Article Submitted to Journal of Symbolic Computation

MBASE: Representing Knowledge and

Context for the Integration of
Mathematical Software Systems

MICHAEL KOHLHASE! AND ANDREAS FRANKE?

1School of Computer Science, Carnegie Mellon University, Pittsburgh, USA

2 Informatik, Saarland University, Saarbricken, Germany

Abstract

In this article we describe the data model of the MBASE system, a web-
based, distributed mathematical knowledge base. This system is a mathe-
matical service in MATHWEB that offers a universal repository of formal-
ized mathematics where the formal representation allows semantics-based
retrieval of distributed mathematical facts.

We classify the data necessary to represent mathematical knowledge
and analyze its structure. For the logical formulation of mathematical
concepts, we propose a methodology for developing representation for-
malisms for mathematical knowledge bases. Concretely we propose to
equip knowledge bases with a hierarchy of logical systems that are linked
by logic morphisms. These mappings relativize formulae and proofs and
thus support translation of the knowledge to the various formats cur-
rently in use in deduction systems. On the other hand they define higher
language features from simpler ones and ultimately serve as a means to
found the whole knowledge base in axiomatic set theory.

The viability of this approach is proven by developing a sorted record-
A-calculus with dependent sorts and labeled abstraction that is well-suited
both for formalizing mathematical practice and supporting efficient infer-
ence services. This “mathematical vernacular” is an extension of a sorted
A-calculus by records, dependent record sorts and selection sorts.

1. Introduction

The last five years have seen a growing interest in the integration of mathematical
software systems, such as computer algebra systems and deduction systems.
The reason for this is that while the respective systems have reached a high
degree of sophistication and maturity, they have differing, often complementary

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 2

strengths and weaknesses, and no single system is strong enough to tackle all
problems. Moreover, since many of the problems are very computation-intensive,
distributing sub-problems to mathematical services over the Internet seems a
promising approach.

Particular interest is in the combination of computer algebra systems (CAS)
and deduction systems (DS), either for the purpose of enhancing the compu-
tational power of the DS (30; 39; 7) or in order to strengthen the reasoning
capabilities of a CAS (1; 8).

We can distinguish four kinds of problems that have to be overcome for an
integration of two mathematical software systems:

Syntax Though most systems have a term-based interface language, normally
all systems will have their own particular variant. This problem can be
solved by establishing representation standards, such as the emerging OPEN-
MaATH standard (15), which uses XML (13) to define a general term lan-
guage. With the imminent wider acceptance of this standard, this problem
will soon be solved.

Protocol The problems of low-level communication and common control pro-
tocols have been explored e.g. in (14) and have to be decided upon in the
concrete application. Empirically, all such protocols and architectures can
be flexibly modeled by agent-oriented programming; we have used this in
the MATHWEB system (27; 26), an agent-based implementation of a math-
ematical software bus that uses the current de-facto standard KQmL (24)
for interaction agent-languages. Even though the KQML-support in MATH-
WEB is not fully implemented, we can see this problem as solved in principle

(see (5)).

Semantics For the integration of systems it is crucial to specify concisely and
without ambiguity the meaning of the exchanged formulae, i.e. there is the
problem of establishing a semantics for the communicated mathematical
objects. Otherwise the results of the integrated system can be arbitrary:
Recall the recent incident of the NASA Mars lander, where NASA specified
rocket thrust in metric units but the contractor used pounds and inches (as
a result the probe crashed on Mars instead of landing). This is well-known
as the so-called ontology problem in distributed artificial intelligence, the
accepted solution to this is to either take recourse to a common set of
concepts (the ontology, see (39) for a proposal wrt. the integration of com-
puter algebra with proof planning) or to negotiate a private ontology for
the communication. The OPENMATH standard recognizes this and offers
the mechanism of “content dictionaries”: machine-readable, but informal
definitions of the mathematical concepts involved. Note that in contrast to
the practice in distributed artificial intelligence (agent-oriented program-
ming), the ontology is determined local to the symbols of the terms instead
of globally for the communication, which seems much more appropriate for
the application in mathematics.

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 3

This is at best a partial solution to the semantics problem, since the OPEN-
MATH framework does not offer any support for ensuring consistency, con-
ciseness, or manipulation of ontologies.

Context The context problem is a variant of the semantics problem, i.e. in the
communication of two mathematical software systems (or more generally
agents) it is advantageous to maintain a sense of shared state. For instance,
the state can be used to refer back to (parts of) previous formulae, that are
kept in the so-called context. Of course it is possible to eliminate state from
the communication by retransmitting the relevant parts of the context, but
this can lead to an exponential increase in costs. As a consequence almost
all interactive mathematical software systems use some form of context
for the communication with the user. Current approaches to integration of
mathematical software systems cannot deal with context, or use it in a very
inflexible way, for instance the CLAM-HOL interaction (12), or the QMEGA-
TPs (10) integration have to retransmit all the necessary definitions and
subgoals on every round of interaction.

This article addresses the last two problems. We contend that a society of dis-
tributed knowledge base agents in MATHWEB (27; 26) can be used to establish
both the semantics of communicated formulae as well as provide a flexible notion
of context. To substantiate this claim, we will present and discuss the MBASE
system, a web-based, distributed knowledge base for mathematics that is uni-
versally accessible through MATHWEB on the Internet.

The mathematical knowledge in MBASE can be used to establish a cen-
tralized reference point that establishes the semantics of formulae, since it is
both machine-readable and fully-formal. Moreover, the knowledge base agents
in MATHWEB can be used as ontology servers for agent communication, in par-
ticular, they can manipulate small private knowledge bases as a service for other
MATHWEB services, effectively providing a flexible notion of context. In the rest
of the article, we will describe the MBASE server and its underlying data model.
In particular, we address the question of how to divide the task of representing
and reasoning with complex knowledge base entries, such as logical formulae in
a data base application. These are typically very complex (possibly cyclic) graph
structures that cannot be represented or reasoned about adequately in current
SQL-based data base systems. On the other hand, high-level programming lan-
guages can do this, but the amount of data that can be processed is basically
limited to the size of main memory. MBASE adopts a hybrid approach that tries
to combine the strengths of both worlds, eliminating their relative limitations.

The current implementation (see http://www.mathweb.org/mbase) is still
largely a prototype for testing the design decisions. It consists of the MBASE
server, which acts as a MATHWEB service, and an http server that dynamically
generates presentations based on HTML or XML forms. Other mathematical ser-
vices can access MBASE through a system of mediators that are also integrated
into MBASE.

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 4

The primary interface format of MBASE is @Doc (43; 42), an XML-based
representation language for MBASE content. Since this is an extension of the
emerging OPENMATH standard (15) for web-based mathematics, its syntax is
logic-independent. So the mediators can first do the logic-transformation, then
generate the @DOC representation, and then create the concrete input syntax of
the respective reasoning system by invoking a standard XML style sheet processor
with a specialized XsL style sheet.

Currently, connections to the QMEGA (9), INKA (36), AClam (51), and TPs (4)
systems are being actively developed. Semi-automated reasoning systems like
these usually store large amounts of mathematical data in a file-oriented library
storage mechanism. For solving a given problem, all knowledge in the library
that is possibly relevant must be loaded into main memory, obviously a very
inefficient usage of this resource. In this situation, the MBASE service, which
uses data base technology for the storage aspect allows to load the knowledge
incrementally, to perform finer-grained reasoning as to which knowledge will be
relevant, and to browse the knowledge beforehand, so that the user can determine
the actual desired knowledge elements.

1.1. Architecture: Division of Labor

The MBASE system is realized as a distributed set of MBASE servers (see
Fig. 1.1). Each MBASE server consists of a Relational Data Base Management,
System (RDBMS), e.g. ORACLE, which is connected to a MOZART (53) pro-
cess via a standard data base interface (in our case JDBC). Clients can access
MBASE servers as MATHWEB services, and for browsing the MBASE content,
any MBASE server provides an http server (see http://mbase.mathweb.org:
8000 for an example) that dynamically generates presentations based on HTML
or XML forms.

This architecture combines the storage facilities of the RDBMS with the
flexibility of a concurrent, distributed, logic-based programming language (see
http://wuw.mozart-oz.org).

Most importantly for MBASE, MOZART offers a mechanism called pickling,
which allows for a limited form of persistence: MOZART objects can be efficiently
transformed into a so-called pickled form, which is a binary representation of the
(possibly cyclic) data structure. This can be stored in a byte-string and efficiently
read by the MOZART application effectively restoring the object. This feature
makes it possible to represent complex objects (e.g. logical formulae) as Oz data
structures, manipulate them in the MOZART engine, but at the same time store
them as strings in the RDBMS.

The current implementation of MBASE can be used together with different
kinds of data base engines: e.g. INSTANTDB (see http://www.instantdb.co.
uk), a lightweight open-source java based program for scratch-pad databases, and
ORACLE for archive MATHWEB servers. Thus the use of JDBC as a standardized

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context)

interface allows to achieve the somewhat conflicting functionalities needed for the
distributed nature of MBASE (see section 3).

"""" N
HTTP Interface
rrrrrrrrrr Browser
J | type-inference,
D matching,
DBMS
B |..,
C | distribution
MathWeb Interface
Omega
/2> Maple
|l/ P “
MBASE MathWeb

Figure 1: General System Architecture

1.2. An Example

In this section we will discuss a simple mathematical example (a version of
Cantor’s theorem), which will be used in the following.

Theorem 3.1.7 (Cantor): Let S be a set, then S has a smaller cardi-
nality than its power set p(S).

Proof: We prove the assertion by diagonalization. Assume that there
is a surjective mapping F: S — (S). Now let D be the set {a | a ¢
F(a)}; we show that D ¢ Im(F): if there were a pre-image b € S (i.e.
D = F(b)), then assuming b € D we can obtain b ¢ D, which is a
contradiction.

The assertion of the theorem is about cardinalities of sets. Usually, the cardi-
nality of a set S is defined to be smaller than that of T, iff there is no surjective
mapping F:S — T. Alternatively, smaller cardinality can be defined as the
absence of injective functions from 7 into S. A function f:S — T is called
surjective, iff for all b € T, there is an a € S (called its pre-image), such that
f(a) =b. The power set p(S) of aset S is the set of all subsets of S. To illustrate
these concepts it may be useful to look at a simple example: If S is the singleton
set {a}, then the power set p(S) is {), S}; there are only two mappings from S
to p(S), fe:a— 0 and fs:a — S, which are not surjective (S ¢ fy(a) = {0} and
0 ¢ fs(a) ={S}). Thus our example supports Cantor’s theorem.

