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ken, GermanyAbstra
tIn this arti
le we des
ribe the data model of the MBase system, a web-based, distributed mathemati
al knowledge base. This system is a mathe-mati
al servi
e inMathWeb that o�ers a universal repository of formal-ized mathemati
s where the formal representation allows semanti
s-basedretrieval of distributed mathemati
al fa
ts.We 
lassify the data ne
essary to represent mathemati
al knowledgeand analyze its stru
ture. For the logi
al formulation of mathemati
al
on
epts, we propose a methodology for developing representation for-malisms for mathemati
al knowledge bases. Con
retely we propose toequip knowledge bases with a hierar
hy of logi
al systems that are linkedby logi
 morphisms. These mappings relativize formulae and proofs andthus support translation of the knowledge to the various formats 
ur-rently in use in dedu
tion systems. On the other hand they de�ne higherlanguage features from simpler ones and ultimately serve as a means tofound the whole knowledge base in axiomati
 set theory.The viability of this approa
h is proven by developing a sorted re
ord-�-
al
ulus with dependent sorts and labeled abstra
tion that is well-suitedboth for formalizing mathemati
al pra
ti
e and supporting eÆ
ient infer-en
e servi
es. This \mathemati
al verna
ular" is an extension of a sorted�-
al
ulus by re
ords, dependent re
ord sorts and sele
tion sorts.1. Introdu
tionThe last �ve years have seen a growing interest in the integration of mathemati
alsoftware systems, su
h as 
omputer algebra systems and dedu
tion systems.The reason for this is that while the respe
tive systems have rea
hed a highdegree of sophisti
ation and maturity, they have di�ering, often 
omplementary1
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al Knowledge and Context 2strengths and weaknesses, and no single system is strong enough to ta
kle allproblems. Moreover, sin
e many of the problems are very 
omputation-intensive,distributing sub-problems to mathemati
al servi
es over the Internet seems apromising approa
h.Parti
ular interest is in the 
ombination of 
omputer algebra systems (CAS)and dedu
tion systems (DS), either for the purpose of enhan
ing the 
ompu-tational power of the DS (30; 39; 7) or in order to strengthen the reasoning
apabilities of a CAS (1; 8).We 
an distinguish four kinds of problems that have to be over
ome for anintegration of two mathemati
al software systems:Syntax Though most systems have a term-based interfa
e language, normallyall systems will have their own parti
ular variant. This problem 
an besolved by establishing representation standards, su
h as the emergingOpen-Math standard (15), whi
h uses Xml (13) to de�ne a general term lan-guage. With the imminent wider a

eptan
e of this standard, this problemwill soon be solved.Proto
ol The problems of low-level 
ommuni
ation and 
ommon 
ontrol pro-to
ols have been explored e.g. in (14) and have to be de
ided upon in the
on
rete appli
ation. Empiri
ally, all su
h proto
ols and ar
hite
tures 
anbe 
exibly modeled by agent-oriented programming; we have used this intheMathWeb system (27; 26), an agent-based implementation of a math-emati
al software bus that uses the 
urrent de-fa
to standard Kqml (24)for intera
tion agent-languages. Even though the Kqml-support inMath-Web is not fully implemented, we 
an see this problem as solved in prin
iple(see (5)).Semanti
s For the integration of systems it is 
ru
ial to spe
ify 
on
isely andwithout ambiguity the meaning of the ex
hanged formulae, i.e. there is theproblem of establishing a semanti
s for the 
ommuni
ated mathemati
alobje
ts. Otherwise the results of the integrated system 
an be arbitrary:Re
all the re
ent in
ident of the NASA Mars lander, where NASA spe
i�edro
ket thrust in metri
 units but the 
ontra
tor used pounds and in
hes (asa result the probe 
rashed on Mars instead of landing). This is well-knownas the so-
alled ontology problem in distributed arti�
ial intelligen
e, thea

epted solution to this is to either take re
ourse to a 
ommon set of
on
epts (the ontology, see (39) for a proposal wrt. the integration of 
om-puter algebra with proof planning) or to negotiate a private ontology forthe 
ommuni
ation. The OpenMath standard re
ognizes this and o�ersthe me
hanism of \
ontent di
tionaries": ma
hine-readable, but informalde�nitions of the mathemati
al 
on
epts involved. Note that in 
ontrast tothe pra
ti
e in distributed arti�
ial intelligen
e (agent-oriented program-ming), the ontology is determined lo
al to the symbols of the terms insteadof globally for the 
ommuni
ation, whi
h seems mu
h more appropriate forthe appli
ation in mathemati
s.
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al Knowledge and Context 3This is at best a partial solution to the semanti
s problem, sin
e the Open-Math framework does not o�er any support for ensuring 
onsisten
y, 
on-
iseness, or manipulation of ontologies.Context The 
ontext problem is a variant of the semanti
s problem, i.e. in the
ommuni
ation of two mathemati
al software systems (or more generallyagents) it is advantageous to maintain a sense of shared state. For instan
e,the state 
an be used to refer ba
k to (parts of) previous formulae, that arekept in the so-
alled 
ontext. Of 
ourse it is possible to eliminate state fromthe 
ommuni
ation by retransmitting the relevant parts of the 
ontext, butthis 
an lead to an exponential in
rease in 
osts. As a 
onsequen
e almostall intera
tive mathemati
al software systems use some form of 
ontextfor the 
ommuni
ation with the user. Current approa
hes to integration ofmathemati
al software systems 
annot deal with 
ontext, or use it in a veryin
exible way, for instan
e the Clam-Hol intera
tion (12), or the 
mega-Tps (10) integration have to retransmit all the ne
essary de�nitions andsubgoals on every round of intera
tion.This arti
le addresses the last two problems. We 
ontend that a so
iety of dis-tributed knowledge base agents in MathWeb (27; 26) 
an be used to establishboth the semanti
s of 
ommuni
ated formulae as well as provide a 
exible notionof 
ontext. To substantiate this 
laim, we will present and dis
uss the MBasesystem, a web-based, distributed knowledge base for mathemati
s that is uni-versally a

essible through MathWeb on the Internet.The mathemati
al knowledge in MBase 
an be used to establish a 
en-tralized referen
e point that establishes the semanti
s of formulae, sin
e it isboth ma
hine-readable and fully-formal. Moreover, the knowledge base agentsinMathWeb 
an be used as ontology servers for agent 
ommuni
ation, in par-ti
ular, they 
an manipulate small private knowledge bases as a servi
e for otherMathWeb servi
es, e�e
tively providing a 
exible notion of 
ontext. In the restof the arti
le, we will des
ribe theMBase server and its underlying data model.In parti
ular, we address the question of how to divide the task of representingand reasoning with 
omplex knowledge base entries, su
h as logi
al formulae ina data base appli
ation. These are typi
ally very 
omplex (possibly 
y
li
) graphstru
tures that 
annot be represented or reasoned about adequately in 
urrentSQL-based data base systems. On the other hand, high-level programming lan-guages 
an do this, but the amount of data that 
an be pro
essed is basi
allylimited to the size of main memory.MBase adopts a hybrid approa
h that triesto 
ombine the strengths of both worlds, eliminating their relative limitations.The 
urrent implementation (see http://www.mathweb.org/mbase) is stilllargely a prototype for testing the design de
isions. It 
onsists of the MBaseserver, whi
h a
ts as aMathWeb servi
e, and an http server that dynami
allygenerates presentations based onHtML orXml forms. Other mathemati
al ser-vi
es 
an a

ess MBase through a system of mediators that are also integratedinto MBase.
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al Knowledge and Context 4The primary interfa
e format of MBase is OMDo
 (43; 42), an Xml-basedrepresentation language for MBase 
ontent. Sin
e this is an extension of theemerging OpenMath standard (15) for web-based mathemati
s, its syntax islogi
-independent. So the mediators 
an �rst do the logi
-transformation, thengenerate the OMDo
 representation, and then 
reate the 
on
rete input syntax ofthe respe
tive reasoning system by invoking a standardXml style sheet pro
essorwith a spe
ialized Xsl style sheet.Currently, 
onne
tions to the 
mega (9), InKa (36), �Clam (51), andTps (4)systems are being a
tively developed. Semi-automated reasoning systems likethese usually store large amounts of mathemati
al data in a �le-oriented librarystorage me
hanism. For solving a given problem, all knowledge in the librarythat is possibly relevant must be loaded into main memory, obviously a veryineÆ
ient usage of this resour
e. In this situation, the MBase servi
e, whi
huses data base te
hnology for the storage aspe
t allows to load the knowledgein
rementally, to perform �ner-grained reasoning as to whi
h knowledge will berelevant, and to browse the knowledge beforehand, so that the user 
an determinethe a
tual desired knowledge elements.1.1. Ar
hite
ture: Division of LaborThe MBase system is realized as a distributed set of MBase servers (seeFig. 1.1). Ea
h MBase server 
onsists of a Relational Data Base ManagementSystem (RDBMS), e.g. Ora
le, whi
h is 
onne
ted to a mOZart (53) pro-
ess via a standard data base interfa
e (in our 
ase JDBC). Clients 
an a

essMBase servers as MathWeb servi
es, and for browsing the MBase 
ontent,any MBase server provides an http server (see http://mbase.mathweb.org:8000 for an example) that dynami
ally generates presentations based on HtMLor Xml forms.This ar
hite
ture 
ombines the storage fa
ilities of the RDBMS with the
exibility of a 
on
urrent, distributed, logi
-based programming language (seehttp://www.mozart-oz.org).Most importantly for MBase, mOZart o�ers a me
hanism 
alled pi
kling,whi
h allows for a limited form of persisten
e: mOZart obje
ts 
an be eÆ
ientlytransformed into a so-
alled pi
kled form, whi
h is a binary representation of the(possibly 
y
li
) data stru
ture. This 
an be stored in a byte-string and eÆ
ientlyread by the mOZart appli
ation e�e
tively restoring the obje
t. This featuremakes it possible to represent 
omplex obje
ts (e.g. logi
al formulae) as Oz datastru
tures, manipulate them in the mOZart engine, but at the same time storethem as strings in the RDBMS.The 
urrent implementation of MBase 
an be used together with di�erentkinds of data base engines: e.g. InstantDB (see http://www.instantdb.
o.uk), a lightweight open-sour
e java based program for s
rat
h-pad databases, andOra
le for ar
hiveMathWeb servers. Thus the use of JDBC as a standardized



M. Kohlhase, A. Franke: MBase: Mathemati
al Knowledge and Context 5interfa
e allows to a
hieve the somewhat 
on
i
ting fun
tionalities needed for thedistributed nature of MBase (see se
tion 3).
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hite
ture1.2. An ExampleIn this se
tion we will dis
uss a simple mathemati
al example (a version ofCantor's theorem), whi
h will be used in the following.Theorem 3.1.7 (Cantor): Let S be a set, then S has a smaller 
ardi-nality than its power set }(S).Proof: We prove the assertion by diagonalization. Assume that thereis a surje
tive mapping F :S �! }(S). Now let D be the set fa j a =2F (a)g; we show that D =2 Im(F ): if there were a pre-image b 2 S (i.e.D = F (b)), then assuming b 2 D we 
an obtain b =2 D, whi
h is a
ontradi
tion.The assertion of the theorem is about 
ardinalities of sets. Usually, the 
ardi-nality of a set S is de�ned to be smaller than that of T , i� there is no surje
tivemapping F :S �! T . Alternatively, smaller 
ardinality 
an be de�ned as theabsen
e of inje
tive fun
tions from T into S. A fun
tion f :S �! T is 
alledsurje
tive, i� for all b 2 T , there is an a 2 S (
alled its pre-image), su
h thatf(a) = b. The power set }(S) of a set S is the set of all subsets of S. To illustratethese 
on
epts it may be useful to look at a simple example: If S is the singletonset fag, then the power set }(S) is f;; Sg; there are only two mappings from Sto }(S), f;: a 7! ; and fS: a 7! S, whi
h are not surje
tive (S =2 f;(a) = f;g and; =2 fS(a) = fSg). Thus our example supports Cantor's theorem.In a formal reasoning system like 
mega, Isabelle or Pvs, the theoremwould be stated in a suitable logi
, e.g. in the simply typed � 
al
ulus8S�!o:smaller 
ard(S; powerset(S))
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al Knowledge and Context 6where the symbols (
onstants of the logi
) smaller 
ard and surj are de�ned asthe �-termssmaller 
ard := �M�!o �N�!o :9F�!� surj(F;M;N)surj := �F�!� �M�!o �N�!o 8X�:NX ) (9Y�MY ^ FY = X)Again, the symbol smaller 
ard 
ould have been de�ned in terms of inje
tivityby a similar �-term.Based on this knowledge, the reasoning systems mentioned above 
an provethe theorem (fully automati
ally [Tps (11)℄ or intera
tively) by eliminating thede�nitions (substitution of the �-term and subsequent �-redu
tion) and solvingthe problem at the level of the underlying 
al
ulus.Another way to arrive at the proof is to en
ode the human problem solvingknowledge for diagonalization proofs expli
itly in the proof planning paradigmand use this method- and 
ontrol knowledge to prove the theorem in mu
h thesame way as humans would. This results in a di�erent, more stru
tured proofof the theorem (16). Note that the textbook proof above also has two levels ofdes
ription of the proof: one with the keyword \by diagonalization" whi
h issuÆ
ient for the expert to re
onstru
t a more detailed proof.1.3. A Classi�
ation of the Relevant KnowledgeAlready in the small example dis
ussed above, we see that the statement of amathemati
al theorem 
an depend on the availability of a (large) set of de�ni-tions of mathemati
al 
on
epts (that in turn depend on other 
on
epts). Fur-thermore, the proof 
an use previously proven theorems and lemmata, or evenintrodu
e new 
on
epts. In addition to this purely mathemati
al data, a for-mal reasoning system needs a

