly correspond to the analytic tableau rules for connectives and
quantifiers. For details see [KK97].

4 Conclusion

In this paper we have refuted the common assumption, that a three-valued treat-
ment of partial functions following the ideas of Kleene is impractical, since it
requires a fundamental redesign of the current theorem proving technology. This
tacit assumption has led to a practical preference of the simpler (but less ade-
quate) two-valued treatment of partial functions. The results in this paper show
a simple way towards a practical implementation: In an existing theorem prover
for dynamic sorts like SPASS [WGR96], only the strategy &2 has to be imposed".

As we have stated in Remark 8, for most mathematical theorems, this does
not even result in a loss of efficiency (proof length). However, the experiment
in SPASS should not be regarded as a full-blown implementation of the normal
fragment of SKL?, since the interaction with equality and the interaction of the
U3-strategy with the other strategies (e.g. reduction) has not been addressed in
this paper. We leave this problem to future work.

From another perspective, the U3 strategy can be seen as a substitute (that
is easier to implement) for the third truth value, whose presence is adequately
represented by marking a two-valued literal by /. Note that this underlines the
intuition, that strong Kleene logic is a variant of classical first-order logic that
only adds a definedness check for the application of partial functions to the logic
without changing the logic proper. In particular, it is plausible that results as
those presented in this paper will not in general hold for multi-valued logics.

¥ Christoph Weidenbach has added the necessary extensions to the pure resolution
part of SPASS [WGR96] in a matter of a few hours.

11

Note that it is essential for the theorem prover to be able to treat dynamic
sorts, for the conservativity results break down with most relativisation tech-

niques. The only counterexample is the technique of term relativisation [Sti86]

3

where in the case of static tree-ordered sorts a conservativity theorem holds.
If this could be extended to dynamic sorts, then any existing theorem prover
could (without loss of efficiency) be augmented by partial functions by a term
relativisation pre-process and U/2.

References

[BF95]

[BFL*94]

[Far90]
[Hiih94]
[Jon90]

[KK94]

[KK96]

[KK97]

[Kle52]
[LG89)]

[ScoT0]

[Sti86)]
[Tic82]

[WO90]

[Wei95]

[WGRO6]

Matthias Baaz and Christian G. Fermiiller. Resolution-based theorem prov-
ing for many-valued logics. Journal of Symbolic Computation, 19(4):353-391,
April 1995.

Juan C. Bicarregui, John S. Fitzgerald, Peter A. Lindsay, Richard Moore,
and Brian Ritchie. Proof in VDM: A Practitioner’s Guide. Springer, London,
United Kingdom, 1994.

William M. Farmer. A partial functions version of Church’s simple theory
of types. The Journal of Symbolic Logic, 55(3):1269-1291, 1990.

Reiner Hiahnle. Automated Deduction in Multiple-Valued Logics, Oxford
University Press, 1994.

Cliff B. Jones. Systematic Software Development using VDM. Prentice Hall,
New York, USA| second edition, 1990.

Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene
logic for partial functions. In Proc. CADE-12, pp. 371-385, 1994. Springer
LNAT 814.

Manfred Kerber and Michael Kohlhase. A tableau calculus for partial func-
tions. Collegium Logicum — Annals of the Kurt Gédel Society, 2:21-49, 1996.
Manfred Kerber and Michael Kohlhase. Mechanising Partiality with-
out Re-Implementation. Technical Report CSRP-97-10, School of Com-
puter Science, The University of Birmingham, Birmingham, England, 1997
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1997/CSRP-97-10.ps.gz.
Stephen C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.
Francisca Lucio-Carrasco and Antonio Gavilanes-Franco. A first order logic
for partial functions. In Proceedings STACS’89, pages 47 58. Springer, LNCS
349, 1989.

Dana Scott. Outline of a mathematical theory of computation. In Proc.
Fourth Annual Princeton Conference on Information Sciences and Systems,
pages 169 176. Princeton University, 1970.

Mark E. Stickel Schubert’s Steamroller Problem: Formulations and Solu-
tions, Journal of Automated Reasoning, 2:89 101, 1986.

Pawel Tichy. Foundations of partial type theory. Reports on Mathematical
Logic, 14:59 72, 1982.

Christoph Weidenbach and Hans Jiirgen Ohlbach. A resolution calculus with
dynamic sort structures and partial functions. Proceedings of the 9th ECAI
pages 688 693, 1990. Pitman.

Christoph Weidenbach. First-order tableaux with sorts. Journal of the
Interest Group in Pure and Applied Logics, IGPL, 3(6):887 906, 1995.
Christoph Weidenbach, Bernd Gaede and Georg Rock. Spass & Flotter,
Version 0.42, In Proc. CADE-13 pages 141 145, 1996. Springer LNAT 1104.

12