In a formal reasoning system like OMEGA, [SABELLE or Pvs, the theorem
would be stated in a suitable logic, e.g. in the simply typed A calculus

VSa_so-smaller_card(S, powerset(S))

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 6

where the symbols (constants of the logic) smaller_card and surj are defined as
the A-terms

smaller.card = AMy0ANg_om3Fygsurj(F, M, N)
surj = AFaspAMase ANV X5 NX = (VMY A FY = X)

Again, the symbol smaller_card could have been defined in terms of injectivity
by a similar A\-term.

Based on this knowledge, the reasoning systems mentioned above can prove
the theorem (fully automatically [TPs (11)] or interactively) by eliminating the
definitions (substitution of the A-term and subsequent S-reduction) and solving
the problem at the level of the underlying calculus.

Another way to arrive at the proof is to encode the human problem solving
knowledge for diagonalization proofs explicitly in the proof planning paradigm
and use this method- and control knowledge to prove the theorem in much the
same way as humans would. This results in a different, more structured proof
of the theorem (16). Note that the textbook proof above also has two levels of
description of the proof: one with the keyword “by diagonalization” which is
sufficient for the expert to reconstruct a more detailed proof.

1.3. A Classification of the Relevant Knowledge

Already in the small example discussed above, we see that the statement of a
mathematical theorem can depend on the availability of a (large) set of defini-
tions of mathematical concepts (that in turn depend on other concepts). Fur-
thermore, the proof can use previously proven theorems and lemmata, or even
introduce new concepts. In addition to this purely mathematical data, a for-
mal reasoning system needs access to other forms of knowledge (e.g. flag set-
tings for automated theorem provers or method- and control knowledge in proof
planning). For presentation to human users, other (human-related) presentation
knowledge is needed. See e.g. (52), where we use MBASE as a basis for the
flexible presentation of an an interactive mathematics book (18).

The purpose of the MBASE system is to store and manipulate all these kinds
of knowledge with an emphasis on the use of structure to support an adequate
information retrieval and search restriction. In this section, we will try to classify
and structure them (see Fig. 1.3). This classification will serve to structure the
database model presented in the next section.

As we have already seen above, we have to distinguish between purely mathe-
matical knowledge (primary objects) and secondary objects that provide human-
and machine-oriented or even administrative information or give additional struc-
ture. Concretely, we distinguish the following five categories in Fig. 1.3.

Primary objects for purely mathematical knowledge like symbols, their defi-
nitions, and theorems, lemmata, etc. and their proofs (cf. section 2.1).

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 7

External
Knowledge
Resour ces
e.g. Publications Ve
~ Structuring
additional
Objects
4 _ N 4 R
Human-oriented Theories Machine-oriented
additional ADTs additional
Information _ Inductive definitions) Information
Names N System
Descriptions Primar y ("Specification")
Keywords Objects M ediator

Presentation information ("Syntax transformation”)

Symbols & Definitions

Linguistic information ("Terms") Private Annotations

(Tactics, Methods, Contral, ...)
Assertions & Proofs
(in possibly different ("Predications")

languages)
Relativization

o AN AN /

(for different Systems)

< Metadata Objects (Users& Time Stamps & Reference) >

Figure 2: The structure of MBASE Data

Human-oriented additional information, like names of theorems, special math-
ematical notations, or special linguistic specifications for text or speech
generation systems (cf. section 2.2).

Machine-oriented additional information, provides similar knowledge for the
interaction with automated reasoning services (cf. section 2.3).

Structuring Objects MBASE uses a system of theories to reflect the large-
scale structure of mathematics. Furthermore, special constructs for abstract
data types and inductive definitions are supplied to ease and structure the
specification of the mathematical objects (cf. section 2.4).

Relations to external knowledge resources like journals, citation databa-
ses etc.

2. The Database Model

In this section we will formalize and further elaborate the data base model of
MBASE discussed above. In particular, we make the model explicit by giving
a set of data base declarations. Let us first concentrate on the primary data

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 8

base objects; before we present the data model, let us further classify them and
discuss their relations.

Symbols for mathematical concepts, such as 1 for the natural number “one”,
+ for addition, = for equality, or group for the property of being a group.
Furthermore, there are symbols for kinds, types and sorts.

Definitions give meanings to symbols in terms of already defined ones. For
example the number 1 can be defined as the successor of 0 (specified by the
Peano axioms). Addition is usually defined recursively, etc. Definitions are
separated from the symbols they define in MBASE, since there can be more
than one (equivalent) definition for a symbol in a mathematical theory, e.g.
the smaller cardinality relation discussed in section 1.2. This phenomenon
is made explicit in the relation def-entails.

A second reason for this division of concepts is that “universal” constants
can be introduced as symbols without definition.

Assertions are axioms, theorems, conjectures, lemmata, etc. They all have the
same structure: they are basically logical sentences. Their differences are
largely pragmatic (theorems are normally more important in some theory
than lemmata) or proof-theoretic (conjectures become theorems once there
is a proof in the knowledge base).

Proofs are representations of evidence for the truth of assertions. Like in the
case of definitions, there can in general be more than one proof for a given
assertion. Furthermore, it will be initially infeasible to totally formalize all
mathematical proofs needed for the correctness management of the knowl-
edge base in one universal proof format, therefore MBASE supports multiple
formats for proofs or evidence such as e.g. a calculus-level proof, various
proof scripts ((XMEGA replay files, ISABELLE proof scripts,. . .), references to
published proofs, resolution proofs, etc. Therefore, a proof can have several

Proof Objects encapsulate the actual proof objects in the various formats.
There can be more than one proof object for a given proof. Informal proofs
can be formalized, formal proofs can be transformed from one format to
the other (e.g. from resolution style to natural deduction style), and can
even be presented in natural language by a proof presentation system like
PROVERB (34). Even so they represent the same “proof”. In our example
in section 1.2, we have described four proof objects for the same proof: the
sketch consisting only of phrase “we prove the assertion by diagonalization”,
its elaboration in the textbook example, the TPs proof and the proof-
planning proof.

The universal proof format used in MBASE is derived from the Proof plan
Data Structure (PDS) introduced in the QMEGA system (9) to facilitate
hierarchical proof planning and proof presentation at more than one level of
abstraction. In a PDS, nodes justified by tactic applications are expanded,
but the information about the tactic itself is not discarded in the process

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 9

as in tactical theorem provers like ISABELLE or NUPRL. Thus proof nodes
may have justifications at multiple levels of abstractions in a hierarchical
proof data structure.

Examples In mathematical practice, examples play an important role just as

proofs, e.g. in concept formation (as witnesses for definitions or as ei-
ther supporting evidence, or as counterexamples for conjectures). There-
fore, examples are given status as primary objects in MBASE, even though
they are still very seldom actually used in mechanized reasoning systems.
Conceptually, we model an example for a mathematical concept C as a
triple (W, A, P), where W = (W,,..., W,) is an n-tuple of mathemati-
cal objects, A is an assertion of the form A = dW;...W,.B, and P is a
proof that shows A by exhibiting the witnesses W, for W;. The example
(W,3W; ... W,.-B,P) is a counter-example to an assertion of the form
T :=VW;...W,.B, and (W, A, P) a supporting example for T.
Consider for instance the structure W: = (A*, o) of the set of words over an
alphabet A together with word concatenation o. Then (W, 3W.mon(W), P;)
is an example for the concept of a monoid (with the empty word as the
neutral element), if e.g. P; uses W to show the existence of W. The example
(W, AVpon-—group(V), Py and a proof that uses W as a witness for V, it is
a counterexample to the conjecture C: = VYV, n.group(V), since Q = —C.

All in all, we have the structure given in Fig. 2 for the primary objects. In the
following we will briefly discuss the concrete realization of the primary objects
in MBASE and then go on to discuss the other categories of database objects
from Fig. 1.3. The metadata used in MBASE is relatively standard, they in-
clude things like bibliographic reference (we use the well-known Dublin Core
schema, cf. http://purl.org/dc/ or see (43) and things like time stamps and
user reference for creation and modification of objects.

2.1. Modeling Primary Database Objects

To implement the primary knowledge elements described above, MBASE cur-
rently uses tables for the six primary objects and a variety of relations. This
realization of the data model is geared towards an underlying SQL data base,
and can be subject to change, when suitable object-oriented DBMS become
available.

symbol The type of a symbol must be unique, it is represented as a pickled
MOZART object (indicated in the data type OzPickle). For the data base,
this is a string of arbitrary length. MBASE uses OzPickles for complex
(logical) data structures, which can be read into the MOZART process for
logical processing.

definition At the moment, MBASE supports simple, inductive/recursive, and
implicit definitions as primary objects. In the latter case, the content of the

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 10

Symbols

St at us
Ki nd, Type

Assertions

St at us
Sequent

depends_on

Proof Objects

counters

defined_by

Definitions Examples

Proofs

illustrates

Assrt ‘ Pr oof
W t ness

Def n

Figure 3: The structure of MBASE

definition, which is a complex term (and therefore expressed as an OzPickle)
can define more than one the symbol.

assertion Assertions are logical formulae (represented as OzPickles) that have
a status flag that represents the pragmatics of theorem-hood. At the mo-
ment M BASE supports the values problem, axiom, theorem, lemma for the
status attribute.

proof Proofs are general descriptive objects that represent proof ideas. They
serve as objects that for the relations proof-depends-on and proved-by.
The intuition behind this decision is that if two proof objects depend on
different definitions/assertions, then they are different “Platonic” proofs.
In particular, if an informal proof (say from a mathematical textbook) is
formalized in some calculus and additional dependencies become apparent,
then these are also (implicit) dependencies of the original, informal proof.

proof-object Since there are as many proof formats as deduction systems and
mathematical traditions, we cannot make any assertion about the represen-
tation of proof objects at the moment. Instead we assume the least common
denominator and provide strings of unbounded length for the proof objects
assuming that deduction systems can always write proofs to files.