ess to other forms of knowledge (e.g. 
ag set-tings for automated theorem provers or method- and 
ontrol knowledge in proofplanning). For presentation to human users, other (human-related) presentationknowledge is needed. See e.g. (52), where we use MBase as a basis for the
exible presentation of an an intera
tive mathemati
s book (18).The purpose of the MBase system is to store and manipulate all these kindsof knowledge with an emphasis on the use of stru
ture to support an adequateinformation retrieval and sear
h restri
tion. In this se
tion, we will try to 
lassifyand stru
ture them (see Fig. 1.3). This 
lassi�
ation will serve to stru
ture thedatabase model presented in the next se
tion.As we have already seen above, we have to distinguish between purely mathe-mati
al knowledge (primary obje
ts) and se
ondary obje
ts that provide human-and ma
hine-oriented or even administrative information or give additional stru
-ture. Con
retely, we distinguish the following �ve 
ategories in Fig. 1.3.Primary obje
ts for purely mathemati
al knowledge like symbols, their de�-nitions, and theorems, lemmata, et
. and their proofs (
f. se
tion 2.1).
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ture of MBase DataHuman-oriented additional information, like names of theorems, spe
ial math-emati
al notations, or spe
ial linguisti
 spe
i�
ations for text or spee
hgeneration systems (
f. se
tion 2.2).Ma
hine-oriented additional information, provides similar knowledge for theintera
tion with automated reasoning servi
es (
f. se
tion 2.3).Stru
turing Obje
ts MBase uses a system of theories to re
e
t the large-s
ale stru
ture of mathemati
s. Furthermore, spe
ial 
onstru
ts for abstra
tdata types and indu
tive de�nitions are supplied to ease and stru
ture thespe
i�
ation of the mathemati
al obje
ts (
f. se
tion 2.4).Relations to external knowledge resour
es like journals, 
itation databa-ses et
.2. The Database ModelIn this se
tion we will formalize and further elaborate the data base model ofMBase dis
ussed above. In parti
ular, we make the model expli
it by givinga set of data base de
larations. Let us �rst 
on
entrate on the primary data
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ts; before we present the data model, let us further 
lassify them anddis
uss their relations.Symbols for mathemati
al 
on
epts, su
h as 1 for the natural number \one",+ for addition, = for equality, or group for the property of being a group.Furthermore, there are symbols for kinds, types and sorts.De�nitions give meanings to symbols in terms of already de�ned ones. Forexample the number 1 
an be de�ned as the su

essor of 0 (spe
i�ed by thePeano axioms). Addition is usually de�ned re
ursively, et
. De�nitions areseparated from the symbols they de�ne inMBase, sin
e there 
an be morethan one (equivalent) de�nition for a symbol in a mathemati
al theory, e.g.the smaller 
ardinality relation dis
ussed in se
tion 1.2. This phenomenonis made expli
it in the relation def-entails.A se
ond reason for this division of 
on
epts is that \universal" 
onstants
an be introdu
ed as symbols without de�nition.Assertions are axioms, theorems, 
onje
tures, lemmata, et
. They all have thesame stru
ture: they are basi
ally logi
al senten
es. Their di�eren
es arelargely pragmati
 (theorems are normally more important in some theorythan lemmata) or proof-theoreti
 (
onje
tures be
ome theorems on
e thereis a proof in the knowledge base).Proofs are representations of eviden
e for the truth of assertions. Like in the
ase of de�nitions, there 
an in general be more than one proof for a givenassertion. Furthermore, it will be initially infeasible to totally formalize allmathemati
al proofs needed for the 
orre
tness management of the knowl-edge base in one universal proof format, thereforeMBase supports multipleformats for proofs or eviden
e su
h as e.g. a 
al
ulus-level proof, variousproof s
ripts (
mega replay �les, Isabelle proof s
ripts,. . . ), referen
es topublished proofs, resolution proofs, et
. Therefore, a proof 
an have severalProof Obje
ts en
apsulate the a
tual proof obje
ts in the various formats.There 
an be more than one proof obje
t for a given proof. Informal proofs
an be formalized, formal proofs 
an be transformed from one format tothe other (e.g. from resolution style to natural dedu
tion style), and 
aneven be presented in natural language by a proof presentation system likeProverb (34). Even so they represent the same \proof". In our examplein se
tion 1.2, we have des
ribed four proof obje
ts for the same proof: thesket
h 
onsisting only of phrase \we prove the assertion by diagonalization",its elaboration in the textbook example, the Tps proof and the proof-planning proof.The universal proof format used in MBase is derived from the Proof planData Stru
ture (PDS) introdu
ed in the 
mega system (9) to fa
ilitatehierar
hi
al proof planning and proof presentation at more than one level ofabstra
tion. In a PDS, nodes justi�ed by ta
ti
 appli
ations are expanded,but the information about the ta
ti
 itself is not dis
arded in the pro
ess



M. Kohlhase, A. Franke: MBase: Mathemati
al Knowledge and Context 9as in ta
ti
al theorem provers like Isabelle or NuPrL. Thus proof nodesmay have justi�
ations at multiple levels of abstra
tions in a hierar
hi
alproof data stru
ture.Examples In mathemati
al pra
ti
e, examples play an important role just asproofs, e.g. in 
on
ept formation (as witnesses for de�nitions or as ei-ther supporting eviden
e, or as 
ounterexamples for 
onje
tures). There-fore, examples are given status as primary obje
ts inMBase, even thoughthey are still very seldom a
tually used in me
hanized reasoning systems.Con
eptually, we model an example for a mathemati
al 
on
ept C as atriple (W;A;P), where W = (W1; : : : ;Wn) is an n-tuple of mathemati-
al obje
ts, A is an assertion of the form A = 9W1 : : :WnB, and P is aproof that shows A by exhibiting the witnesses Wi for Wi. The example(W; 9W1 : : :Wn :B;P) is a 
ounter-example to an assertion of the formT := 8W1 : : :WnB, and (W;A;P) a supporting example for T.Consider for instan
e the stru
ture W: = (A�; Æ) of the set of words over analphabet A together with word 
on
atenation Æ. Then (W; 9W mon(W );P1)is an example for the 
on
ept of a monoid (with the empty word as theneutral element), if e.g. P1 usesW to show the existen
e ofW . The example(W; 9Vmon :group(V);P2 and a proof that uses W as a witness for V , it isa 
ounterexample to the 
onje
ture C: = 8Vmon group(V), sin
e Q) :C.All in all, we have the stru
ture given in Fig. 2 for the primary obje
ts. In thefollowing we will brie
y dis
uss the 
on
rete realization of the primary obje
tsin MBase and then go on to dis
uss the other 
ategories of database obje
tsfrom Fig. 1.3. The metadata used in MBase is relatively standard, they in-
lude things like bibliographi
 referen
e (we use the well-known Dublin Cores
hema, 
f. http://purl.org/d
/ or see (43) and things like time stamps anduser referen
e for 
reation and modi�
ation of obje
ts.2.1. Modeling Primary Database Obje
tsTo implement the primary knowledge elements des
ribed above, MBase 
ur-rently uses tables for the six primary obje
ts and a variety of relations. Thisrealization of the data model is geared towards an underlying SQL data base,and 
an be subje
t to 
hange, when suitable obje
t-oriented DBMS be
omeavailable.symbol The type of a symbol must be unique, it is represented as a pi
kledmOZart obje
t (indi
ated in the data type OzPi
kle). For the data base,this is a string of arbitrary length. MBase uses OzPi
kles for 
omplex(logi
al) data stru
tures, whi
h 
an be read into the mOZart pro
ess forlogi
al pro
essing.definition At the moment,MBase supports simple, indu
tive/re
ursive, andimpli
it de�nitions as primary obje
ts. In the latter 
ase, the 
ontent of the
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counters
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1 :: n

defined_by
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depends_on

formalizes

1 :: n

1 :: n

ProofAssrt

WitnessFigure 3: The stru
ture of MBasede�nition, whi
h is a 
omplex term (and therefore expressed as an OzPi
kle)
an de�ne more than one the symbol.assertion Assertions are logi
al formulae (represented as OzPi
kles) that havea status 
ag that represents the pragmati
s of theorem-hood. At the mo-ment MBase supports the values problem, axiom, theorem, lemma for thestatus attribute.proof Proofs are general des
riptive obje
ts that represent proof ideas. Theyserve as obje
ts that for the relations proof-depends-on and proved-by.The intuition behind this de
ision is that if two proof obje
ts depend ondi�erent de�nitions/assertions, then they are di�erent \Platoni
" proofs.In parti
ular, if an informal proof (say from a mathemati
al textbook) isformalized in some 
al
ulus and additional dependen
ies be
ome apparent,then these are also (impli
it) dependen
ies of the original, informal proof.proof-obje
t Sin
e there are as many proof formats as dedu
tion systems andmathemati
al traditions, we 
annot make any assertion about the represen-tation of proof obje
ts at the moment. Instead we assume the least 
ommondenominator and provide strings of unbounded length for the proof obje
tsassuming that dedu
tion systems 
an always write proofs to �les.Certain proof formats, like ND proofs and PDS 
an be represented as �-terms, whi
h are supported by theMBase logi
, so these 
an be en
oded asOz-pi
kles. This has the advantage that the depends-on-relations 
an beautomati
ally 
he
ked or 
omputed by MBase. It is intended to supportmore and more proof formats dire
tly in MBase in the future, so thatma
hine support 
an be extended.example As examples are just triples 
onsisting of an obje
t, an assertion anda proof, their stru
ture is very simple. The three relations of illustrating a
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on
ept, supporting/
ountering a universal theorem mentioned above are
ondensed in to one, with intended meaning spe
i�ed by a role attribute.2666664 symbolstatus : definedkind : formulatype : 8��:(�! �)! (�! o): ! (� ! o)! o
3777775264 de�nitionsymbol :
ontent : see 1.2 375