Certain proof formats, like ND proofs and PDS can be represented as A-
terms, which are supported by the MBASE logic, so these can be encoded as
Oz-pickles. This has the advantage that the depends-on-relations can be
automatically checked or computed by MBASE. It is intended to support
more and more proof formats directly in MBASE in the future, so that
machine support can be extended.

example As examples are just triples consisting of an object, an assertion and
a proof, their structure is very simple. The three relations of illustrating a

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 11

concept, supporting/countering a universal theorem mentioned above are
condensed in to one, with intended meaning specified by a role attribute.
. L. symbol
description -‘ status : defined
kind : formula
J type : Vaf.(a = B) = (a — o)
: = (B—0)—o0

item

format : name
content : surjective

presentation

symbol definition assertion
format : TpX symbol status : theorem
mode : pre content : see 1.2 content : see 1.2
content : \wp

proof — object -‘

proof [proof

format : sketch theorem.

content : “Diagonalization

Figure 4: Example Records for “surjective” and Cantor’s Theorem

The relations in Fig. 2 contain the data for the list-valued slots in the primary
objects. When we upgrade the database model to an object-oriented paradigm,
e.g. the emerging standard OQL, the binary many-to-many relations will be
represented as methods.

definition-entailment A symbol may be primitive (in which case its status

must be primitive) or defined. In the latter case, it can have more than
one definition, all of which must be proven equivalent. MBASE stores these
equivalence theorems as the set of entailment theorems for a given symbol
given by the relation def-entails, where the value of the theorem attribute
must be of the form “Item = Entailed-Item”.

The DBMS ensures that for any defined symbol, the def-entails rela-
tion must be connected on the set of its definitions (i.e. any pair (d, d’) of
definitions must be in the transitive closure of definition-entailment).

depends-on/local-in These relations specify dependency and locality infor-

mation for primary knowledge elements. These are invaluable for definition
and proof expansion, e.g. during proof verification and for structuring the
knowledge in the repository (see section 2.4).

Actually, this relation is currently implemented by sub-relations def-de-
pends-on, proof-depends-on, and contains, which make explicit which
symbols/lemmata are used in a definition or assertion, and a relation theory-
depends-on, which specifies the inheritance relation among theories.

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 12

2.2. Human-Oriented Information

In this section we will address the database facilities that provide the knowledge
necessary for presenting the primary knowledge to humans, which will serve
as input to mediators between the MBASE and the presentation services. The
intention of storing such knowledge (even the choice of the mediator itself) in
a centralized knowledge base server is that this information serves only as a
default, which can be overridden by local personal preferences. The mediators,
which we envision as Oz functors (Ozlets) are a good tool to implement a flexible
and customizable presentation component.

description This relation annotates primary objects with descriptive strings,
the format slot specifies whether the string is a proper description, a name
(e.g. for a named theorem like Gentzen’s “Hauptsatz”), keywords and the
like. They give sets of supplementary (administrative and search) informa-
tion for the objects.

presentation These objects represent the presentation information for sym-
bols in various natural languages, presentation formalisms (such as ASCII,
MATHML (37), BTEX, HTML (50), ...) or fonts. It is a central concern
in MBASE to separate content information from presentation information,
therefore, we have not included the presentation information into the sym-
bols themselves.

As we have mentioned above, the primary interface language for MBASE
is the XML-based @Doc, which is geared towards semantical markup. The
presentation markup in formats as the ones mentioned above is often gen-
erated using a so-called XsL (20) style sheet (i.e. a set production rules
for presentation markup) by an XsL transformer (the rule interpreter).
The upcoming generation of Internet browsers like MOZILLA, NETSCAPE
NAVIGATOR 6, or MS INTERNET EXPLORER 5 contain integrated XSsL
transformers and can thus be used to view the presentation form of the
@Doc representations directly.

The information needed for the XsL style sheets is partly global (mostly
pertaining to the grammar of the format and the default appearance of
symbols; this is specified by the style sheet designers), and partly local to
the symbols (a specialized production rule whose head matches the XML
element for the respective symbol; and can specified in the presentation
objects). Thus a presentation object normally contains an XsL production
rule tailored to a particular format.

Thus for each @Doc document D generated by the appropriate mediator
for the interaction with a human user, MBASE also generates a specialized
style sheet from the presentation objects of all the symbols used in D.
Together these result in a presentation in the desired output format.

MBASE also supports an abbreviated form of the presentation objects, that only
contains a string (e.g. the string \subseteq for representing the subset relation

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 13

C in TgX) and a mode token which controls whether the string is inserted in
a prefix/infix/postfix way. The appropriate XSL-presentation is then computed
from these values on the fly. Finally, if the mode is def, then the presentation
object can be an Oz-functor that produces the presentation object from the
necessary arguments. This possibility for writing presentation objects is more
flexible than the one above, but certainly less declarative and portable.

2.3. Machine-Oriented Information

Next to the presentation of knowledge to human users, the presentation of for-
mulae to different mathematical services is a central issue in MBASE. Different
theorem provers currently have vastly differing communication formalisms, which
may differ both in the underlying logic, as well as in the concrete syntactical rep-
resentation used. The latter issue is a largely software-technological issue that
can be solved by either standardizing the language (e.g. by our @Doc format),
and/or by the mediator approach (implementing a translating mediator for any
language pair). The issue of the underlying logic is more serious, since the na-
ture of the logic directly influences the applicability and efficiency of a given
mathematical service.

In section 4 we present a system of languages interconnected by relativiza-
tions, i.e. logical morphisms that map formulae and proofs from more expressive
languages to less expressive ones. Since so far, all occurring logical morphisms
could be given in terms of definition expansions, MBASE provides a grouping
construct for logical morphisms, and a mediator that does definition expansion
wrt. to this set of definitions. In this architecture, MBASE keeps a table that
maps mathematical services to logic morphisms, and when it outputs formulae
to this system first applies the appropriate logic morphism (by the relativization
mediator) and then the appropriate syntax generator for this system. For input
from another mathematical service, it only uses the parser.

Furthermore, many of the mathematical services that will use MBASE as
clients maintain specialized mathematical knowledge which they need for the-
orem proving. For instance, INKA and AClam annotate terms with so-called
wave-fronts/holes, or more generally colors. Tactical theorem provers need to
keep store and retrieve their tactics, whose format differs from system to sys-
tem. Proof planners like QMEGA, CLAM or AClam furthermore have specialized
methods and control knowledge. Proof presentation systems like PROVERB (34)
need to store linguistic knowledge about the mathematical concepts they present
in natural language.

All of this “private” supplementary information shares the fact that it is in-
timately connected to the knowledge elements already in MBASE. Moreover,
most of this knowledge is now stored in special files in the respective systems.
Therefore MBASE offers the possibility to store these files in special knowledge
elements that can store long byte strings. Storing this knowledge in MBASE as
opposed to storing it in the service has the advantage that the knowledge can

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 14

participate in the structuring mechanisms provided by MBASE, thus enabling
“just-in-time” loading of the necessary information. Note that MBASE does not
make an efficient management in the theorem prover unnecessary, but only gives
the necessary infrastructure to cope with large sets of information.

Over time, the general availability for study of the data for private annotations
may even lead to cross-system adoption of the underlying intuitions and in the
long run even to standards in representing the involved knowledge.

2.4. Structuring the Knowledge base

In almost all library systems of proof development environments (see e.g. (IMPS;
IsabelleKB; ILF; PVS)), the set of knowledge elements is structured by a so-
called “theory” concept. Theories group sets of knowledge elements into subsets
that e.g. are to be loaded at the same time. In some systems, like QMEGA and
IMPs (23), theories are simple sets of elements, in others, like ISABELLE or Pvs,
they can be parameterized. In MBASE we use techniques from the field of al-
gebraic specification (see for instance (45)), where the structure of large-scale
formalizations (of the intended meaning of programs) have been studied in de-
tail. Concretely, we adopt the concept of a “development graph” put forward by
Dieter Hutter (35), since this supplies a simple set of primitives for structured
specifications and also supports management of theory change. Furthermore, it
is logically equivalent to a large fragment of the emerging CASL standard (17)
for algebraic specification (see (6)).

A development graph specifies the large-scale structure of a set of theories
(i.e. sets of symbol declarations, their definitions, and axioms). It is a graph
where the nodes are theories and the arcs are given by theory morphisms. The
latter come in two categories: import morphisms and inclusions, both of
which can be local and global. A set of import morphisms define (part of) a
theory by specifying what material (symbols, definitions, axioms) is imported
from existing theories. Since the material can be imported modulo a language
morphism (i.e. it is translated before it is included into the new theory), this is a
very powerful definition mechanism. We can for instance define a theory of rings
given as a tuples (R, +,0, —, %, 1) by importing from a group (M, o, e, i) via the
morphism {M — R,o0+ +,e+ 0,i+— —} and from a monoid (M, o, e) via the
{M +— R*,o+ x,e — 1}, where R* is R without 0 (as defined in the theory of
monoids).

Inclusions are of a different nature: instead of defining a theory, they state
structure information that can be inferred about a theory hierarchy. Like the
import morphisms, inclusions are theory morphisms (the translations of all the-
orems of the source theory must be theorems of the target theory). Only that in
contrast to the former, who have this property by definition, the inclusions have
to be verified. Once they are established, they can be used to transport results
and proofs from the source to the target theory, for instance, many algebraic do-
mains like groups have a self-inclusion that is induced by the involution with the

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 15

inverse element. In many proofs, this inclusion can be used to transport proofs
for symmetric cases instead of re-proving them. Moreover, the structure of the
development graph can be used to support a “management of change” (see (35)).
For instance it is often necessary during theory exploration and development to
change definitions and axioms, invalidating proofs of theorems that use them.
The theory structure can be used to specify the dependency relations and save
valuable theorem proving time, the more (redundant) structure we have in a
development graph, the more reusable and less brittle proofs become. To pin-
point the the contribution of individual axioms and definitions, the development
graph divides morphisms and inclusions into global and local variants. The local
versions only concern the axioms and definitions directly defined in the source
theory, as a consequence, the global ones can be seen as transitive completions
of the local ones. The user only specifies the global morphisms, while the sys-
tem mainly works with the local decompositions that allow a more fine-grained
analysis of the theory structure.

MBASE provides data structures for the development graph and implements
Hutter’s “management of change”

Like the library systems of many practically used deduction systems, MBASE
views abstract data types as abbreviations for sets of definitions, axioms and
theorems. For example, the abstract data type Nat that is specified by the con-
structor definitions for zero and the successor corresponds to the well-known
Peano Axioms for the natural numbers. If we also specify the selector function
“predecessor” for the successor function, then e.g. the corresponding commuta-
tion laws can be automatically generated. Again, we represent this by introducing
data base objects for ADTs and group the corresponding definitions and using
the local-in for grouping. Other definition mechanisms, such as those for e.g.
the various classes of recursive functions can be handled in the same way.