26664 des
riptionitem :format : name
ontent : surje
tive 377752666664 presentationsymbol :format : TEXmode : pre
ontent : nwp
3777775 264 assertionstatus : theorem
ontent : see 1.2 375" prooftheorem : #26664 proof � obje
tproof :format : sket
h
ontent : \Diagonalization00 37775Figure 4: Example Re
ords for \surje
tive" and Cantor's TheoremThe relations in Fig. 2 
ontain the data for the list-valued slots in the primaryobje
ts. When we upgrade the database model to an obje
t-oriented paradigm,e.g. the emerging standard OQL, the binary many-to-many relations will berepresented as methods.de�nition-entailment A symbol may be primitive (in whi
h 
ase its statusmust be primitive) or de�ned. In the latter 
ase, it 
an have more thanone de�nition, all of whi
h must be proven equivalent.MBase stores theseequivalen
e theorems as the set of entailment theorems for a given symbolgiven by the relation def-entails, where the value of the theorem attributemust be of the form \Item ) Entailed-Item".The DBMS ensures that for any de�ned symbol, the def-entails rela-tion must be 
onne
ted on the set of its de�nitions (i.e. any pair (d; d0) ofde�nitions must be in the transitive 
losure of de�nition-entailment).depends-on/lo
al-in These relations spe
ify dependen
y and lo
ality infor-mation for primary knowledge elements. These are invaluable for de�nitionand proof expansion, e.g. during proof veri�
ation and for stru
turing theknowledge in the repository (see se
tion 2.4).A
tually, this relation is 
urrently implemented by sub-relations def-de-pends-on, proof-depends-on, and 
ontains, whi
h make expli
it whi
hsymbols/lemmata are used in a de�nition or assertion, and a relation theory-depends-on, whi
h spe
i�es the inheritan
e relation among theories.
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al Knowledge and Context 122.2. Human-Oriented InformationIn this se
tion we will address the database fa
ilities that provide the knowledgene
essary for presenting the primary knowledge to humans, whi
h will serveas input to mediators between the MBase and the presentation servi
es. Theintention of storing su
h knowledge (even the 
hoi
e of the mediator itself) ina 
entralized knowledge base server is that this information serves only as adefault, whi
h 
an be overridden by lo
al personal preferen
es. The mediators,whi
h we envision asOz fun
tors (Ozlets) are a good tool to implement a 
exibleand 
ustomizable presentation 
omponent.des
ription This relation annotates primary obje
ts with des
riptive strings,the format slot spe
i�es whether the string is a proper des
ription, a name(e.g. for a named theorem like Gentzen's \Hauptsatz"), keywords and thelike. They give sets of supplementary (administrative and sear
h) informa-tion for the obje
ts.presentation These obje
ts represent the presentation information for sym-bols in various natural languages, presentation formalisms (su
h as ASCII,MathMl (37), LATEX, HtML (50), . . . ) or fonts. It is a 
entral 
on
ernin MBase to separate 
ontent information from presentation information,therefore, we have not in
luded the presentation information into the sym-bols themselves.As we have mentioned above, the primary interfa
e language for MBaseis the Xml-based OMDo
, whi
h is geared towards semanti
al markup. Thepresentation markup in formats as the ones mentioned above is often gen-erated using a so-
alled Xsl (20) style sheet (i.e. a set produ
tion rulesfor presentation markup) by an Xsl transformer (the rule interpreter).The up
oming generation of Internet browsers like Mozilla, Nets
apeNavigator 6, or MS Internet Explorer 5 
ontain integrated Xsltransformers and 
an thus be used to view the presentation form of theOMDo
 representations dire
tly.The information needed for the Xsl style sheets is partly global (mostlypertaining to the grammar of the format and the default appearan
e ofsymbols; this is spe
i�ed by the style sheet designers), and partly lo
al tothe symbols (a spe
ialized produ
tion rule whose head mat
hes the Xmlelement for the respe
tive symbol; and 
an spe
i�ed in the presentationobje
ts). Thus a presentation obje
t normally 
ontains an Xsl produ
tionrule tailored to a parti
ular format.Thus for ea
h OMDo
 do
ument D generated by the appropriate mediatorfor the intera
tion with a human user, MBase also generates a spe
ializedstyle sheet from the presentation obje
ts of all the symbols used in D.Together these result in a presentation in the desired output format.MBase also supports an abbreviated form of the presentation obje
ts, that only
ontains a string (e.g. the string \subseteq for representing the subset relation
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al Knowledge and Context 13� in TEX) and a mode token whi
h 
ontrols whether the string is inserted ina pre�x/in�x/post�x way. The appropriate Xsl-presentation is then 
omputedfrom these values on the 
y. Finally, if the mode is def, then the presentationobje
t 
an be an Oz-fun
tor that produ
es the presentation obje
t from thene
essary arguments. This possibility for writing presentation obje
ts is more
exible than the one above, but 
ertainly less de
larative and portable.2.3. Ma
hine-Oriented InformationNext to the presentation of knowledge to human users, the presentation of for-mulae to di�erent mathemati
al servi
es is a 
entral issue in MBase. Di�erenttheorem provers 
urrently have vastly di�ering 
ommuni
ation formalisms, whi
hmay di�er both in the underlying logi
, as well as in the 
on
rete synta
ti
al rep-resentation used. The latter issue is a largely software-te
hnologi
al issue that
an be solved by either standardizing the language (e.g. by our OMDo
 format),and/or by the mediator approa
h (implementing a translating mediator for anylanguage pair). The issue of the underlying logi
 is more serious, sin
e the na-ture of the logi
 dire
tly in
uen
es the appli
ability and eÆ
ien
y of a givenmathemati
al servi
e.In se
tion 4 we present a system of languages inter
onne
ted by relativiza-tions, i.e. logi
al morphisms that map formulae and proofs from more expressivelanguages to less expressive ones. Sin
e so far, all o

urring logi
al morphisms
ould be given in terms of de�nition expansions, MBase provides a grouping
onstru
t for logi
al morphisms, and a mediator that does de�nition expansionwrt. to this set of de�nitions. In this ar
hite
ture, MBase keeps a table thatmaps mathemati
al servi
es to logi
 morphisms, and when it outputs formulaeto this system �rst applies the appropriate logi
 morphism (by the relativizationmediator) and then the appropriate syntax generator for this system. For inputfrom another mathemati
al servi
e, it only uses the parser.Furthermore, many of the mathemati
al servi
es that will use MBase as
lients maintain spe
ialized mathemati
al knowledge whi
h they need for the-orem proving. For instan
e, InKa and �Clam annotate terms with so-
alledwave-fronts/holes, or more generally 
olors. Ta
ti
al theorem provers need tokeep store and retrieve their ta
ti
s, whose format di�ers from system to sys-tem. Proof planners like 
mega, Clam or �Clam furthermore have spe
ializedmethods and 
ontrol knowledge. Proof presentation systems like Proverb (34)need to store linguisti
 knowledge about the mathemati
al 
on
epts they presentin natural language.All of this \private" supplementary information shares the fa
t that it is in-timately 
onne
ted to the knowledge elements already in MBase. Moreover,most of this knowledge is now stored in spe
ial �les in the respe
tive systems.Therefore MBase o�ers the possibility to store these �les in spe
ial knowledgeelements that 
an store long byte strings. Storing this knowledge in MBase asopposed to storing it in the servi
e has the advantage that the knowledge 
an
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ipate in the stru
turing me
hanisms provided by MBase, thus enabling\just-in-time" loading of the ne
essary information. Note that MBase does notmake an eÆ
ient management in the theorem prover unne
essary, but only givesthe ne
essary infrastru
ture to 
ope with large sets of information.Over time, the general availability for study of the data for private annotationsmay even lead to 
ross-system adoption of the underlying intuitions and in thelong run even to standards in representing the involved knowledge.2.4. Stru
turing the Knowledge baseIn almost all library systems of proof development environments (see e.g. (IMPS;IsabelleKB; ILF; PVS)), the set of knowledge elements is stru
tured by a so-
alled \theory" 
on
ept. Theories group sets of knowledge elements into subsetsthat e.g. are to be loaded at the same time. In some systems, like 
mega andImps (23), theories are simple sets of elements, in others, like Isabelle or Pvs,they 
an be parameterized. In MBase we use te
hniques from the �eld of al-gebrai
 spe
i�
ation (see for instan
e (45)), where the stru
ture of large-s
aleformalizations (of the intended meaning of programs) have been studied in de-tail. Con
retely, we adopt the 
on
ept of a \development graph" put forward byDieter Hutter (35), sin
e this supplies a simple set of primitives for stru
turedspe
i�
ations and also supports management of theory 
hange. Furthermore, itis logi
ally equivalent to a large fragment of the emerging Casl standard (17)for algebrai
 spe
i�
ation (see (6)).A development graph spe
i�es the large-s
ale stru
ture of a set of theories(i.e. sets of symbol de
larations, their de�nitions, and axioms). It is a graphwhere the nodes are theories and the ar
s are given by theory morphisms. Thelatter 
ome in two 
ategories: import morphisms and in
lusions, both ofwhi
h 
an be lo
al and global. A set of import morphisms de�ne (part of) atheory by spe
ifying what material (symbols, de�nitions, axioms) is importedfrom existing theories. Sin
e the material 
an be imported modulo a languagemorphism (i.e. it is translated before it is in
luded into the new theory), this is avery powerful de�nition me
hanism. We 
an for instan
e de�ne a theory of ringsgiven as a tuples (R;+; 0;�; �; 1) by importing from a group (M; Æ; e; i) via themorphism fM 7! R; Æ 7! +; e 7! 0; i 7! �g and from a monoid (M; Æ; e) via thefM 7! R�; Æ 7! �; e 7! 1g, where R� is R without 0 (as de�ned in the theory ofmonoids).In
lusions are of a di�erent nature: instead of de�ning a theory, they statestru
ture information that 
an be inferred about a theory hierar
hy. Like theimport morphisms, in
lusions are theory morphisms (the translations of all the-orems of the sour
e theory must be theorems of the target theory). Only that in
ontrast to the former, who have this property by de�nition, the in
lusions haveto be veri�ed. On
e they are established, they 
an be used to transport resultsand proofs from the sour
e to the target theory, for instan
e, many algebrai
 do-mains like groups have a self-in
lusion that is indu
ed by the involution with the
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al Knowledge and Context 15inverse element. In many proofs, this in
lusion 
an be used to transport proofsfor symmetri
 
ases instead of re-proving them. Moreover, the stru
ture of thedevelopment graph 
an be used to support a \management of 
hange" (see (35)).For instan
e it is often ne
essary during theory exploration and development to
hange de�nitions and axioms, invalidating proofs of theorems that use them.The theory stru
ture 
an be used to spe
ify the dependen
y relations and savevaluable theorem proving time, the more (redundant) stru
ture we have in adevelopment graph, the more reusable and less brittle proofs be
ome. To pin-point the the 
ontribution of individual axioms and de�nitions, the developmentgraph divides morphisms and in
lusions into global and lo
al variants. The lo
alversions only 
on
ern the axioms and de�nitions dire
tly de�ned in the sour
etheory, as a 
onsequen
e, the global ones 
an be seen as transitive 
ompletionsof the lo
al ones. The user only spe
i�es the global morphisms, while the sys-tem mainly works with the lo
al de
ompositions that allow a more �ne-grainedanalysis of the theory stru
ture.MBase provides data stru
tures for the development graph and implementsHutter's \management of 
hange"Like the library systems of many pra
ti
ally used dedu
tion systems, MBaseviews abstra
t data types as abbreviations for sets of de�nitions, axioms andtheorems. For example, the abstra
t data type Nat that is spe
i�ed by the 
on-stru
tor de�nitions for zero and the su

essor 
orresponds to the well-knownPeano Axioms for the natural numbers. If we also spe
ify the sele
tor fun
tion\prede
essor" for the su

essor fun
tion, then e.g. the 
orresponding 
ommuta-tion laws 
an be automati
ally generated. Again, we represent this by introdu
ingdata base obje
ts for ADTs and group the 
orresponding de�nitions and usingthe lo
al-in for grouping. Other de�nition me
hanisms, su
h as those for e.g.the various 
lasses of re
ursive fun
tions 
an be handled in the same way.3. Distributing MBaseIn this se
tion, we will extend theMBase data model presented above to supporta distributed data model, and we will spe
ify some of the management routinespertaining to distribution.With the distribution MBase supports repositories from the ar
hive serverlevel, where large parts of formalized mathemati
s are kept 
entrally, to the per-sonal level, where a resear
her has a personalMBase to manage her mathemat-i
al theories under development. Inbetween there may be workgroup or instituteservers, that support 
ollaborative development of mathemati
al theories.To get a feeling for the requirements of distributingMBase, let us take a lookat a likely resear
h 
ommuni
ation s
enario: We will �rst des
ribe the 
ommu-ni
ation pattern as it 
ould have happened in the era when mathemati
s wasdone with pen and paper (around 2001), and then model it using distributedMBases (about 2005).
lassi
al, see Fig. 3 Resear
her R works on Theory T together with his 
ol-
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al Knowledge and Context 16league R0 at institute I. The theory T is a body of mathemati
s laid downin an arti
le A published in journal J . Now, R extends theory T by a newde�nition D (say for a mathemati
al obje
t O), proves a set P of theoremsabout O, and 
alls the resulting extended theory E. After that, R tells her
olleague R0 at I about D and P (say by 
ir
ulating a memo in I), whogets interested and proves a set P 0 of useful properties of O. Together, Rand R0 put the theory E into �nal form F , and submit it to journal J . Thisa

epts F and publishes it.
J I R

R0submit F = E + P 0a

ept F
ir
ulate E = D + Psee E
ir
ulate P 0Figure 5: Classi
al Resear
h Cooperationwith MBase, see Fig. 3 In 2005, J and I have joined the MathWeb initia-tive, in parti
ular, J has established an MBase server MJ for the journalJ and has formalized (with the help of resear
hers from I) theory T , whi
hnow resides in the MBase server MJ . Furthermore, the institute has itsown departmentalMBaseMI and the resear
hers R and R0 have the per-sonalMBasesMR andMR0. Now, R develops the formalization FD of O,stores it in MR and formalizes the set P of theorems by formalizing themand formally proving them (yielding FP in MR). To do so, R may needto revise the initial version of D several times in order to be able to provethe desired theorems (reproving the already obtained results that dependedon a previous version of D every time). This pro
ess will be supported byMBase based on te
hniques presented in (35), but this is outside of thes
ope of this arti
le. Instead of sending around an internal note about Dand P in I, R moves their formalizations FD and FP into the instituteMBase serverMI, from where R0 
an import them into his personal mbaseMR0. Alternatively, R 
ould leave FD and FP in MR and tell R0 person-ally about them, allowing him to import them fromMR intoMR0; but thisis a matter of institute poli
y, whi
h we will not address in this arti
le. Onthis basis R0 formally proves FP 0, and adds it to theory FE, yielding FFthe formal version of theory F . Then R and R0 submit F to journal J , whoevaluates it (possibly via his own personal MBase) and �nally a

epts F .To publish F on MJ , it requests FF from MI, whi
h moves it there.We believe that the latter (more 
ompli
ated) pi
ture is better than the sim-
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MJ
I