3. Distributing MBASE

In this section, we will extend the MBASE data model presented above to support
a distributed data model, and we will specify some of the management routines
pertaining to distribution.

With the distribution MBASE supports repositories from the archive server
level, where large parts of formalized mathematics are kept centrally, to the per-
sonal level, where a researcher has a personal MBASE to manage her mathemat-
ical theories under development. Inbetween there may be workgroup or institute
servers, that support collaborative development of mathematical theories.

To get a feeling for the requirements of distributing MBASE, let us take a look
at a likely research communication scenario: We will first describe the commu-
nication pattern as it could have happened in the era when mathematics was
done with pen and paper (around 2001), and then model it using distributed
MBASsEs (about 2005).

classical, see Fig. 3 Researcher R works on Theory T together with his col-

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 16

league R’ at institute I. The theory T is a body of mathematics laid down
in an article A published in journal J. Now, R extends theory T by a new
definition D (say for a mathematical object O), proves a set P of theorems
about O, and calls the resulting extended theory E. After that, R tells her
colleague R’ at I about D and P (say by circulating a memo in I), who
gets interested and proves a set P’ of useful properties of O. Together, R
and R’ put the theory FE into final form F', and submit it to journal .J. This
accepts F' and publishes it.

circulate E =D + P

accept F

\

@ ONy:

submit F'= FE + P’

circulate P’

Figure 5: Classical Research Cooperation

with MBASE, see Fig. 3 In 2005, J and [have joined the MATHWEB initia-
tive, in particular, .J has established an MBASE server M.J for the journal
J and has formalized (with the help of researchers from I) theory T', which
now resides in the MBASE server M.J. Furthermore, the institute has its
own departmental MBASE M and the researchers R and R’ have the per-
sonal MBAsEs M R and M R'. Now, R develops the formalization F'D of O,
stores it in M R and formalizes the set P of theorems by formalizing them
and formally proving them (yielding F'P in MR). To do so, R may need
to revise the initial version of D several times in order to be able to prove
the desired theorems (reproving the already obtained results that depended
on a previous version of D every time). This process will be supported by
MBASE based on techniques presented in (35), but this is outside of the
scope of this article. Instead of sending around an internal note about D
and P in I, R moves their formalizations F'D and F'P into the institute
MBASE server M I, from where R’ can import them into his personal mbase
MR'. Alternatively, R could leave F'D and F'P in M R and tell R’ person-
ally about them, allowing him to import them from M R into M R’; but this
is a matter of institute policy, which we will not address in this article. On
this basis R' formally proves F'P’, and adds it to theory FF, yielding F'F
the formal version of theory F'. Then R and R’ submit F' to journal .J, who
evaluates it (possibly via his own personal MBASE) and finally accepts F.
To publish F' on M.J, it requests F'F' from M1, which moves it there.

We believe that the latter (more complicated) picture is better than the sim-

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 17

accept F formalize D,
................................... > @ prove P
g submit F' = F + P’ s

request, F'
v request FF /ﬁgg;E:FD+FP

(M |————[mI]

= - wort FE
move \

provide move FP!
N R4
@ " see FE ,

prove F'P'

Figure 6: Research Cooperation with distributed MBASEs

ple pen-and paper method for managing, archiving and communicating math-
ematical theories, since the formalization gives more precision to mathematical
arguments and the identification of mathematical concepts. In pen and paper
mathematics intuitively clear and commonplace concepts like the natural num-
bers (IN) are often used without a precise definition, which can even result in
mis-quotation or mis-application of theorems, since it is unclear whether zero is
included in the set IN.

Many of the advantages that can be reaped from the MBASE scenario for
mathematics come from the hyperlinking possibility given by distribution and
Internet-availability of MBASE — most importantly by the unique referencing
scheme — developed in this article.

There are other issues to be considered for this vision: For instance, mathe-
matics communication is very document-centered (articles, books, technical re-
ports), and there should be a way to map MBASE contents to some form of
documents. In (43) we develop an XML-based meta-language @Doc (this is an
extension for the emerging OPENMATH standard (15)) for annotating mathe-
matical documents that also serves as a communication interface to MBASE.
As a consequence it will be possible e.g. to generate customized @Doc docu-
ments from MBASE, which can then be presented in one of the more standard
presentation media (e.g. WTEX, HTML, or MATHML).

3.1. The Distributed Data Base Model

For distributing MBASE, we make four assumptions (we will relax the last two
below):

A1 the distributed MBASE processes can be reached via the Internet (by URL),

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 18

A2 they are essentially uniform; e.g. realized by the same program, or at least
communicate by the same protocol (see (5) for one based on KQML).

A3 primary objects are realized only once in the network of MBAsEs. With
this we mean that there is one “defining” instance of each primary object.
As a consequence, every primary MBASE object has a unique description:
a pair consisting of the URL of the MBASE and the unique identifier of the
object there.

A4 primary objects are never changed. This assumption is useful, since it makes
caching and maintenance much simpler. It is reasonable, at least for pub-
lished mathematics, since changing e.g. a definition or theorem that other
mathematical objects depend on is desasterous for overall consistency.

Note that we cannot make a unique representation assumption similar to A3 for
relations between objects. For instance the definition D of the object O from the
example above will probably contain symbols that reside in M T or M.J, therefore,
the depends-on relation for D cannot be localized to M R. The solution here is
to introduce reference objects into M R, that point to objects, say in M1 or
MJ.

DEFINITION 3.1 (REFERENCE OBJECT): Reference objects are database ob-
jects that refer to primary objects located in remote MBASEs. Technically, they
are pairs (M,T) that consist of the URL M of the remote MBASE and the
unique object identifier Z there.

If M is the current MBASE and Z is the unique identifier of a reference object
(M',Z") in M (i.e. instead of a primary object itself, M has a reference to an
object O stored in the remote MBASE M’ under the unique identifier Z'), and
M is queried for Z, then M, can forward the query (e.g. using the KQML forward
performative; cf. (24)) to M’ as a query for Z', to which M’ would answer by
sending O to the original querying agent. Of course there is no guarantee that
7' points to a primary object in M’, so that the process might be iterated.
Therefore, M also tells the querying agent that it only has a reference object,
so that it can — e.g. if it is also an MBASE — update reference information.

3.2. Managing distributed MBASEs

Let us now look at the management of distributed MBASEs. In this article, we
do not specify policies for managing MBASE contents, but discuss the infras-
tructure and processes necessary to efficiently manage the distribution aspects
of a distributed mathematical knowledge base.

One of the most basic procedures is that of moving data between MBASEs, e.g.
of the theory F'F' from M1 to M .J after the submission described in our scenario.
This is realized by “moving” the primary objects and parts of the relations from
MI to MJ.

Concretely, a primary object @ (with unique identifier Z) is moved from M

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 19

to M’ by creating a new object O’ (with identifier Z') in M', and replacing O
in M by a reference object O = (M',Z"). Now, all tuples in relations that are
anchored in O, are moved to M’ by deleting the tuple in M and augmenting
the corresponding relation in M’

DEFINITION 3.2 (ANCHORED): Every MBASE relation defined in section 2 has
an anchor feature. This is the first feature in the attribute value-maps (e.g.
in Fig. 2.1) of the database records representing the relations. If f is the anchor
feature of a relation R, then we say that R is anchored in f.

With assumption A4, we can use a very simple model for caching. Since
primary objects never change, they can be cached, and cache-consistency is never
a problem. To allow caching, we simply relax assumption A3, and permit cached
copies of primary objects to exist in other MBASEs. We still insist on a variant
of A3, i.e. that there is only one defining instance of a given primary object;
all others are called cached.

We implement the caching scheme by augmenting the primary objects by a flag
cached that marks a primary object as a cache copy object or as a defining
instance, and the reference objects defined in 3.1 by a cache reference feature
that points to (contains the unique identifier of) a cache copy object. We assume
that the database maintenance algorithm, whenever it decides to make a cache
copy of an object O (copying it from MBASE M), also copies from M all relation
tuples anchored at O and augments the local relations with them. Now, the
knowledge base algorithms can access cache objects just like defining instances:
whenever they hit a reference object, they either access the cache copy object
specified in the cache reference feature or (if that is empty) access the remote
copy of the object. Cached objects can be removed without loss of information
as long as the cache reference feature of the corresponding object is reset.

Sometimes there are situations where it is necessary to change a definition,
e.g. if an error occurred in the formalization. We have assumed in A4 that
primary objects may not change, so the only way to repair the error is to create
a new definition object in the knowledge base and only use that subsequently.
This is possible and even feasible, since mathematical concepts in MBASE are
not primarily identified by their technical names but by their identifiers (which
will be different by A3) even if the technical names coincide. We could even
give the old object the status “obsolete” to warn anyone against using the old
definition. Even if this is successful, it is in principle impossible to determine
when it is possible to delete the old definition, since other MBASEs might still
be referencing it.

A similar situation occurs when a primary object is moved from MBASE M
to M, and is not referenced in M anymore (this will frequently happen, if
completed theories are moved to higher-level MBASE servers, such as the archive
server M.J in our scenario). Therefore an MBASE M keeps a record of all the
MBASEs referring to it: we call those MBASEs dependent on M. When an
MBASE M’ creates a reference object pointing to a primary object in M, and it

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 20

is not already dependent on M, then M’ sends M a message introducing itself
as a new dependent. This list of dependent MBASEs allows two optimizations:

1. Whenever M moves an object O to some MBASE M", creating a reference
object (n, M",Z"), then it can send the new location of O to all dependent
MBASEs, asking them to update their reference objects and thus shielding
itself from future requests to O.

2. If M itself does not reference an object O, it can ask all its dependents
whether they do. If not, M can delete O.

In particular if an MBASE M does not have dependents, then we are totally free
to change, delete, or otherwise manipulate data, as long as internal consistency
is guaranteed.

3.3. Managing Context with MBASE

Conceptually, there are two kinds of MBASEs that differ in their policy towards
data change, we call them archive and scratch-pad MBASEs.

1. An archive MBASE is epitomized by the Journal MBASE M.J in our sce-
nario above, it archives unchanging mathematical knowledge and is refer-
enced by many other MBASEs.

2. A scratch-pad MBASE is epitomized by the personal MBaAsks M R and
MR', these do not have any dependents and are primarily used for theory
development.

Since they have different purposes, they have will have different structures. For
example, the amount of data contained in an archive server will in general be
much larger, making sophisticated database support necessary, while scratch-pad
databases will have to support theory revision algorithms like the “management
of change” (35) alluded to in section 2.4, but the INSTANTDB database support
currently implemented in MBASE may be sufficient.

The two classes of MBASEs will have radically different policies towards delet-
ing and changing data, one way to implement these is to disallow dependent
MBASEs in scratch-pads.

In particular, the lightweight scratch-pad MBASEs can be used to emulate
context server agents. Whenever a set of mathematical services needs a notion
of shared context (as opposed to a private notion of state, e.g. in a constraint
solver service), then they can request an MBASE to store it, e.g. as a special
theory. Whenever a participating service needs to access the context, it will just
issue a knowledge base query or manipulation command.

This approach, where the context is stored externally to the participating
mathematical services is more flexible (e.g. services can be called into, or leave
the problem solving at arbitrary times) than a more classical approach, where
context is stored and manipulated inside the services. Furthermore, it reduces
context manipulation to knowledge base access and thus reduces implementation

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 21

complexity. Finally, knowledge base services could ultimately offer added-value
services, such as proxying or pro-active lookup.

4. Logics, Morphisms and MBASE Languages

The logical language supported by MBASE is a poly-
morphically typed, sorted record A-calculus modeled af- 'A/llv

ter the mathematical everyday language (often called

“mathematical vernacular”, e.g. (19)). It is a joint gen- }/VQ
eralization of the ML-polymorphic A-calculus with kinds [Kohlh94] [Ohori95]
as used in ISABELLE and Hashimoto & Ohori’s poly- \ /
morphic record calculus (47). Records allow a clean for- AT
malization of mathematical structures, such as groups
or fields, polymorphism is needed to reuse definitions TSET
and theorems in the knowledge base and ensure a mod- sy b
ular structure of the theory. Finally the mechanism of ;RZ“};
“kinds” adds to the practical expressivity of the poly- 5 ' '
morphism and is used in many theorem proving sys- iTéQf iBZF
tems (AClam, ISABELLE,. ..). Finally, the MBASE logic 112
supplies the infrastructure for sorted A-calculi (see sec-
tion 5). Conceptually, sorts are unary predicates (cor- ~ Figure 7: Hierarchy
responding to often-used sets in mathematics) that are

treated specially in the inference procedures (sorted matching and unification).
This added structure leads to a more concise representation and a more guided
search. For clients that cannot manipulate sorts, types, records, or higher-order
quantification, the mediators built into MBASE can relativize these language
features away, retaining the intended meaning.

We will use a variant of the theory interpretation approach proposed in (22)
for relativization mappings, that can be used to transport meanings and proofs
between logical formalisms. In fact, in the rest of the article, we will describe
a whole hierarchy of representation languages (see Fig. 7), where relativizations
can be used to arrive at various representation formalisms for mathematics, down
to axiomatic (Zermelo-Fraenkel) set theory. Before we formally define the notion
of relativization by the concept of logical morphism in the next section, let us
discuss the consequences for the architecture of MBASE.

The defining intuition for logic morphisms is that

Logic Morphisms Transport Proofs: Let 7:S — &' be a logic
morphism and A an S-theorem, then F(A) is an &'-theorem.

This already suggests the logical structure of a mathematical knowledge base:
Orthogonal to the usual theory hierarchy (induced by theory interpretation mor-
phisms; we will not go into in this article, see (22)), there is a hierarchy of logical
system induced by logic morphisms. In Fig. 7, we have specified some of the log-
ical systems we will discuss in this article.

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 22

Mathematical knowledge can be specified in any of the logical systems; it
can be queried and retrieved in any logical system that is downward accessible
from this one. Furthermore, communication of mathematical software systems
is possible by way of the “least common denominator logic”. This may seem as
a severe restriction of applicability of the approach, but it is not since the set of
logical systems and morphisms in the hierarchy is not necessarily fixed:

e A new logical system can be incorporated by specifying a logic morphism
to any of the existing systems.

e A new logic morphism can be added, if it is consistent with the information
already present in the structure, i.e. if it is redundant.

Of course these hierarchy extensions generate proof obligations (determining the
logic morphism property and redundancy), which will have to be supported in
a system like MBASE. We leave a discussion of this to another article.

The practical usefulness of a language hierarchy will depend very much on the
existence of such redundant morphisms. In particular for the “least-common-
denominator” problem between languages £ and £’ we can have two kinds of
situations:

e If there is a good and well-understood way to translate formulae from lan-
guage £ to L', then we can implement this as a redundant logic morphism
in MBASE bypassing the need of an intermediate “communication logic”.
Moreover, making the logic morphism available in MBASE will allow other
users to use it.

e If there is no such translation, or if it is very domain-specific, then (of
course) logic morphisms will not help (only further research into the se-
mantic relation between the logics and possible translations will).

In the rest of this section, we will make the relativization approach concrete.
We will first look at the elimination of sorts from sorted first-order logic by
relativization. Based on the this guiding example, we we discuss the logical
foundations and the relation to set-theoretic semantics in section 4.2. We will
conclude this section by a discussion of the relativization of higher-order logic
into first-order logic, in order to complete the lower half of the diagram in figure 7,
before turning to the upper half in section 5.

4.1. Example: Relativizing Sorted First-Order Logic

In this section, we will consider relativization from sorted first-order logic to
classical first-order logic. We will use the simply typed A-calculus (32) as a
meta-logical framework for representing the logical systems, since it gives us
substitution, replacement and the treatment of bound variables for free. This
is only a notational convenience and of no fundamental importance. In partic-
ular, this does not make any prerequisites on the part of the logical systems
like first-order logic presented in this chapter. FOL = (£F°% ND(FOL)) is the

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 23

FOL = (LFOX, ND(FOL))
Signature | ¢+ | Type Individuals
o | Type Truth Values
A | o—o0— o0 | Conjunction
- lo—o Negation
IT" | (¢ = 0) — o | Universal Quantification

LFOr = well-typed formulae of type o
ND(FOL)
H B B AX
HL L
K BA HITA

z z

Figure 8: First-Order Logic

logical system, where the logical part of the signature consists of the type con-
stants o and ¢ (for truth values and individuals) and the term constants A, -,
and IT (see Fig. 4.1, all other connectives can be defined from — and A, by De
Morgan rules, and quantification can be regained by treating VX.A as an ab-
breviation of II(AX.A)). The signature of first-order logic can contain further
non-logical constants (called parameters) that model mathematical structures.
In the following, all arguments and constructions will be parametric in the choice
of parameters in the signature, and we will use the more precise FOL(X) for the
instance of FOL that contains the parameters declared in the signature .

C = ND(FOL) is the well-known calculus of natural deduction introduced by
Gerhard Gentzen in (29). We will use 1 to abbreviate Fypwor) (in Fig. 4.1, we
have only depicted the quantifier rules, since they will be the only interesting
ones for the discussion in this article).

The logical system SFOL (see Fig. 4.1) is an extension of FOL, where the
signature is extended by an order-sorted set S of sorts, a sorted quantifier IT* and
a set of constant- and subsort declarations (again, we will make use of higher-
order abstract syntax here and write the traditional VX,.B as I[T*A(AX.B).).
The language £°7°F is the set of well-sorted formulae, i.e. formulae, where for
all applications f(a) the argument a has a sort that is an argument sort of
the function f. We specify this by the sort judgment ' £ A=A (A has sort A
under the sort assumptions for the variables in A given in the variable context
I'). The subsort relation and the property of being well-sorted are given by the
judgments ¥ A < B and I' £ A=A, which are proven by the subsorting and
well-sortedness sub-calculi of ND(SFOL). We will use K for the propositional
part of ND(SFOL).

The logical morphism R from SFOL to FOL interprets the sorts in S as unary
predicates (parameters of type « — o) in FOL. Note that with the definitions in

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 24

SFOL — (L°FOL_ND(SFOL)) = FOL+
Signature ¥ | A B, ... L—0 Sorts = Subsets of individuals

[A < B] Subsort declarations

[ci: A Constant declarations

I (t—0)* =0 Sorted Universal Quantification
LSFOr Well-formed = well-typed

A<B ey HA<B EB<C

Subsorting cA<B =A< A SA<C

[c:A] € ' A:B—-C I'fB:B
Well-sorted

[Ec:A [[X:A] B XA ' AB:C

DK IFAB TE A:A I, [X:A] K AX

ND(SFOL) K BA i IFAA

Figure 9: Sorted First-Order Logic

Fig. 4.1, the universal VX 4.A in £L5FO%(Y) is relativized to the FOL(X)-formula
VX.A(X) = A (if A is a base sort). This is just the well-known relativization
morphism for sorted first-order logics. Function sorts are relativized into first-
order assertions about the domains and ranges of functions. The second part of
Fig. 4.1 defines the signature axioms generated by a declaration in a sorted
signature . We will denote the set of all signature axioms by Rs(X). Similarly,
we can define the set Rs(I") of sort assumptions generated by a sorted con-
text T’ by setting Rs([X:A]) := Rs(A)(X) for a declaration [X:A], we will use
Rs(r, E) for Rs(r) U Rs(Z)

RL: £SFOL _, fFoL

Signature ¥ | Rg-image

a, f,q,... a,f,g,...€ %

AB,... P,R...€X

A—DB AF, L (VX Rs(A)(X) = Rs(B)(FX))
I AS, oM, 0V X,.SX = TX
Signature ¥ | Signature Axioms Rs(%)

[A < B RCR

[c:A] Ris(8)(0)

Figure 10: Formula Relativization from SFOL to FOL: Rl

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 25

Their significance is that they encode all the information of the sorted signa-
ture in first-order logic, so that we have the following theorem:

THEOREM 4.1 (SORT RELATIVIZATION THEOREM):
IfT I A, then Rs(S,T) K Rs(A)

The proof is a direct consequence of the definition of R, defined in Fig. 4.1:
Let D:T I A, then DgortsVPEFOL. Ro(.T) i Rs(A), since R is a calculus
morphism from SFOL to FOL.

All the discussion so far has been purely syntactic, we will come to semantic
questions in the next section.