MI
R MR

R0 MR0
formalize D,prove P

see FE,prove FP 0provide
request Fsubmit F = E + P 0a

ept F

move FFrequest FF move FE = FD + FPimport FEmove FP 0
Figure 6: Resear
h Cooperation with distributed MBasesple pen-and paper method for managing, ar
hiving and 
ommuni
ating math-emati
al theories, sin
e the formalization gives more pre
ision to mathemati
alarguments and the identi�
ation of mathemati
al 
on
epts. In pen and papermathemati
s intuitively 
lear and 
ommonpla
e 
on
epts like the natural num-bers (IN) are often used without a pre
ise de�nition, whi
h 
an even result inmis-quotation or mis-appli
ation of theorems, sin
e it is un
lear whether zero isin
luded in the set IN.Many of the advantages that 
an be reaped from the MBase s
enario formathemati
s 
ome from the hyperlinking possibility given by distribution andInternet-availability of MBase { most importantly by the unique referen
ings
heme { developed in this arti
le.There are other issues to be 
onsidered for this vision: For instan
e, mathe-mati
s 
ommuni
ation is very do
ument-
entered (arti
les, books, te
hni
al re-ports), and there should be a way to map MBase 
ontents to some form ofdo
uments. In (43) we develop an Xml-based meta-language OMDo
 (this is anextension for the emerging OpenMath standard (15)) for annotating mathe-mati
al do
uments that also serves as a 
ommuni
ation interfa
e to MBase.As a 
onsequen
e it will be possible e.g. to generate 
ustomized OMDo
 do
u-ments from MBase, whi
h 
an then be presented in one of the more standardpresentation media (e.g. LATEX, HtML, or MathMl).3.1. The Distributed Data Base ModelFor distributing MBase, we make four assumptions (we will relax the last twobelow):A1 the distributedMBase pro
esses 
an be rea
hed via the Internet (by URL),
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al Knowledge and Context 18A2 they are essentially uniform; e.g. realized by the same program, or at least
ommuni
ate by the same proto
ol (see (5) for one based on Kqml).A3 primary obje
ts are realized only on
e in the network of MBases. Withthis we mean that there is one \de�ning" instan
e of ea
h primary obje
t.As a 
onsequen
e, every primary MBase obje
t has a unique des
ription:a pair 
onsisting of the URL of theMBase and the unique identi�er of theobje
t there.A4 primary obje
ts are never 
hanged. This assumption is useful, sin
e it makes
a
hing and maintenan
e mu
h simpler. It is reasonable, at least for pub-lished mathemati
s, sin
e 
hanging e.g. a de�nition or theorem that othermathemati
al obje
ts depend on is desasterous for overall 
onsisten
y.Note that we 
annot make a unique representation assumption similar to A3 forrelations between obje
ts. For instan
e the de�nition D of the obje
t O from theexample above will probably 
ontain symbols that reside inMI orMJ , therefore,the depends-on relation for D 
annot be lo
alized to MR. The solution here isto introdu
e referen
e obje
ts into MR, that point to obje
ts, say in MI orMJ .Definition 3.1 (Referen
e Obje
t): Referen
e obje
ts are database ob-je
ts that refer to primary obje
ts lo
ated in remote MBases. Te
hni
ally, theyare pairs (M; I) that 
onsist of the URL M of the remote MBase and theunique obje
t identi�er I there.IfM is the 
urrentMBase and I is the unique identi�er of a referen
e obje
t(M0; I 0) in M (i.e. instead of a primary obje
t itself, M has a referen
e to anobje
t O stored in the remote MBaseM0 under the unique identi�er I 0), andM is queried for I, thenM, 
an forward the query (e.g. using theKqml forwardperformative; 
f. (24)) to M0 as a query for I 0, to whi
h M0 would answer bysending O to the original querying agent. Of 
ourse there is no guarantee thatI 0 points to a primary obje
t in M0, so that the pro
ess might be iterated.Therefore, M also tells the querying agent that it only has a referen
e obje
t,so that it 
an { e.g. if it is also an MBase { update referen
e information.3.2. Managing distributed MBasesLet us now look at the management of distributed MBases. In this arti
le, wedo not spe
ify poli
ies for managing MBase 
ontents, but dis
uss the infras-tru
ture and pro
esses ne
essary to eÆ
iently manage the distribution aspe
tsof a distributed mathemati
al knowledge base.One of the most basi
 pro
edures is that of moving data betweenMBases, e.g.of the theory FF fromMI toMJ after the submission des
ribed in our s
enario.This is realized by \moving" the primary obje
ts and parts of the relations fromMI to MJ .Con
retely, a primary obje
t O (with unique identi�er I) is moved from M
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reating a new obje
t O0 (with identi�er I 0) in M0, and repla
ing Oin M by a referen
e obje
t O0 = (M0; I 0). Now, all tuples in relations that arean
hored in O, are moved to M0 by deleting the tuple in M and augmentingthe 
orresponding relation in M0.Definition 3.2 (An
hored): Every MBase relation de�ned in se
tion 2 hasan an
hor feature. This is the �rst feature in the attribute value-maps (e.g.in Fig. 2.1) of the database re
ords representing the relations. If f is the an
horfeature of a relation R, then we say that R is an
hored in f.With assumption A4, we 
an use a very simple model for 
a
hing. Sin
eprimary obje
ts never 
hange, they 
an be 
a
hed, and 
a
he-
onsisten
y is nevera problem. To allow 
a
hing, we simply relax assumption A3, and permit 
a
hed
opies of primary obje
ts to exist in other MBases. We still insist on a variantof A3, i.e. that there is only one de�ning instan
e of a given primary obje
t;all others are 
alled 
a
hed.We implement the 
a
hing s
heme by augmenting the primary obje
ts by a 
ag
a
hed that marks a primary obje
t as a 
a
he 
opy obje
t or as a de�ninginstan
e, and the referen
e obje
ts de�ned in 3.1 by a 
a
he referen
e featurethat points to (
ontains the unique identi�er of) a 
a
he 
opy obje
t. We assumethat the database maintenan
e algorithm, whenever it de
ides to make a 
a
he
opy of an obje
t O (
opying it fromMBaseM), also 
opies fromM all relationtuples an
hored at O and augments the lo
al relations with them. Now, theknowledge base algorithms 
an a

ess 
a
he obje
ts just like de�ning instan
es:whenever they hit a referen
e obje
t, they either a

ess the 
a
he 
opy obje
tspe
i�ed in the 
a
he referen
e feature or (if that is empty) a

ess the remote
opy of the obje
t. Ca
hed obje
ts 
an be removed without loss of informationas long as the 
a
he referen
e feature of the 
orresponding obje
t is reset.Sometimes there are situations where it is ne
essary to 
hange a de�nition,e.g. if an error o

urred in the formalization. We have assumed in A4 thatprimary obje
ts may not 
hange, so the only way to repair the error is to 
reatea new de�nition obje
t in the knowledge base and only use that subsequently.This is possible and even feasible, sin
e mathemati
al 
on
epts in MBase arenot primarily identi�ed by their te
hni
al names but by their identi�ers (whi
hwill be di�erent by A3) even if the te
hni
al names 
oin
ide. We 
ould evengive the old obje
t the status \obsolete" to warn anyone against using the oldde�nition. Even if this is su

essful, it is in prin
iple impossible to determinewhen it is possible to delete the old de�nition, sin
e other MBases might stillbe referen
ing it.A similar situation o

urs when a primary obje
t is moved from MBase Mto M0, and is not referen
ed in M anymore (this will frequently happen, if
ompleted theories are moved to higher-levelMBase servers, su
h as the ar
hiveserver MJ in our s
enario). Therefore an MBase M keeps a re
ord of all theMBases referring to it: we 
all those MBases dependent on M. When anMBaseM0 
reates a referen
e obje
t pointing to a primary obje
t inM, and it
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al Knowledge and Context 20is not already dependent on M, then M0 sends M a message introdu
ing itselfas a new dependent. This list of dependent MBases allows two optimizations:1. WheneverM moves an obje
t O to someMBaseM00, 
reating a referen
eobje
t (n;M00; I 00), then it 
an send the new lo
ation of O to all dependentMBases, asking them to update their referen
e obje
ts and thus shieldingitself from future requests to O.2. If M itself does not referen
e an obje
t O, it 
an ask all its dependentswhether they do. If not, M 
an delete O.In parti
ular if anMBaseM does not have dependents, then we are totally freeto 
hange, delete, or otherwise manipulate data, as long as internal 
onsisten
yis guaranteed.3.3. Managing Context with MBaseCon
eptually, there are two kinds of MBases that di�er in their poli
y towardsdata 
hange, we 
all them ar
hive and s
rat
h-pad MBases.1. An ar
hive MBase is epitomized by the Journal MBase MJ in our s
e-nario above, it ar
hives un
hanging mathemati
al knowledge and is refer-en
ed by many other MBases.2. A s
rat
h-pad MBase is epitomized by the personal MBases MR andMR0, these do not have any dependents and are primarily used for theorydevelopment.Sin
e they have di�erent purposes, they have will have di�erent stru
tures. Forexample, the amount of data 
ontained in an ar
hive server will in general bemu
h larger, making sophisti
ated database support ne
essary, while s
rat
h-paddatabases will have to support theory revision algorithms like the \managementof 
hange" (35) alluded to in se
tion 2.4, but the InstantDB database support
urrently implemented in MBase may be suÆ
ient.The two 
lasses ofMBases will have radi
ally di�erent poli
ies towards delet-ing and 
hanging data, one way to implement these is to disallow dependentMBases in s
rat
h-pads.In parti
ular, the lightweight s
rat
h-pad MBases 
an be used to emulate
ontext server agents. Whenever a set of mathemati
al servi
es needs a notionof shared 
ontext (as opposed to a private notion of state, e.g. in a 
onstraintsolver servi
e), then they 
an request an MBase to store it, e.g. as a spe
ialtheory. Whenever a parti
ipating servi
e needs to a

ess the 
ontext, it will justissue a knowledge base query or manipulation 
ommand.This approa
h, where the 
ontext is stored externally to the parti
ipatingmathemati
al servi
es is more 
exible (e.g. servi
es 
an be 
alled into, or leavethe problem solving at arbitrary times) than a more 
lassi
al approa
h, where
ontext is stored and manipulated inside the servi
es. Furthermore, it redu
es
ontext manipulation to knowledge base a

ess and thus redu
es implementation
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omplexity. Finally, knowledge base servi
es 
ould ultimately o�er added-valueservi
es, su
h as proxying or pro-a
tive lookup.4. Logi
s, Morphisms and MBase Languages

ZFSZFT SetRZF�![Kohlh94℄ [Ohori95℄BMVMV

iZFiT Set iRZFFigure 7: Hierar
hy

The logi
al language supported by MBase is a poly-morphi
ally typed, sorted re
ord �-
al
ulus modeled af-ter the mathemati
al everyday language (often 
alled\mathemati
al verna
ular", e.g. (19)). It is a joint gen-eralization of the ML-polymorphi
 �-
al
ulus with kindsas used in Isabelle and Hashimoto & Ohori's poly-morphi
 re
ord 
al
ulus (47). Re
ords allow a 
lean for-malization of mathemati
al stru
tures, su
h as groupsor �elds, polymorphism is needed to reuse de�nitionsand theorems in the knowledge base and ensure a mod-ular stru
ture of the theory. Finally the me
hanism of\kinds" adds to the pra
ti
al expressivity of the poly-morphism and is used in many theorem proving sys-tems (�Clam, Isabelle,. . . ). Finally, the MBase logi
supplies the infrastru
ture for sorted �-
al
uli (see se
-tion 5). Con
eptually, sorts are unary predi
ates (
or-responding to often-used sets in mathemati
s) that aretreated spe
ially in the inferen
e pro
edures (sorted mat
hing and uni�
ation).This added stru
ture leads to a more 
on
ise representation and a more guidedsear
h. For 
lients that 
annot manipulate sorts, types, re
ords, or higher-orderquanti�
ation, the mediators built into MBase 
an relativize these languagefeatures away, retaining the intended meaning.We will use a variant of the theory interpretation approa
h proposed in (22)for relativizationmappings, that 
an be used to transport meanings and proofsbetween logi
al formalisms. In fa
t, in the rest of the arti
le, we will des
ribea whole hierar
hy of representation languages (see Fig. 7), where relativizations
an be used to arrive at various representation formalisms for mathemati
s, downto axiomati
 (Zermelo-Fraenkel) set theory. Before we formally de�ne the notionof relativization by the 
on
ept of logi
al morphism in the next se
tion, let usdis
uss the 
onsequen
es for the ar
hite
ture of MBase.The de�ning intuition for logi
 morphisms is thatLogi
 Morphisms Transport Proofs: Let F :S �! S 0 be a logi
morphism and A an S-theorem, then F(A) is an S 0-theorem.This already suggests the logi
al stru
ture of a mathemati
al knowledge base:Orthogonal to the usual theory hierar
hy (indu
ed by theory interpretation mor-phisms; we will not go into in this arti
le, see (22)), there is a hierar
hy of logi
alsystem indu
ed by logi
 morphisms. In Fig. 7, we have spe
i�ed some of the log-i
al systems we will dis
uss in this arti
le.
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al knowledge 
an be spe
i�ed in any of the logi
al systems; it
an be queried and retrieved in any logi
al system that is downward a