[A<B eX
A<D Rs(.TVERCPR since (R CR) € Ts
PXEPRX
LARX

EVX.PX = PX

RALC transitivity of =
[c:A] € &
- — . E
TE c:A Rs(D) K e since P.c € Rs(X)

[[X:=A] B X:A R(I),P(X)ERX

Rs(Z,T) EYXRX = R(Rs(AX))

'z A:B—-C TI'E B:B L " Rs(E,T) K B(Rs(B))
[£ AB:C Rs(Z.T) & R(Rs(B)) = 2(Rs(AB))

Rs(E,T) § P(Rs(AB))

Rs(Z,T) K T(AX.(AX) = (BX))

IE BA Rs(E,T) E AA = BA Rs(EZ,T) E AA
BA
Rs(Z.1),RX AX
[LX:=A E AX
W Rs(E, 1) E AX = AX

Rs(Z,T) E TOAX.AX = AX)

Figure 11: Proof Relativization from SFOL to FOL: R§.

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 26

4.2. Logical Morphisms

The fundamental logical notions for relativizations like the ones discussed in
the last section are logical systems and logic morphisms. For the purposes of
this article, we will call a pair § = (£,C) a logical system, if £ is a logical
language (set of well-formed formulae) and C is a calculus i.e. a set of inference
rules defined in usual way as n-ary relations over well-formed formulae; formally
CCL =Uen L

Given a logical system S = (£, C), we define an S-derivation D of an asser-
tion A from a set H of hypothesess (written D:H Fs A) as a tree D (or a
directed acyclic graph), where the leaves of D are labeled with the formulae from
‘H and the root is labeled with A. Furthermore, all nodes of D are labeled by
assertions C and inference rules R € C, such that the for the labels Hy, ..., H,
of the daughters of a node we have R(Hy,...,H,, C). Thus a calculus C defines
a relation kg (of variable arity) on £, which we will call the derivation relation
of §. We will use the terms like S-proof (for a derivation of an assertion A from
the empty set of hypotheses) and S-theorem (for an assertion for which there
is a S-proof) in the usual way.

We say that a logical system & = (£,C) is a subsystem of &' = (£',('), iff
L C L and FsClg. We call S equivalent to &', iff £ = £’ and Fs=Fg, or
equivalently, if they are subsystems of each other.

A calculus comes with a natural notion of composition of derivations: If
D:H,A ¢ B, and £: K F¢ A, then we obtain a C-derivation from D and
E (we denote it with D @ £) by attaching £ at the leaf A of D; we have
D dp E:H, K Fe B. Note that any calculus C can be augmented with combina-
tions of the inference rules without changing the derivability relation (the logical
systems are equivalent, which really interests us for our applications). We will
therefore assume that calculi are minimal in the following sense: If D, € € C,
then D @A D ¢ C.

Let S = (£,C) and &' = (L£',C’) be logical systems and f: L — L' a total
function, then we call a total function g that maps S-derivations to S’-derivations
a calculus morphism with respect to f, iff for any S-derivation D: H Fs A, we
have g(D):f(H) ks f(A). A logic morphism F:S — &', is a pair (F!, F¢)
of mappings, such that F is a calculus morphism with respect to F'. We call F
a logic homomorphism, iff 7¢(€ ©a D) = F¢(E) @xa) F(D). Note that a
logic homomorphism is determined by its behavior on C.

In analogy to the Sort relativization theorem (4.1), we have to following meta-
theorem.

THEOREM 4.2 (GENERAL RELATIVIZATION THEOREM): IfS = (£,C) and S’ =
(L',C") are logical systems, R:S — S’ is a logic morphism, and H t-¢c A, then
R(E),R(H) Fe R(A).

The existence of such theorems is the guiding intuition behind our setup of the
landscape of representation languages in Fig. 7. Any theorem that is provable in

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 27

a higher representation language will be provable (and indeed the proof can be
constructed by relativization) in the basic logics. Let us now investigate how we
can build logical morphisms.

Let & = (£,C) be a logical system and f: L' — L a total function, then
f induces a calculus C" on L' by setting H ter A, iff f(H) e f(A). We call
S = (L',) the logical system induced by f. Moreover, f induces a logical ho-
momorphism F' =:8" — S, in the obvious way (F' = (f,g), where g is the
homomorphism on derivations induced by the translation f). Note that a func-
tion F := (FI, F): 8 — &' = (L',(") is a logical morphism, iff g Clg, or in
other words, Sf is a subsystem of S'.

We will call a set ‘H of logical systems together with a set of logical morphisms
a logical hierarchy, if the set of logical morphisms is closed under composition
(note that the composition of two logical morphisms is again one). The formal
notions introduced so far are sufficient to introduce a methodology of maintaining
logical hierarchies. We can start out with a logical system, (say FOL as in the
last section), and introduce another logical system by inducing it from formula
mapping. ND(SFOL) is induced by Rk in the following way: let us consider the
case of universal instantiation we need an ND(SFOL) rule that proves VX ,.A,
so we look for a ND(FOL) proof of VX.R.X = A, we identify the smallest
subtree, such that all of the leaves are in Im(Rk), and arrive at the last but one
in Fig. 4.1. If we proceed similarly with the other inference rules, we arrive at
ND(SFOL).

So we can see that we can introduce a new logical system with a logic morphism
into a hierarchy by specifying the language (morphism) and inducing the calculus
(this situation is similar to the case of import morphisms in the theory hierarchy
in section 2.4). If we want to introduce a new logic morphism between existing
logical systems, we have to be more careful, since the calculus in the source
system is already fixed. In order to prove that the defining pair F = (F!, F¢)
of mappings is really a logic morphism we have to check that logical system
induced by F is a subsystem of the original target system. Note that we even
have to check these conditions for logical endomorphisms (logical morphisms
from a logical system to itself), since we always have the identity morphism, to
which a new logical morphism has to be compatible. Thus the case of adding
a new (redundant) logical morphism to a hierarchy is similar to the case of
the theory-inclusions discussed in section 2.4. We expect that we can develop a
calculus for the “management of logical hierarchies” based on the Dieter Hutter’s
ideas for theory hierarchies, but we leave that to further work.

Let us now see how the ideas of linking logics relates to semantics. In this
example, we take the semantics of first-order logic as given. It is just the classical
Tarski-style semantics: A model is a pair (D,,Z), where D, is an arbitrary set of
individuals and 7 is a function that maps individual constants in ¥ to members of
D,, functions in ¥ to functions/relations on D, (of appropriate arities). Variables
are evaluated by a variable assignment ¢, so that the value function Z,, is just the
homomorphism determined by Z and ¢. Note that this semantics is absolutely

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 28

consistent with our choice to take the simply typed A-calculus as a meta-logic: the
choice of the universe D, determines the standard model D = {D,:a € T} if we
take D, := {T,F}. n-ary functions are then objects of type . — ... — 1 — 1, and
predicates of type © — ... — ¢ — 0. The semantics of universal quantification is
regained by setting Z(I1*) to be the predicate that evaluates to T, iff its argument
is T on all inputs: Z,(VX.A) = Z,(TI*(AX.A)) = Z(II*)(Z,(A\X.A)) = T, iff
T,(AX.A)a =T for all a € D,. This is the case, iff Z,,/x]jA = T, by definition
of the value of A-terms in the simply typed A-calculus.

The semantics of SFOL is similar and well-known from the literature. Let
us for the moment forget this and see whether we can define the semantics of
the logical system SFOL by Rs. For this we intuitively work the relativization
mapping backwards.

We start out with the sorts. These are members of the signature, so they should
be reflected directly in the structure of the model. Since they are relativized to
unary predicates, a sort A must correspond to a subset Dy = {a € D, | Z(A) =
T} C D, of the universe D,. Now, the signature axioms tell us that if [A < B] € ¥,
then Dy C Dp and if [czA] € X, then Z(c) € D,. In particular, the signature
axiom for functional sorts insists on the right input-output behavior of functions.
For a variable context I', the context assumptions specify that the context is
well-sorted.

Note that this is a (a posteriori) verification of the semantics of sorted logics
from the literature. Also note that this account does not entail the fact that sorts
are non-empty (a fact that is often assumed in sorted logics). We only know this
if there is a constant declaration for each base sort in the signature.

We will say that the semantics we have constructed by looking at the relativiza-
tion was induced by Rs from the the semantics of FOL. Now, the relativization
theorem gives us a conservative extension result: If ND(FOL) is sound for first-
order semantics, then ND(SFOL) is for the induced semantics. Furthermore, the
logical system SFOL is not more expressive than FOL.

In the special case of R:SFOL — FOL we also have the converse result,
(SFOL and FOL are equally expressive), since there is a partial inverse Rrop to
Rs (RsoRrop = Idror), which embeds FOL as a fragment into SFOL. Rp(2)
contains only one (base) sort Top, and one declaration [¢:Top,,|, for each constant
of type a in ¥ (here we use the convention that Top,, ,, = Top, — Tops). The
language and calculus morphism are the identity. Clearly, the semantics induced
from the semantics of SFOL by Rt is again the semantics of FOL.

4.3. Relativizing Type Theory into Set Theory

The goal of the next section will be to construct a hierarchy of representa-
tion languages culminating in a high-level logical system M) (see section 5)
for formalizing mathematics. BMY is a joint generalization of Ohori’s record

A-calculus (47) and the sorted A-calculus from (41). MY extends BMV by spe-
cialized sort machinery to formalize mathematical structures like groups. Before

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 29

we undertake that, let us briefly complete the discussion of the lower half of
Fig. 7.

The method of relativizations can be used to build up the simply typed A-
calculus (A7) from axiomatic set theories like ZF (25), and we will spend the rest
of this section exploring this possibility to ground the hierarchy of representation
languages in set theories. Since the logical side of this is rather standard and well-
understood (see e.g. (21)) and has been formalized in several deduction systems,
e.g.in OTTER (49) or ISABELLE (48), we will only briefly sketch the process.

Axiomatic set theories like ZF only come with a basic type « of “set” and with
the logical relation constant € for element-hood. The axiomatic method is used
to restrict set comprehension to get around paradoxical sets like Russell’s set
of all sets that do not contain themselves: the theories contain specific axioms
for set comprehension; for instance there is an axiom stating that for any sets
A and B, the Cartesian product A x B is again a set. (Partial) functions are
construed as univocal relations (a relation F C A x B is a function, iff for all
(z,y),(x,2z) € F we have y = 2) and function application is represented as
projection to the second argument (f[a] is the (unique) b, such that (a,b) € f.)