essiblefrom this one. Furthermore, 
ommuni
ation of mathemati
al software systemsis possible by way of the \least 
ommon denominator logi
". This may seem asa severe restri
tion of appli
ability of the approa
h, but it is not sin
e the set oflogi
al systems and morphisms in the hierar
hy is not ne
essarily �xed:� A new logi
al system 
an be in
orporated by spe
ifying a logi
 morphismto any of the existing systems.� A new logi
 morphism 
an be added, if it is 
onsistent with the informationalready present in the stru
ture, i.e. if it is redundant .Of 
ourse these hierar
hy extensions generate proof obligations (determining thelogi
 morphism property and redundan
y), whi
h will have to be supported ina system like MBase. We leave a dis
ussion of this to another arti
le.The pra
ti
al usefulness of a language hierar
hy will depend very mu
h on theexisten
e of su
h redundant morphisms. In parti
ular for the \least-
ommon-denominator" problem between languages L and L0 we 
an have two kinds ofsituations:� If there is a good and well-understood way to translate formulae from lan-guage L to L0, then we 
an implement this as a redundant logi
 morphismin MBase bypassing the need of an intermediate \
ommuni
ation logi
".Moreover, making the logi
 morphism available in MBase will allow otherusers to use it.� If there is no su
h translation, or if it is very domain-spe
i�
, then (of
ourse) logi
 morphisms will not help (only further resear
h into the se-manti
 relation between the logi
s and possible translations will).In the rest of this se
tion, we will make the relativization approa
h 
on
rete.We will �rst look at the elimination of sorts from sorted �rst-order logi
 byrelativization. Based on the this guiding example, we we dis
uss the logi
alfoundations and the relation to set-theoreti
 semanti
s in se
tion 4.2. We will
on
lude this se
tion by a dis
ussion of the relativization of higher-order logi
into �rst-order logi
, in order to 
omplete the lower half of the diagram in �gure 7,before turning to the upper half in se
tion 5.4.1. Example: Relativizing Sorted First-Order Logi
In this se
tion, we will 
onsider relativization from sorted �rst-order logi
 to
lassi
al �rst-order logi
. We will use the simply typed �-
al
ulus (32) as ameta-logi
al framework for representing the logi
al systems, sin
e it gives ussubstitution, repla
ement and the treatment of bound variables for free. Thisis only a notational 
onvenien
e and of no fundamental importan
e. In parti
-ular, this does not make any prerequisites on the part of the logi
al systemslike �rst-order logi
 presented in this 
hapter. FOL = (LFOL; ND(FOL)) is the
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al Knowledge and Context 23FOL = (LFOL; ND(FOL))Signature � Type Individualso Type Truth Values^ o! o! o Conjun
tion: o! o Negation�� (�! o)! o Universal Quanti�
ationLFOL = well-typed formulae of type oND(FOL) ... ...`̀�� ��B ��E`̀�� BA `̀�� AX ��I`̀�� ��AFigure 8: First-Order Logi
logi
al system, where the logi
al part of the signature 
onsists of the type 
on-stants o and � (for truth values and individuals) and the term 
onstants ^;:,and � (see Fig. 4.1, all other 
onne
tives 
an be de�ned from : and ^, by DeMorgan rules, and quanti�
ation 
an be regained by treating 8XA as an ab-breviation of �(�XA)). The signature of �rst-order logi
 
an 
ontain furthernon-logi
al 
onstants (
alled parameters) that model mathemati
al stru
tures.In the following, all arguments and 
onstru
tions will be parametri
 in the 
hoi
eof parameters in the signature, and we will use the more pre
ise FOL(�) for theinstan
e of FOL that 
ontains the parameters de
lared in the signature �.C = ND(FOL) is the well-known 
al
ulus of natural dedu
tion introdu
ed byGerhard Gentzen in (29). We will use `̀�� to abbreviate `ND(FOL) (in Fig. 4.1, wehave only depi
ted the quanti�er rules, sin
e they will be the only interestingones for the dis
ussion in this arti
le).The logi
al system SFOL (see Fig. 4.1) is an extension of FOL, where thesignature is extended by an order-sorted set S of sorts, a sorted quanti�er �� anda set of 
onstant- and subsort de
larations (again, we will make use of higher-order abstra
t syntax here and write the traditional 8XA B as ��A (�X B).).The language LSFOL is the set of well-sorted formulae, i.e. formulae, where forall appli
ations f(a) the argument a has a sort that is an argument sort ofthe fun
tion f . We spe
ify this by the sort judgment � s̀� A::A (A has sort Aunder the sort assumptions for the variables in A given in the variable 
ontext�). The subsort relation and the property of being well-sorted are given by thejudgments s̀� A � B and � s̀� A::A , whi
h are proven by the subsorting andwell-sortedness sub-
al
uli of ND(SFOL). We will use `̀s� for the propositionalpart of ND(SFOL).The logi
al morphismRS from SFOL to FOL interprets the sorts in S as unarypredi
ates (parameters of type �! o) in FOL. Note that with the de�nitions in
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al Knowledge and Context 24SFOL = (LSFOL; ND(SFOL)) = FOL+Signature � A ; B ; : : : �! o Sorts b= Subsets of individuals[A � B ℄ Subsort de
larations[
::A ℄ Constant de
larations�� (�! o)2 ! o Sorted Universal Quanti�
ationLSFOL Well-formed = well-typedSubsorting [A � B ℄ 2 �s̀� A � B s̀� A � A s̀� A � B s̀� B � Cs̀� A � CWell-sorted [
::A ℄ 2 �� s̀� 
::A �; [X::A ℄ s̀� X::A � s̀� A::B ! C � s̀� B::B� s̀� AB::CND(SFOL) � � � � `̀�� ��AB � `̀�� A::A� `̀�� BA �; [X::A ℄ `̀�� AX� `̀�� ��AAFigure 9: Sorted First-Order Logi
Fig. 4.1, the universal 8XA A in LSFOL(�) is relativized to the FOL(�)-formula8X A (X) ) A (if A is a base sort). This is just the well-known relativizationmorphism for sorted �rst-order logi
s. Fun
tion sorts are relativized into �rst-order assertions about the domains and ranges of fun
tions. The se
ond part ofFig. 4.1 de�nes the signature axioms generated by a de
laration in a sortedsignature �. We will denote the set of all signature axioms by RS(�). Similarly,we 
an de�ne the set RS(�) of sort assumptions generated by a sorted 
on-text � by setting RS([X::A ℄) := RS(A )(X) for a de
laration [X::A ℄, we will useRS(�;�) for RS(�) [RS(�).RlS :LSFOL �! LFOLSignature � RS -imagea; f; g; : : : a; f; g; : : : 2 �A ; B ; : : : PA ;PB : : : 2 �A ! B �F�!� (8XRS(A )(X) )RS(B )(FX))�� �S�!o �T�!o 8X� SX ) TXSignature � Signature Axioms RS(�)[A � B ℄ PA � PB[
::A ℄ RlS(A )(
)Figure 10: Formula Relativization from SFOL to FOL: RlS
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an
e is that they en
ode all the information of the sorted signa-ture in �rst-order logi
, so that we have the following theorem:Theorem 4.1 (Sort Relativization Theorem):If � `̀�� A, then RS(�;�) `̀�� RS(A)The proof is a dire
t 
onsequen
e of the de�nition of RlS , de�ned in Fig. 4.1:Let D: � `̀s� A, then DSortsND(SFOL):RS(�;�) `̀�� RS(A), sin
e RlS is a 
al
ulusmorphism from SFOL to FOL.All the dis
ussion so far has been purely synta
ti
, we will 
ome to semanti
questions in the next se
tion.[A � B ℄ 2 �s̀� A � B RS(�;�) `̀�� PA � PB sin
e (PA � PB) 2 T�s̀� A � A PAX `̀�� PAX`̀�� PAX ) PAX`̀�� 8X PAX ) PAXs̀� A � B s̀� B � Cs̀� A � C transitivity of )[
::A ℄ 2 �� s̀� 
::A RS(�) `̀�� PA
 sin
e PA
 2 RS(�)�; [X ::A ℄ s̀� X ::A R(�);PA(X) `̀�� PAX� s̀� A::B ! C � s̀� B::B� s̀� AB::C RS(�;�) `̀�� 8X PBX ) PC(RS(AX))RS(�;�) `̀�� PB(RS(B)) ) PC(RS(AB)) RS(�;�) `̀�� PB(RS(B))RS(�;�) `̀�� PC(RS(AB))� `̀s� ��AB � s̀� A::A� `̀s� BA RS(�;�) `̀�� �(�X (AX) ) (BX))RS(�;�) `̀�� AA ) BA RS(�;�) `̀�� AABA�; [X ::A ℄ `̀s� AX� `̀s� ��AA RS(�;�);PAX `̀�� AXRS(�;�) `̀�� AX ) AXRS(�;�) `̀�� �(�X AX ) AX)Figure 11: Proof Relativization from SFOL to FOL: R
S .
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al Knowledge and Context 264.2. Logi
al MorphismsThe fundamental logi
al notions for relativizations like the ones dis
ussed inthe last se
tion are logi
al systems and logi
 morphisms. For the purposes ofthis arti
le, we will 
all a pair S = (L; C) a logi
al system, if L is a logi
allanguage (set of well-formed formulae) and C is a 
al
ulus i.e. a set of inferen
erules de�ned in usual way as n-ary relations over well-formed formulae; formallyC � L� = Si2IN Li.Given a logi
al system S = (L; C), we de�ne an S-derivation D of an asser-tion A from a set H of hypothesess (written D:H `S A) as a tree D (or adire
ted a
y
li
 graph), where the leaves of D are labeled with the formulae fromH and the root is labeled with A. Furthermore, all nodes of D are labeled byassertions C and inferen
e rules R 2 C, su
h that the for the labels H1; : : : ;Hnof the daughters of a node we have R(H1; : : : ;Hn;C). Thus a 
al
ulus C de�nesa relation `S (of variable arity) on L, whi
h we will 
all the derivation relationof S. We will use the terms like S-proof (for a derivation of an assertion A fromthe empty set of hypotheses) and S-theorem (for an assertion for whi
h thereis a S-proof) in the usual way.We say that a logi
al system S = (L; C) is a subsystem of S 0 = (L0; C 0), i�L � L0 and `S�`S0 . We 
all S equivalent to S 0, i� L = L0 and `S=`S0, orequivalently, if they are subsystems of ea
h other.A 
al
ulus 
omes with a natural notion of 
omposition of derivations: IfD:H;A `C B, and E :K `C A, then we obtain a C-derivation from D andE (we denote it with D �A E) by atta
hing E at the leaf A of D; we haveD �A E :H;K `C B. Note that any 
al
ulus C 
an be augmented with 
ombina-tions of the inferen
e rules without 
hanging the derivability relation (the logi
alsystems are equivalent, whi
h really interests us for our appli
ations). We willtherefore assume that 
al
uli are minimal in the following sense: If D; E 2 C,then D �A D =2 C.Let S = (L; C) and S 0 = (L0; C 0) be logi
al systems and f:L �! L0 a totalfun
tion, then we 
all a total fun
tion g that maps S-derivations to S 0-derivationsa 
al
ulus morphism with respe
t to f, i� for any S-derivation D:H `S A, wehave g(D): f(H) `S0 f(A). A logi
 morphism F :S �! S 0, is a pair (F l;F 
)of mappings, su
h that F is a 
al
ulus morphism with respe
t to F l. We 
all Fa logi
 homomorphism, i� F 
(E �A D) = F 
(E) �F l(A) F 
(D). Note that alogi
 homomorphism is determined by its behavior on C.In analogy to the Sort relativization theorem (4.1), we have to following meta-theorem.Theorem 4.2 (General Relativization Theorem): If S = (L; C) and S 0 =(L0; C 0) are logi
al systems, R:S �! S 0 is a logi
 morphism, and H `C A, thenR(�);R(H) `C0 R(A).The existen
e of su
h theorems is the guiding intuition behind our setup of thelands
ape of representation languages in Fig. 7. Any theorem that is provable in
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al Knowledge and Context 27a higher representation language will be provable (and indeed the proof 
an be
onstru
ted by relativization) in the basi
 logi
s. Let us now investigate how we
an build logi
al morphisms.Let S = (L; C) be a logi
al system and f:L0 �! L a total fun
tion, thenf indu
es a 
al
ulus Cf on L0 by setting H `Cf A, i� f(H) `C f(A). We 
allS f := (L0; Cf) the logi
al system indu
ed by f. Moreover, f indu
es a logi
al ho-momorphism F f =:S f ! S, in the obvious way (F f = (f; g), where g is thehomomorphism on derivations indu
ed by the translation f). Note that a fun
-tion F := (F l;F 
):S �! S 0 = (L0; C 0) is a logi
al morphism, i� `S f�`S0 , or inother words, S f is a subsystem of S 0.We will 
all a set H of logi
al systems together with a set of logi
al morphismsa logi
al hierar
hy, if the set of logi
al morphisms is 
losed under 
omposition(note that the 
omposition of two logi
al morphisms is again one). The formalnotions introdu
ed so far are suÆ
ient to introdu
e a methodology of maintaininglogi
al hierar
hies. We 
an start out with a logi
al system, (say FOL as in thelast se
tion), and introdu
e another logi
al system by indu
ing it from formulamapping. ND(SFOL) is indu
ed by RlS in the following way: let us 
onsider the
ase of universal instantiation we need an ND(SFOL) rule that proves 8XA A,so we look for a ND(FOL) proof of 8X PAX ) A, we identify the smallestsubtree, su
h that all of the leaves are in Im(RlS), and arrive at the last but onein Fig. 4.1. If we pro
eed similarly with the other inferen
e rules, we arrive atND(SFOL).So we 
an see that we 
an introdu
e a new logi
al system with a logi
 morphisminto a hierar
hy by spe
ifying the language (morphism) and indu
ing the 
al
ulus(this situation is similar to the 
ase of import morphisms in the theory hierar
hyin se
tion 2.4). If we want to introdu
e a new logi
 morphism between existinglogi
al systems, we have to be more 
areful, sin
e the 
al
ulus in the sour
esystem is already �xed. In order to prove that the de�ning pair F = (F l;F 
)of mappings is really a logi
 morphism we have to 
he
k that logi
al systemindu
ed by F is a subsystem of the original target system. Note that we evenhave to 
he
k these 
onditions for logi
al endomorphisms (logi
al morphismsfrom a logi
al system to itself), sin
e we always have the identity morphism, towhi
h a new logi
al morphism has to be 
ompatible. Thus the 
ase of addinga new (redundant) logi
al morphism to a hierar
hy is similar to the 
ase ofthe theory-in
lusions dis
ussed in se
tion 2.4. We expe
t that we 
an develop a
al
ulus for the \management of logi
al hierar
hies" based on the Dieter Hutter'sideas for theory hierar
hies, but we leave that to further work.Let us now see how the ideas of linking logi
s relates to semanti
s. In thisexample, we take the semanti
s of �rst-order logi
 as given. It is just the 
lassi
alTarski-style semanti
s: A model is a pair (D�; I), where D� is an arbitrary set ofindividuals and I is a fun
tion that maps individual 
onstants in � to members ofD�, fun
tions in � to fun
tions/relations on D� (of appropriate arities). Variablesare evaluated by a variable assignment ', so that the value fun
tion I' is just thehomomorphism determined by I and '. Note that this semanti
s is absolutely
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onsistent with our 
hoi
e to take the simply typed �-
al
ulus as a meta-logi
: the
hoi
e of the universe D� determines the standard model D = fD�:� 2 T g if wetake Do := fT; Fg. n-ary fun
tions are then obje
ts of type �! : : :! �! �, andpredi
ates of type �! : : :! �! o. The semanti
s of universal quanti�
ation isregained by setting I(��) to be the predi
ate that evaluates to T, i� its argumentis T on all inputs: I'(8XA) = I'(��(�XA)) = I(��)(I'(�XA)) = T, i�I'(�XA)a = T for all a 2 D�. This is the 
ase, i� I';[a=X℄A = T, by de�nitionof the value of �-terms in the simply typed �-
al
ulus.The semanti
s of SFOL is similar and well-known from the literature. Letus for the moment forget this and see whether we 
an de�ne the semanti
s ofthe logi
al system SFOL by RS . For this we intuitively work the relativizationmapping ba
kwards.We start out with the sorts. These are members of the signature, so they shouldbe re
e
ted dire
tly in the stru
ture of the model. Sin
e they are relativized tounary predi
ates, a sort A must 
orrespond to a subset DA = fa 2 D� j I(A ) =Tg � D� of the universe D�. Now, the signature axioms tell us that if [A � B ℄ 2 �,then DA � DB and if [
::A ℄ 2 �, then I(
) 2 DA . In parti
ular, the signatureaxiom for fun
tional sorts insists on the right input-output behavior of fun
tions.For a variable 
ontext �, the 
ontext assumptions spe
ify that the 
ontext iswell-sorted.Note that this is a (a posteriori) veri�
ation of the semanti
s of sorted logi
sfrom the literature. Also note that this a

ount does not entail the fa
t that sortsare non-empty (a fa
t that is often assumed in sorted logi
s). We only know thisif there is a 
onstant de
laration for ea
h base sort in the signature.We will say that the semanti
s we have 
onstru
ted by looking at the relativiza-tion was indu
ed by RS from the the semanti
s of FOL. Now, the relativizationtheorem gives us a 
onservative extension result: If ND(FOL) is sound for �rst-order semanti
s, then ND(SFOL) is for the indu
ed semanti
s. Furthermore, thelogi
al system SFOL is not more expressive than FOL.In the spe
ial 
ase of R:SFOL �! FOL we also have the 
onverse result,(SFOL and FOL are equally expressive), sin
e there is a partial inverse RTop toRS (RS ÆRTop = IdFOL), whi
h embeds FOL as a fragment into SFOL.RTop(�)
ontains only one (base) sort Top� and one de
laration [
::Top�℄, for ea
h 
onstantof type � in � (here we use the 
onvention that Top�!� = Top� ! Top�). Thelanguage and 
al
ulus morphism are the identity. Clearly, the semanti
s indu
edfrom the semanti
s of SFOL by RTop is again the semanti
s of FOL.4.3. Relativizing Type Theory into Set TheoryThe goal of the next se
tion will be to 
onstru
t a hierar
hy of representa-tion languages 
ulminating in a high-level logi
al system MV (see se
tion 5)for formalizing mathemati
s. BMV is a joint generalization of Ohori's re
ord�-
al
ulus (47) and the sorted �-
al
ulus from (41). MV extends BMV by spe-
ialized sort ma
hinery to formalize mathemati
al stru
tures like groups. Before
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al Knowledge and Context 29we undertake that, let us brie
y 
omplete the dis
ussion of the lower half ofFig. 7.The method of relativizations 
an be used to build up the simply typed �-
al
ulus (�!) from axiomati
 set theories like ZF (25), and we will spend the restof this se
tion exploring this possibility to ground the hierar
hy of representationlanguages in set theories. Sin
e the logi
al side of this is rather standard and well-understood (see e.g. (21)) and has been formalized in several dedu
tion systems,e.g.in Otter (49) or Isabelle (48), we will only brie
y sket
h the pro
ess.Axiomati
 set theories like ZF only 
ome with a basi
 type 
 of \set" and withthe logi
al relation 
onstant 2 for element-hood. The axiomati
 method is usedto restri
t set 
omprehension to get around paradoxi
al sets like Russell's setof all sets that do not 
ontain themselves: the theories 
ontain spe
i�
 axiomsfor set 
omprehension; for instan
e there is an axiom stating that for any setsA and B , the Cartesian produ
t A � B is again a set. (Partial) fun
tions are
onstrued as univo
al relations (a relation F � A � B is a fun
tion, i� for all(x; y); (x; z) 2 F we have y = z) and fun
tion appli
ation is represented asproje
tion to the se
ond argument (f[a℄ is the (unique) b, su
h that (a; b) 2 f.)We start out by relativizing the simply typed �-
al
ulus to typed set theoryT Set, i.e. a simply typed higher-order predi
ate logi
 HOL together with a for-mulation of the ZF axioms, interpreting sets as predi
ates and element-hood aspredi
ation (i.e. A 2 S stands for S(A)). HOL is a variant of Andrews' systemQ with 
omprehension axioms instead of �-
onversion; the types make T Set
onsistent (see (3) for a dedu
tion-related introdu
tion of higher-order logi
 andthe simply typed model theory). Using the te
hniques from (21; 48), we use thesele
tion axiom from ZF to 
onstru
t a �-operator, i.e. a T Set-formula thatbehaves like the �-abstra
tion operator. Thus we 
an 
onstru
t a language mor-phism from the simply typed �-
al
ulus to T Set by mapping �-abstra
tions in�! to HOL-formulae using �. The 
al
ulus morphism is 
onstru
ted by mappingthe �-axiom s
heme of �! to the proof of the validity � in T Set.The next step is to relativize T Set (higher-order logi
) to sorted �rst-orderlogi
. For this, we 
an either use a te
hnique developed by Manfred Kerber (38)or we 
an dire
tly use the de�nition of fun
tions as univo
al relations in ZFto build a logi
 morphism from T Set to sorted �rst-order logi
. Finally, thete
hniques detailed in se
tion 4.1 get us to 
lassi
al ZF. Note that we have totake 
are to relativize the ZF axioms in the sour
e system to a form in whi
hthey are equivalent to the ZF axioms native to the target system.4.4. EvaluationThe logi
 morphisms presented in this se
tion 
an always be used to transformany proof in the sour
e system into one of the target system (this is the reasonfor the de�nition of logi
 morphism used in this arti
le), in other words, froma purely theoreti
al point of view, the expressive type-theoreti
 representationformalisms in the MV hierar
hy 
an be viewed as being only synta
ti
 sugar
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al Knowledge and Context 30to enhan
e legibility. However, from a pra
ti
al point of view, the expressiveformalisms allow for more eÆ
ient inferen
e systems that allow the knowledgebase system to give added value servi
es, that would be impra
ti
al on the levelof set theory.We believe that while axiomati
 set theories address foundational issues offormalizing mathemati
s { in the old representational tradition of 
lassi
al logi
,where there is a quest for the minimal logi
al system that is expressive enoughto en
ode all relevant problems { logi
al systems like the simply typed �-
al
ulusare more adequate to address 
omputational needs of doing mathemati
s.Orthogonal to the debate about set theory vs. type theory, there is a dis
ussion,whether or not formalized mathemati
s should be 
onstru
tive or not. We do notmake any assertion about this, but note, that it is simple to extend the hierar
hyof representation languages by providing a logi
al morphism to intuitionisti
 settheory that basi
ally introdu
es ora
les for the law of the ex
luded middle; seee.g. (33). In Fig. 7, we have marked the intuitionisti
 logi
al systems with an iand the ora
le-morphisms with dotted lines.In the next se
tion, we will 
ontinue to develop higher-level representationformalisms for mathemati
s by the logi
al morphism method dis
ussed in thisse
tion.5. Mathemati
al Verna
ularIn this se
tion, we develop the basi
 
on
epts for a representation languageMVfor formalizing and reasoning about mathemati
s in MBase. Su
h a logi
 mustbe 
exible, easy to use, and last but not least, it must support the ri
h, stru
turedinferen
e ma
hinery mathemati
ians have at their disposal. In short, it should bemodeled after the natural language of everyday mathemati
s, that is sometimes
alled \mathemati
al verna
ular" (This term is taken from N.G. de Bruin in (19),where he proposes a di�erent logi
al system with similar intentions).In 
ontrast to other authors, we 
ontend that this language 
an be modeled ina formal language, and that the system MV is a good �rst approximation. Wewill develop the syntax and operational semanti
s of MV, and show that it 
anbe grounded in simpler logi
al systems (and ultimately in axiomati
 set theory)by the te
hnique of logi
al morphisms developed in se
tion 4. This also gives usa way of relativizing all inferen
e me
hanisms, su
h as sort 
omputation, sortedhigher-order mat
hing and uni�
ation into less expressive logi
s, where they 
an(if wanted) be veri�ed.Note that the relativizations give us a form of set-theoreti
 semanti
s (bymapping formulae to set theory), whi
h 
an be shown to be equivalent to thestandard Tarski-style semanti
s for �! (see (3) for typed Henkin models and (41)for a sorted version).To get a better intuition about the language, we will develop MV in threesteps. To introdu
e the basi
 setup of the language we start out with a lan-guage BMV, whi
h extends the simply typed �-
al
ulus by sorts and re
ords in
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tion 5.1. Then we su