We start out by relativizing the simply typed A-calculus to typed set theory
T SET, i.e. a simply typed higher-order predicate logic HOL together with a for-
mulation of the ZF axioms, interpreting sets as predicates and element-hood as
predication (i.e. A € S stands for S(A)). HOL is a variant of Andrews’ system
Q with comprehension axioms instead of [-conversion; the types make 7 SET
consistent (see (3) for a deduction-related introduction of higher-order logic and
the simply typed model theory). Using the techniques from (21; 48), we use the
selection axiom from ZF to construct a A-operator, i.e. a 7 SET-formula that
behaves like the A-abstraction operator. Thus we can construct a language mor-
phism from the simply typed A-calculus to 7SET by mapping A-abstractions in
A7 to HOL-formulae using A. The calculus morphism is constructed by mapping
the pg-axiom scheme of A~ to the proof of the validity S in T SET.

The next step is to relativize 7SET (higher-order logic) to sorted first-order
logic. For this, we can either use a technique developed by Manfred Kerber (38)
or we can directly use the definition of functions as univocal relations in ZF
to build a logic morphism from 7 SET to sorted first-order logic. Finally, the
techniques detailed in section 4.1 get us to classical ZF. Note that we have to
take care to relativize the ZF axioms in the source system to a form in which
they are equivalent to the ZF axioms native to the target system.

4.4. Evaluation

The logic morphisms presented in this section can always be used to transform
any proof in the source system into one of the target system (this is the reason
for the definition of logic morphism used in this article), in other words, from
a purely theoretical point of view, the expressive type-theoretic representation
formalisms in the M) hierarchy can be viewed as being only syntactic sugar

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 30

to enhance legibility. However, from a practical point of view, the expressive
formalisms allow for more efficient inference systems that allow the knowledge
base system to give added value services, that would be impractical on the level
of set theory.

We believe that while axiomatic set theories address foundational issues of
formalizing mathematics — in the old representational tradition of classical logic,
where there is a quest for the minimal logical system that is expressive enough
to encode all relevant problems — logical systems like the simply typed A-calculus
are more adequate to address computational needs of doing mathematics.

Orthogonal to the debate about set theory vs. type theory, there is a discussion,
whether or not formalized mathematics should be constructive or not. We do not
make any assertion about this, but note, that it is simple to extend the hierarchy
of representation languages by providing a logical morphism to intuitionistic set
theory that basically introduces oracles for the law of the excluded middle; see
e.g. (33). In Fig. 7, we have marked the intuitionistic logical systems with an i
and the oracle-morphisms with dotted lines.

In the next section, we will continue to develop higher-level representation
formalisms for mathematics by the logical morphism method discussed in this
section.

5. Mathematical Vernacular

In this section, we develop the basic concepts for a representation language MV
for formalizing and reasoning about mathematics in MBASE. Such a logic must
be flexible, easy to use, and last but not least, it must support the rich, structured
inference machinery mathematicians have at their disposal. In short, it should be
modeled after the natural language of everyday mathematics, that is sometimes
called “mathematical vernacular” (This term is taken from N.G. de Bruin in (19),
where he proposes a different logical system with similar intentions).

In contrast to other authors, we contend that this language can be modeled in
a formal language, and that the system M)V is a good first approximation. We
will develop the syntax and operational semantics of M), and show that it can
be grounded in simpler logical systems (and ultimately in axiomatic set theory)
by the technique of logical morphisms developed in section 4. This also gives us
a way of relativizing all inference mechanisms, such as sort computation, sorted
higher-order matching and unification into less expressive logics, where they can
(if wanted) be verified.

Note that the relativizations give us a form of set-theoretic semantics (by
mapping formulae to set theory), which can be shown to be equivalent to the
standard Tarski-style semantics for A~ (see (3) for typed Henkin models and (41)
for a sorted version).

To get a better intuition about the language, we will develop MV in three
steps. To introduce the basic setup of the language we start out with a lan-
guage BMV, which extends the simply typed A-calculus by sorts and records in

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 31

section 5.1. Then we successively enhance the practical expressive power of the
language by introducing label-selective application and abstractions, and depen-
dent sorts as additional language constructs using semigroups as the motivating
example. As we will see in section 5.5, this does not enhance the expressivity
in principle, but (as we will see in the mathematical examples in section 5.4) it
has practical advantages both for conciseness of representation and in enabling
inference procedures.

5.1. BMV an Expressive Sorted Record-\-Calculus

T o=ulo|T—=T {7 ...0mT"} (Types: o, 3,...)
S u=Tops | S =8| {68, ..., 6,:8"} | SIS (Sorts A/B,...)
M:=X |c| (MN) | A X.M (Terms A,B,...)
| {¢ =M,,.... 0" =M, }} | M./
variables: X,Y,Z; constants: ¢, II% A, =
Y =02 M:S]|E[S>T]E[S<S (Signature)
' ==0|T,[X:S] (Environment)

Figure 12: Syntax of BMV

BMV is a sorted record-A-calculus (see Fig. 5.1), i.e. an extension of the simply
typed A-calculus by records. We will use the type o for the truth values and the
type ¢ for individuals. As a consequence terms and formulae can be distinguished
by their type: the equivalents of (first-order) formulae are A-terms of type o,
whereas terms are A-terms of type . We will call a type a record type, iff it is
of the form {¢1:aq,...,¢,: o, }}, and we will use the standard record selection
operator “.” with the assumption that it is only applied to record types.

Furthermore, the type system is augmented with a typed sort system, that
can be used to specify domains and ranges of functions and thus enables the
system to compute most of the definedness preconditions that are ubiquitous in
mathematics fully autonomously. From an abstract point of view, sorts enable
us to constrain the set of models and restrict the inference procedures to this
set of models. It is important for the soundness of the system that sorts are also
typed (see Fig. 15 for an inference system that computes the type of a given
sort).

The set of judgments (see Fig. 5.1) that are needed for the formal development
of the calculus comprises the typing judgments for terms I' & A:a and sorts
k2 A> «, the sorting judgment (I £ A:A).

All of these judgments are relative to a set of global type/sort assumptions in
the signature ¥ and the judgments for terms (sorts do not contain variables)
are also relative to a set of (local) type and sort assumptions I' (the context)
for the variables.

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 32

' M M is provable from assumptions I
EA<B Sort A € Sisasubsort of B S
EA> o Sort A € S has type a € T (at most one per sort A)

't AzA Term A has sort A assuming I' and ¥
g A Term A has type a € Ty assuming [' and X

Figure 13: Judgments

[AzA]l € X [X:A] el lE A«

' A:A I'g X:=A 'ty AxzTop,

' A:C—-A T'k C:C [X:BE A:A EB>f
'y AC:A I'E AXgA:B — A
' A:A TE A=4,B
't B:A
' A=A g A=A .0 TR A:A,
I'EAC:AY Fef{b=A, ... 0, =A F:={0:A . 02A)}
g A:A TE A:B 'z AzANB 'z AzANB

'z Az:ANB ' A=A 't A:B

Figure 14: Well-sorted terms in BMY

The most important judgment for well-formedness of MV expressions is the
term sorting judgment (see Fig. 14), which classifies terms by their sorts. The
first set of rules comes from the ordinary sorted A-calculus (see (41) for an
introduction), the second is an obvious adaptation of Ohori’s rules for record
typing (47), and the third set of rules is that for intersection sorts from (44).
The most important rule in the sorted calculus is the first one in Fig. 14, the
term declaration rule. In contrast to other systems it allows to declare and use
sort information for term schemata like [Xg * X:P| (doubling a real number
produces an positive real), [(AX.X), (AX.Yg):M] (the identity and the constant
function are monomials), and even [(A\F,G, X.F X * GX):M? — M] (the set of
monoids is closed under pointwise multiplication). Note that the latter give a
full theory of monoid functions on the reals. The term typing judgment — which
guarantees consistency and termination of Sn-reduction — is defined in terms of

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 33

[A> o] e X HA>a EB>p
B A> o ly Top,> « FA—=B>a—f
HA>a ... EA>a, HA> {la,...}
A ALY [, G} HAL> o

Figure 15: Sort Typing

A<Bles LA<B EB<C
=A< SA<A LA<C
L AMNB < A L AMB<B
A<A BB
A—-B<A 5B Top,, .5 < Top, — Topg

Figure 16: Subsorting

it: if I' & AzA and ¥ A> o, then I' £ A:a. Note that the typed system is
just Ohori’s record calculus (47), which is a conservative extension of the simply
typed A-calculus.

For such a construction, sorts must also be typed (see Fig. 15 for an inference
system for the sort typing judgment). We will see in section 5.5 that this gives
us a conservative extension of the simply typed A-calculus. Subsorting is used
in the signature to declare an intended subset relation between sorts. We do not
have to declare all subsort relations in the signature, since some can be inferred
by the inference system in Fig. 16. Note that we do not need a subsort judgment
in a system like BMY, since the notion of subsorting is in principle subsumed by
the mechanism of term declarations (the rules in Fig. 16 are in fact admissible;
see (41) for details). However it is good to include them explicitly in a system
like MV, intuitive usability and readability are important. With the methods
from (41), we can check that MV is a well-defined system, e.g. if £ A < B, then
there is a type a € T, such that A> o and £ B> «a.

Now, we come to the BMV calculus for validity: a variant of Gentzen’s cal-
culus of natural deduction. We will use alphabetic renaming and permutation

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 34

[X:BE A:A T'E B:B F'EA:a— 3 X ¢ Free(A)
' (A Xp.A)B —5 [B/X]A ' (A X.AX) —, A
TEf(=A,. .}, A TE {6 =Al,... =AL) — A

Figure 17: Operational Equality for BMV.

FRI*B 'k A:A [[X:AJEAX TRA=,B KA
Ik BA I TAA reB

P

Figure 18: Natural Deduction for BMV.

for records, record types and record sorts without reference. Furthermore, MY
knows sorted variants of fn-reduction like the one in (41) and furthermore p-
reduction for record constructors (see Fig. 18). Finally, we have the introduction
and elimination rules for the sorted quantifier IT*. The IT* (A € S) are logical
constants of sort (A — Top,) — Top, for BMV, we use the usual higher-order
abstract syntax, where VX ,.A stands for TI*(AX.A).

5.2. Label-Selective Abstraction and Application

When formalizing larger bodies of mathematics or reusing already existing the-
ories it often becomes problematic to remember argument order of functions.
For this, programming languages like COMMON LISP — where the situation is
similar — have developed the so-called keyword arguments, i.e. a variant of
function application and abstraction, where the mapping of arguments to formal
parameters is not based on argument order, but on identification by so-called
keywords. This idea has been formalized by Ait Kaci and Garrigue in the so-
called label-selective \-calculus (2), which extends the simply typed A-calculus
by label-selective application and abstraction.