essively enhan
e the pra
ti
al expressive power of thelanguage by introdu
ing label-sele
tive appli
ation and abstra
tions, and depen-dent sorts as additional language 
onstru
ts using semigroups as the motivatingexample. As we will see in se
tion 5.5, this does not enhan
e the expressivityin prin
iple, but (as we will see in the mathemati
al examples in se
tion 5.4) ithas pra
ti
al advantages both for 
on
iseness of representation and in enablinginferen
e pro
edures.5.1. BMV an Expressive Sorted Re
ord-�-Cal
ulusT ::= � j o j T ! T 0 j ff`1: T 1; : : : ; `n: T ngg (Types: �; �; : : :)S ::= TopT j S ! S 0 j ff`1::S1; : : : ; `n::Sngg j S u S 0 (Sorts A ; B ; : : :)M ::= X j 
 j (MN) j �XM (Terms A;B; : : :)j ff`1 =M1; : : : ; `n =Mngg jM:`variables : X; Y; Z; 
onstants : 
;��;^;:� ::= ; j �; [M::S℄ j �; [S:> T ℄ j �; [S � S 0℄ (Signature)� ::= ; j �; [X::S℄ (Environment)Figure 12: Syntax of BMVBMV is a sorted re
ord-�-
al
ulus (see Fig. 5.1), i.e. an extension of the simplytyped �-
al
ulus by re
ords. We will use the type o for the truth values and thetype � for individuals. As a 
onsequen
e terms and formulae 
an be distinguishedby their type: the equivalents of (�rst-order) formulae are �-terms of type o,whereas terms are �-terms of type �. We will 
all a type a re
ord type, i� it isof the form ff`1:�1; : : : ; `n:�ngg, and we will use the standard re
ord sele
tionoperator \." with the assumption that it is only applied to re
ord types.Furthermore, the type system is augmented with a typed sort system, that
an be used to spe
ify domains and ranges of fun
tions and thus enables thesystem to 
ompute most of the de�nedness pre
onditions that are ubiquitous inmathemati
s fully autonomously. From an abstra
t point of view, sorts enableus to 
onstrain the set of models and restri
t the inferen
e pro
edures to thisset of models. It is important for the soundness of the system that sorts are alsotyped (see Fig. 15 for an inferen
e system that 
omputes the type of a givensort).The set of judgments (see Fig. 5.1) that are needed for the formal developmentof the 
al
ulus 
omprises the typing judgments for terms � �̀� A:� and sortss̀� A :> �, the sorting judgment (� s̀� A::A ).All of these judgments are relative to a set of global type/sort assumptions inthe signature � and the judgments for terms (sorts do not 
ontain variables)are also relative to a set of (lo
al) type and sort assumptions � (the 
ontext)for the variables.
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al Knowledge and Context 32� `̀s� M M is provable from assumptions �s̀� A � B Sort A 2 S is a subsort of B 2 S�̀� A :> � Sort A 2 S has type � 2 T (at most one per sort A )� s̀� A::A Term A has sort A assuming � and �� �̀� A:� Term A has type � 2 T0 assuming � and �Figure 13: Judgments[A::A ℄ 2 �� s̀� A::A [X::A ℄ 2 �� s̀� X::A � s̀� A:�� s̀� A::Top�� s̀� A::C ! A � s̀� C::C� s̀� AC::A �; X::B s̀� A::A s̀� B :> �� s̀� �X�A::B ! A� s̀� A::A � s̀� A=��B� s̀� B::A� s̀� A::A� s̀� A:`::A :` � s̀� A1::A 1 : : : � s̀� An::A n� s̀� ff`1 = A1; : : : ; `n = Angg::ff`1::A 1 ; : : : ; `n::A ngg� s̀� A::A � s̀� A::B� s̀� A::A u B � s̀� A::A u B� s̀� A::A � s̀� A::A u B� s̀� A::BFigure 14: Well-sorted terms in BMVThe most important judgment for well-formedness of MV expressions is theterm sorting judgment (see Fig. 14), whi
h 
lassi�es terms by their sorts. The�rst set of rules 
omes from the ordinary sorted �-
al
ulus (see (41) for anintrodu
tion), the se
ond is an obvious adaptation of Ohori's rules for re
ordtyping (47), and the third set of rules is that for interse
tion sorts from (44).The most important rule in the sorted 
al
ulus is the �rst one in Fig. 14, theterm de
laration rule. In 
ontrast to other systems it allows to de
lare and usesort information for term s
hemata like [XR � X::P℄ (doubling a real numberprodu
es an positive real), [(�X X); (�X YR)::M ℄ (the identity and the 
onstantfun
tion are monomials), and even [(�F;G;X FX �GX)::M 2 ! M ℄ (the set ofmonoids is 
losed under pointwise multipli
ation). Note that the latter give afull theory of monoid fun
tions on the reals. The term typing judgment { whi
hguarantees 
onsisten
y and termination of ��-redu
tion { is de�ned in terms of
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al Knowledge and Context 33[A :> �℄ 2 ��̀� A :> � �̀� Top�:> � �̀� A :> � �̀� B :> ��̀� A ! B :> �! ��̀� A 1 :> �1 : : : �̀� A n :> �n�̀� ff`1::A 1 ; : : : ; `n::A ngg:> ff`1:�1; : : : ; `n:�ngg �̀� A :> ff`:�; : : :gg�̀� A :`:> �Figure 15: Sort Typing[A � B ℄ 2 �s̀� A � B s̀� A � A s̀� A � B s̀� B � Cs̀� A � Cs̀� A u B � A s̀� A u B � BA 0 � A B � B 0A ! B � A 0 ! B 0 Top�!� � Top� ! Top�Figure 16: Subsortingit: if � s̀� A::A and �̀� A :> �, then � �̀� A:�. Note that the typed system isjust Ohori's re
ord 
al
ulus (47), whi
h is a 
onservative extension of the simplytyped �-
al
ulus.For su
h a 
onstru
tion, sorts must also be typed (see Fig. 15 for an inferen
esystem for the sort typing judgment). We will see in se
tion 5.5 that this givesus a 
onservative extension of the simply typed �-
al
ulus. Subsorting is usedin the signature to de
lare an intended subset relation between sorts. We do nothave to de
lare all subsort relations in the signature, sin
e some 
an be inferredby the inferen
e system in Fig. 16. Note that we do not need a subsort judgmentin a system like BMV, sin
e the notion of subsorting is in prin
iple subsumed bythe me
hanism of term de
larations ( the rules in Fig. 16 are in fa
t admissible;see (41) for details). However it is good to in
lude them expli
itly in a systemlike MV , intuitive usability and readability are important. With the methodsfrom (41), we 
an 
he
k that MV is a well-de�ned system, e.g. if s̀� A � B , thenthere is a type � 2 T , su
h that �̀� A :> � and �̀� B :> �.Now, we 
ome to the BMV 
al
ulus for validity: a variant of Gentzen's 
al-
ulus of natural dedu
tion. We will use alphabeti
 renaming and permutation
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al Knowledge and Context 34�; X::B s̀� A::A � s̀� B::B� `̀s� (�XB A)B �!� [B=X℄A � �̀� A:�! � X =2 Free(A)� `̀s� (�XAX) �!� A� `̀s� ff` = A; : : :gg:` �!� A � `̀s� ff`1 = A:`1; : : : ; `n = A:`ngg �!� AFigure 17: Operational Equality for BMV.� `̀s� �AB � s̀� A::A� `̀s� BA �; [X::A ℄ `̀s� AX� `̀s� �AA � `̀s� A =��� B � `̀s� A� `̀s� BFigure 18: Natural Dedu
tion for BMV.for re
ords, re
ord types and re
ord sorts without referen
e. Furthermore, MVknows sorted variants of ��-redu
tion like the one in (41) and furthermore �-redu
tion for re
ord 
onstru
tors (see Fig. 18). Finally, we have the introdu
tionand elimination rules for the sorted quanti�er �A . The �A (A 2 S) are logi
al
onstants of sort (A ! Topo) ! Topo for BMV, we use the usual higher-orderabstra
t syntax, where 8XA A stands for �A (�XA).5.2. Label-Sele
tive Abstra
tion and Appli
ationWhen formalizing larger bodies of mathemati
s or reusing already existing the-ories it often be
omes problemati
 to remember argument order of fun
tions.For this, programming languages like Common Lisp { where the situation issimilar { have developed the so-
alled keyword arguments, i.e. a variant offun
tion appli
ation and abstra
tion, where the mapping of arguments to formalparameters is not based on argument order, but on identi�
ation by so-
alledkeywords. This idea has been formalized by Ait Ka
i and Garrigue in the so-
alled label-sele
tive �-
al
ulus (2), whi
h extends the simply typed �-
al
ulusby label-sele
tive appli
ation and abstra
tion.In the following, we will brie
y sket
h how to extend MV analogously. For-mally, we need an additional type s
hema: � �̀! �, a 
orresponding sort s
hemaA �̀! B and two new term 
onstru
tors: [A�`B℄ for labeled appli
ation and�`XA for labeled �-abstra
tion. We will reuse the re
ord labels as sele
tionlabels, sin
e they serve a similar purpose (` and k 
orrespond to the keywords
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al Knowledge and Context 35� s̀� A::C �̀! A � s̀� C::C� s̀� [A�`C℄::A �; X::B s̀� A::A� s̀� �`XA::B �̀! A�; X::B s̀� A::A � s̀� B::B[(�`XA)�`B℄ �!� [B=X℄AX =2 Free(B)[(�`XA)�kB℄ �!� (�`X [A�kB℄) � �̀� A:� �̀! � X =2 Free(A)(�`X [A�`X℄) �!� AA 1 `1�! A 2 `2�! B =� A 2 `2�! A 1 `1�! B(�`X �kY A) =� (�kY �`XA) [A�`B�kC℄ =� [A�kC�`B℄Figure 19: A label-sele
tive extension to MV .in Lisp). Finally, we will use the n-ary notation [A�`B�kC℄ as an abbreviationfor [[A�`B℄�kC℄.The extensions to the respe
tive inferen
e systems 
an be found in Fig. 19.In parti
ular, we 
onsider labeled appli
ation/abstra
tion to be 
ommutative(they are asso
iative by 
onstru
tion, sin
e types are left-asso
iative). With thisextension, to MV we 
an for instan
e have a 
onstant div for integer divisionand express the term 5div2 as [div�dividend5�divisor2℄ or [div�divisor2�dividend5℄5.3. Dependent (Re
ord) SortsLabel-sele
tivity gives us another advantage, we 
an extend it to a system withdependent sorts, if we allow terms and labels of type � ! o to appear as basesorts lo
ally. Con
eptually, in BMV, sorts are unary predi
ate 
onstants, so thegeneralization is not as large as it seems at �rst. Let us look at the followingformalization of asso
iativity:asso
 := �SetS �OpF 8XSYSZS FX(FY Z) = F (FXY )Z (1)In BMV , this would have the sort Top�!o ! (A ! A ! A ) ! Topo for some apriori given sort A . We would however to have [asso
�SetS℄ (asso
iativity on agiven set S) to have sort (S! S! S)! Topo, i.e. to be a predi
ate on binaryfun
tions on S.
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al Knowledge and Context 36If we extend the set of base sorts by variables of type � ! o (and of 
oursemake the sort typing judgment dependent on a 
ontext �, by extending all rulesin Fig. 15 with 
ontexts in the obvious way) and add the �rst two rules in Fig. 20to MV, then we obtain the following sort derivation, whi
h gives us a sort thatdoes show the dependen
e missing above....[S::Top�!o℄; [F ::S ! S ! S℄ s̀� (8XSYSZS FX(FY Z) = F (FXY )Z)::Topo[S::Top�!o℄ s̀� �OpF 8XSYSZS FX(FY Z) = F (FXY )Z::(S ! S ! S) Op��! Topos̀� asso
::Top�!o Set��! (Set3) Op��! TopoHere (and in the following) we use A 3 as an abbreviation for the sort A ! A !A .Unfortunately, the sorts dis
ussed so far are not yet expressive enough for adire
t representation of 
ommon mathemati
al stru
tures su
h as semigroups. Asemigroup is a pair (S; Æ), were S is an arbitrary set and Æ:S � S �! S is anasso
iative binary fun
tion on S. Just as in the 
ase of asso
iativity dis
ussed inse
tion 5.3, we would like to represent S as a sort S and Æ as a fun
tion of sortS! S! S in a re
ord of type ffSet:�! o;Op:�! �! �gg. However, in thesystem developed so far, we 
annot express a re
ord sort likeSetop := ffSet::Top�!o;Op::Set ! Set ! SetggThe se
ond two rules in Fig. 20 extend MV by very dependent re
ordsorts. This name is 
hosen to resemble Jason Hi
key's \very dependent re
ordtypes" (31) and serve the same purpose, even if the formalization on the levelof sorts is mu
h more unproblemati
, sin
e there are no 
onsisten
y problemsinvolved: Well-typedness is preserved at the level of (simple) re
ord types.To make the re
ords dependent, we have to serialize the re
ord 
onstru
tionrule from Fig. 14. Te
hni
ally, we will (ab)use the 
ontext to store the ne
es-sary assumptions about the feature values and use the standard re
ord mergeoperator 
 to write down the rules in Fig. 20.Let IN be the set of natural numbers and +::N3 the addition fun
tion onnatural numbers, then we have the following sort derivation in MV.s̀� +::IN3[Set = IN℄ s̀� +::Set3[Set = IN℄ s̀� ffOp = +gg::ffOp::Set3gg s̀� Top�!o:> �! os̀� ffSet = IN;Op = +gg::Setop
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al Knowledge and Context 37�; [X::B ℄ s̀� A::A �̀� B :> � ! o� s̀� �`XA::B �̀! [`=X℄A � s̀� A::C �̀! A � s̀� C::C� s̀� AC::[C=`℄A�; [` = A℄ s̀� B::B � s̀� A::A � �̀� A :> �! o� s̀� ff` = Agg 
B::ff`::A gg 
 B � s̀� [B=`℄A::[B=`℄A�; [` = B℄ s̀� A::AFigure 20: ExtendingMV by dependent sorts
s̀� fA jPg � A � s̀� A::A � `̀s� PA� s̀� A::fA jPg�̀� P:�! o �̀� A :> ��̀� fA jPg:� �; [X::fA jPg℄ `̀s� PXFigure 21: Augmenting MV by Sele
tion Sorts5.4. Sele
tion Sorts and SemigroupsIn this se
tion, we will fortify our intuition about MV by 
onsidering an exam-ple from elementary algebra: semigroups. To be able to handle them naturally,we will need to upgrade the system by sele
tion sorts. Con
retely, we use anew sort 
onstru
tor f�j�g that yields a new (base) sort fA jPg for a given sortA with �̀� A :> � and a 
losed term P of type � ! o. Intuitively, this sort
orresponds to the set of all obje
ts of sort A , on whi
h P holds. Considerfor instan
e the set of 
ontinuous real fun
tions, that we 
an model as the sortC := f(R ! R)j(�X 8� 9Æ : : :)g. Now we 
an represent the theorem that the sumof two 
ontinuous fun
tions is again 
ontinuous by 8FCGC C (�XR +(FX)(GX))If we want to prove this lemma, we have to be able to expand the de�nitions ofthe sort C , whi
h explains the ne
essity of the last axiom in Fig. 21. Note thaton
e we have proven this theorem, we 
an interpret it as a term de
laration, addit to the signature, and dire
tly use it for further sort 
omputations.But let us 
ome ba
k to the problem of modeling semigroups. We have seenin se
tion 5.3 that we 
an represent the stru
ture 
onsisting of a set and anoperation on this set by the sort Setop = ffSet::Top�!o;Op::Set3gg, thus we 
anrepresent the sort of all semigroups bySemigroup := fSetopjAg where A := (�X [asso
�Set(X:Set)�Op(X:Op)℄)
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al Knowledge and Context 38As we have seen above, we have s̀� asso
::A := (Top�!o) Set��! (Set3) Op��! Topoand therefore we 
an show that Semigroup is a well-typed sort.[X::Setop℄ s̀� asso
::A [X::Setop℄ s̀� X:Set::Top�!o[X::Setop℄ s̀� [asso
�SetX:Set℄::(X:Set)3 Op��! Topo ...[X::Setop℄ s̀� X:Op::(X:Set)3[X::Setop℄ s̀� [asso
�Set(X:Set)�Op(X:Op)℄::Topos̀� �X [asso
�Set(X:Set)�Op(X:Op)℄::Setop! Topo�̀� fSetopj�X [asso
�Set(X:Set)�Op(X:Op)℄g:> ffSet:�! o;Op:�3ggTo see how we 
an use the sele
tion sorts, let us now prove that the operation of asemigroup is asso
iative on its set, i.e. we want to prove the formula �SemigroupA,then { using Semigroup = fSetopjAg { we have [X::Semigroup℄ `̀s� AX by theaxiom in Fig. 20 and thus `̀s� �SemigroupA by the sorted quanti�er introdu
tionrule from Fig. 18.5.5. Relativization for extended MVIn this se
tion, we will present two relativization morphisms that show that there
ords and sele
tion sorts inMV 
an be eliminated and that therefore MV is a
onservative extension of the simply typed �-
al
ulus.For 
onstru
ting an elimination morphism for label-sele
tive appli
ations andabstra
tions, we will make use of the re
ord 
al
ulus in BMV. Intuitively, thetranslation works like this: maximal 
hains of labeled abstra
tions are repre-sented as single abstra
tions over re
ords with the same labels. Similarly, max-imal 
hains of labeled appli
ations as appli
ations to single re
ords. In our ex-ample involving integer division we would translate:[[div�dividend5℄�divisor2℄ to divffdividend = 5; divisor = 2ggdiv=��dividendX �divisorY A to �Zffdividend:�;divisor:�ggA0The language morphism � is given by the three equations below.A 1 `1�! : : : `n�1���! A n `n�! B = ff`1::A 1gg 
 [A 1=`1℄(ff`2::A 2gg 
 [A 2=`2℄(: : :
[A n�1=`n�1℄ff`n::A ngg) : : :)! B�`1X1 : : : �`nXnA = �Z [Z:`1=X1℄; : : : ; [Z:`n=Xn℄A[B�`1C1� : : :�`nCn℄ = Aff`1 = C1; : : : ; `n = CnggHere, A and B must be of base type and B may not be an appli
ation, so thatwe always transform maximal sequen
es of arguments and bound variables inone step. Note that this is not a restri
tion of generality, sin
e we 
an always�-expand. This translation uses the fa
t that entries in a re
ord do not have a
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� `̀�� ��A (�X PX ) BX) � s̀� A::A� `̀�� PA) BA � `̀�� PA� `̀�� BA

[�; [X::A ℄ `̀�� PX℄1�; [X::A ℄ `̀�� AX 1�; [X::A ℄ `̀�� PX ) AX� `̀�� (�Y PY ) AY )X� `̀�� ��A (�X PX ) AX)Figure 22: Relativizing Sele
tion Sorts (from the Cal
ulus Morphism)�xed order to obtain the order-independen
e of labeled abstra
tion:[B�`1C1�`2C2℄ = Bff`1 = A1; `2 = A2gg= Bff`2 = A2; `1 = A1gg = [B�`2C2�`1C1℄�`1X1 �`2X2A = �Z [Z:`1=X1℄; [Z:`2=X2℄A= �Z [Z:`2=X2℄; [Z:`1=X1℄A = �`2X2 �`1X1AThe argumentation for the types and sorts is analogous to the 
ase for appli
a-tions. A tedious but simple 
al
ulation with ND proofs shows that this languagemorphism 
an be extended to a 
al
ulus morphism. In parti
ular, the inferen
erules in Fig. 19 turn into trivial ND proofs about re
ords and their sets of labels.We will not go in to details for relativizing away re
ord sorts and types. This
an be a
hieved by using one of two standard te
hniques. By introdu
ing a newtype � for re
ord obje
ts and modeling all re
ord labels as partial fun
tions fromre
ords to values. Thus a re
ord BMV of type ff`:�; k: �gg would re
eive type� and we would extend the signature by fun
tions f`: � ! � and fk: � ! �.Alternatively, one 
an �x an ordering on re
ord labels and map re
ords to n-tuples.The logi
 morphism for eliminating sele
tion sorts uses the fa
t that we 
ande�ne sele
tion sorts by relativization using PfAjPg := �X PAX ^PX, just like wedid for ordinary sort relativization in se
tion 4.1. Thus the language morphismrelativizes all o

urren
es of formulae of the form �fA jPgA to �A (�X PX ) A).The 
al
ulus morphism is given in Fig. 22, it shows the relativization rules for�fA jPg elimination and introdu
tion. Finally, the relativization of the axiom inFig. 20 is a trivial. Note that this allows any proof �; [X::fA jPg℄ `̀s� A to betransformed into one of the form for �; [X::A ℄ `̀�� A under the assumption of�; [X::A ℄ `̀�� PX. This justi�es the impli
ation introdu
tion step in the transfor-mation of the se
ond derivation in Fig. 22 (we only have to make sure that the�rst rule is eliminated �rst during the transformation).
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lusionWe have des
ribed the data model of the MBase system, a web-based, dis-tributed mathemati
al knowledge base (it is realized as a mathemati
al servi
einMathWeb) that o�ers the infrastru
ture for a universal repository of formal-ized mathemati
s. We have explained how the distribution of MBase supportsrepositories from the ar
hive server level, where large parts of formalized mathe-mati
s are kept 
entrally, to the personal (s
rat
h-pad) level, where a resear
herhas a personal MBase to manage her mathemati
al theories under develop-ment. In between there may be workgroup or institute servers, that support
ollaborative development of mathemati
al theories.We have presented a methodology for building a hierar
hy of representationlanguages for a mathemati
al knowledge base. We have shown that using logi
morphisms allows us to de�ne high-level language features, su
h as dependentsorts in a step-by-step manner from lower (and more standard) ones, and ulti-mately from axiomati
 set theory. The intended meaning of the more expressivelogi
al systems is indu
ed via the logi
al morphisms from the simpler logi
al sys-tems, thus a knowledge base that is built up using the method proposed in thisarti
le is truly grounded in set theory. An implementation of the logi
 morphismsin a knowledge base system, su
h as the MBase system under development inSaarbr�u
ken, will give 
onstru
tive eviden
e to the old belief of working mathe-mati
ians that all of mathemati
s 
an be relativized (and thus grounded) in settheory.We have instantiated this methodology by sket
hing the development of asorted �-
al
ulus that we 
laim is well-suited for formalizing mathemati
al pra
-ti
e. It is an extension of the sorted �-
al
ulus from (41) by dependent fun
tion{,re
ord{, and sele
tion sorts. We have sket
hed the relativizations needed to in-tegrate it into theMBase system. The advantage of a sorted formulation over a
lassi
al type-theoreti
 one (e.g. LF dependent type dis
ipline or Jason Hi
keys\very dependent re
ord types" (31)) is that 
onsisten
y is a 
onsequen
e of therelativization, sin
e the sorts are typed. This makes all obje
ts simply typed,and hen
e important meta-theorems like strong normalization of the built-inredu
tions are relatively easy to prove.The next step will be to develop inferen
e pro
edures like higher-order mat
h-ing that are needed for answering high-level queries in MBase. We 
onje
turethat this will be possible by adapting the methods (in parti
ular, the stru
turetheorem) from (41). In fa
t, one key motivation to extend known representationlanguages for mathemati
s by the additional stru
ture developed in this arti
lewas to use the additional stru
ture for inferen
e purposes. We 
onje
ture thatthe availability of su
h inferen
e pro
edures will de
ide on the usefulness, andthus ultimately on the su

ess of a mathemati
al knowledge base system.The MBase servi
e 
an be used as an ontology server giving a semanti
sfor system integration and furthermore, the formal representation of knowledge
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s-based retrieval of distributed mathemati
al fa
ts. Pos-sible queries to MBase 
ould be glossed as follows:1. For a formula A, give me all knowledge elements B, whi
h are instan
esof A; This kind of queries allows sear
hing for all instan
es of a givens
hema. This is parti
ularly valuable if the formalism allows fun
tion andpredi
ate variables. For instan
e a s
hema A = 8X; Y F (X + Y = Y +X)allows to sear
h for knowledge elements that use/assert the 
ommutativityof addition using the variable F to return the 
ontext.2. Give me all theorems/simpli�ers that are appli
able to a formula C. Inthis query, mat
hing has to be augmented by quanti�er elimination. Itis interesting to obtain a set of possible forward inferen
es in a 
on
retesituation.3. Classify the mathemati
al stru
ture given by the set S of axioms. This kindof query 
ould be issued, in order to retrieve the mathemati
al knowledgeabout a 
on
rete mathemati
al stru
ture (whi
h may turn out to be a well-known one like a ring in disguise). A possible follow-up query 
ould be onewhether there are \interesting" spe
ializations of the stru
ture that wouldallow for stronger results.These queries 
ru
ially depend on the notion of mat
hing employed. The moreexpressive (higher up in the taxonomy in Fig. 7) the representation formalismis, the more powerful the mat
hing algorithms 
an be
ome (e.g. higher-ordermat
hing in �!).It will be ne
essary to augment the known mat
hing algorithms to make themaware of the logi
 morphisms: If we are only looking for formulae, building inthe language morphisms will be suÆ
ient; if we want to be able to sear
h forproofs of a 
ertain form, it will also be ne
essary to extend mat
hing to proofsand also to build in 
al
ulus morphisms. This will generate interesting resear
hquestions that we will address in due 
ourse, but not in this arti
le.Finally, there are many kinds of data mining appli
ations that 
ould be run ona larger 
olle
tion of formal mathemati
al knowledge. For instan
e it would beinteresting to sear
h for similarity of mathemati
al stru
tures. Also to sear
h forpossible logi
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