In the following, we will briefly sketch how to extend M) analogously. For-

mally, we need an additional type schema: « N B, a corresponding sort schema

A 5 B and two new term constructors: [A@,B] for labeled application and
A X.A for labeled M-abstraction. We will reuse the record labels as selection
labels, since they serve a similar purpose (¢ and & correspond to the keywords

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 35

[A:C5H5A TEC:C [X:BE AzA
& [AQ,C]:A IEXNXAB S A

IX:BE A:A Tk B:B
[(A\'X.A)@,B] —4 [B/X]A

X ¢ Free(B) TEAa5B3 X ¢Free(A)
(A X.A)@,B] —, (\'X.[AQ,B]) (MX.JAGQ,X]) —, A

Al i)AQ &BZPAQ &Al i)B

(MXANY.A) =, WY A X.A) [Aq,B@,C] =, [A@,CQ,B]

Figure 19: A label-selective extension to MV.

in L1sp). Finally, we will use the n-ary notation [A@,B@;C] as an abbreviation

The extensions to the respective inference systems can be found in Fig. 19.
In particular, we consider labeled application/abstraction to be commutative
(they are associative by construction, since types are left-associative). With this
extension, to M) we can for instance have a constant div for integer division
and express the term 5div2 as [diV@dividend5@divisor2] or [div@di\,isorQ@di\,idendE)]

5.3. Dependent (Record) Sorts

Label-selectivity gives us another advantage, we can extend it to a system with
dependent sorts, if we allow terms and labels of type § — o to appear as base
sorts locally. Conceptually, in BMV, sorts are unary predicate constants, so the
generalization is not as large as it seems at first. Let us look at the following
formalization of associativity:

assoc := A SAPFYX Y5 Ze.FX(FYZ) = F(FXY)Z (1)

In BMV, this would have the sort Top,_,, — (A — A — A) — Top, for some a
priori given sort A. We would however to have [assoc@s.S| (associativity on a
given set S) to have sort (S — S — S) — Top,, i.e. to be a predicate on binary
functions on S.

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 36

If we extend the set of base sorts by variables of type v — o (and of course
make the sort typing judgment dependent on a context I', by extending all rules
in Fig. 15 with contexts in the obvious way) and add the first two rules in Fig. 20
to MV, then we obtain the following sort derivation, which gives us a sort that
does show the dependence missing above.

[S:Top,), [FzS = § = S| & (VXsYsZs.FX(FY Z) = F(FXY)Z):Top,

[S:Top,_,,] & APFYXsVsZs.FX(FY Z) = F(FXY)Z:(S — § — S) —5 Top,

0
k2 assoc:Top,_,, set, (Set?) =2 Top,

Here (and in the following) we use A3 as an abbreviation for the sort A — A —
A

Unfortunately, the sorts discussed so far are not yet expressive enough for a
direct representation of common mathematical structures such as semigroups. A
semigroup is a pair (S,0), were S is an arbitrary set and 0: S x S — S is an
associative binary function on S. Just as in the case of associativity discussed in
section 5.3, we would like to represent S as a sort S and o as a function of sort
S — S — S in a record of type {Set:« — 0,0p: @ — a — «aJ}. However, in the
system developed so far, we cannot express a record sort like

Setop := {Set:Top,,_,,, Op:Set — Set — Set}}

The second two rules in Fig. 20 extend MV by very dependent record
sorts. This name is chosen to resemble Jason Hickey’s “very dependent record
types” (31) and serve the same purpose, even if the formalization on the level
of sorts is much more unproblematic, since there are no consistency problems
involved: Well-typedness is preserved at the level of (simple) record types.

To make the records dependent, we have to serialize the record construction
rule from Fig. 14. Technically, we will (ab)use the context to store the neces-
sary assumptions about the feature values and use the standard record merge
operator ® to write down the rules in Fig. 20.

Let IN be the set of natural numbers and +:N*® the addition function on
natural numbers, then we have the following sort derivation in MV .

& +:IN3

[Set = INJ K +:Set?
[Set = IN] K {Op = +}:{Op:Set®} K Top, ,,> ¢t — o0
£ {Set = IN, Op = +}}::Setop

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 37

[VIX:B B AA EB>pS—o Fl;A::(CiA IEC:C
I EAX.A:B S [(/X]A ' AC:[C/(A
l=AlEB:B TEA:A TEA>a—o0 T & [B/(Az[B/(A
FeEf{i=A}B:{(:A} @B [, =B]E A:A

Figure 20: Extending MV by dependent sorts

e Az:A T'EPA

P

»
S {AP} <A Ik A:{AP}

FP:a—0 EA>a«
H {AP}: o [X:{AP}H EPX

Figure 21: Augmenting MV by Selection Sorts

5.4. Selection Sorts and Semigroups

In this section, we will fortify our intuition about MV by considering an exam-
ple from elementary algebra: semigroups. To be able to handle them naturally,
we will need to upgrade the system by selection sorts. Concretely, we use a
new sort constructor {-|-} that yields a new (base) sort {A|P} for a given sort
A with £ A> «a and a closed term P of type a — o. Intuitively, this sort
corresponds to the set of all objects of sort A, on which P holds. Consider
for instance the set of continuous real functions, that we can model as the sort
C:={(R — R)|(AX.VeTo....)}. Now we can represent the theorem that the sum
of two continuous functions is again continuous by VFcGc.C(AXg.+ (FX)(GX))
If we want to prove this lemma, we have to be able to expand the definitions of
the sort C, which explains the necessity of the last axiom in Fig. 21. Note that
once we have proven this theorem, we can interpret it as a term declaration, add
it to the signature, and directly use it for further sort computations.

But let us come back to the problem of modeling semigroups. We have seen
in section 5.3 that we can represent the structure consisting of a set and an
operation on this set by the sort Setop = {Set:Top,, .,, Op::Set®}, thus we can
represent the sort of all semigroups by

Semigroup := {Setop|A} where A = (AX.[assoc@ge (X.Set)@p,(X.Op)])

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 38

As we have seen above, we have £ assoc:A := (Top,_,,) ety (Set?) N Top,

and therefore we can show that Semigroup is a well-typed sort.

[X ::Setop| £ assoc:A [X:Setop| £ X.Set:Top,_,,

[X:Setop| I [assoc@ge X .Set]: (X .Set)? e, Top, [X:Setop] ¥ X.Op:(X.Set)?

[X ::Setop| £ [assoc@ge (X.Set)@q,(X.Op)]:Top,
2 AX.[assoc@ge (X .Set)@Qp,(X.Op)]:Setop — Top,
1 {Setop| A\ X.[assoc@se (X .Set)@o, (X.Op)]}> {Set: a — 0, Op: a®}

To see how we can use the selection sorts, let us now prove that the operation of a
semigroup is associative on its set, i.e. we want to prove the formula ITS¢migrouPA
then — using Semigroup = {Setop|A} — we have [X:Semigroup|] 2 AX by the
axiom in Fig. 20 and thus I T[I°¢™&°PA by the sorted quantifier introduction
rule from Fig. 18.

5.5. Relativization for extended MV

In this section, we will present two relativization morphisms that show that the
records and selection sorts in M) can be eliminated and that therefore MV is a
conservative extension of the simply typed A-calculus.

For constructing an elimination morphism for label-selective applications and
abstractions, we will make use of the record calculus in BMV. Intuitively, the
translation works like this: maximal chains of labeled abstractions are repre-
sented as single abstractions over records with the same labels. Similarly, max-
imal chains of labeled applications as applications to single records. In our ex-
ample involving integer division we would translate:

[[divQgividend 5] Qeivisor 2] to div{dividend = 5, divisor = 2}
divzn)\diVidendX-)\diVisorY-A to)\Zﬁdividend:L,divisor:L]}-A,
The language morphism —- is given by the three equations below.

Ly LA S B = A ® (A0 ({A) ® (A /).

B Anci [laoi [l }) ..) = B
N Xy No XA = NZ[Z0 XA, [Z4n/ XA
BQ,C,@...a, C,] = A{t,=Cy,...,0, =Cy}

Ay

Here, A and B must be of base type and B may not be an application, so that
we always transform maximal sequences of arguments and bound variables in
one step. Note that this is not a restriction of generality, since we can always
n-expand. This translation uses the fact that entries in a record do not have a

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 39

T, [X:A] i PX]!
[[X:A B AX
[EIFAOX.PX = BX) TE A:A I[X:A K PX = AX
'ty PA = BA I'ty PA e (WY.PY = AY)X
'K BA [K IFAOX.PX = AX)

Figure 22: Relativizing Selection Sorts (from the Calculus Morphism)

fixed order to obtain the order-independence of labeled abstraction:

BQ,C,0,C,] = B{t=A46=24}
= B{l,=A, 0, = A} =[BQ@,C,qQ,C]
NXINEX,A = AZ[Z6 X, [Z6]X5)A
= AZ[Z0] X3 [Z.6/X1]A = Ne Xo A0 X LA

The argumentation for the types and sorts is analogous to the case for applica-
tions. A tedious but simple calculation with ND proofs shows that this language
morphism can be extended to a calculus morphism. In particular, the inference
rules in Fig. 19 turn into trivial ND proofs about records and their sets of labels.

We will not go in to details for relativizing away record sorts and types. This
can be achieved by using one of two standard techniques. By introducing a new
type p for record objects and modeling all record labels as partial functions from
records to values. Thus a record BMV of type {¢: o, k: 5} would receive type
p and we would extend the signature by functions fi:p — «a and fr:p — .
Alternatively, one can fix an ordering on record labels and map records to n-
tuples.

The logic morphism for eliminating selection sorts uses the fact that we can
define selection sorts by relativization using Bp; := AX.RX APX, just like we
did for ordinary sort relativization in section 4.1. Thus the language morphism
relativizes all occurrences of formulae of the form IMAPHA to TA(AX.PX = A).
The calculus morphism is given in Fig. 22, it shows the relativization rules for
IT{AP} elimination and introduction. Finally, the relativization of the axiom in
Fig. 20 is a trivial. Note that this allows any proof I', [X:{A/P}] £ A to be
transformed into one of the form for I', [X:A] K A under the assumption of
I, [X:A] ¥ PX. This justifies the implication introduction step in the transfor-
mation of the second derivation in Fig. 22 (we only have to make sure that the
first rule is eliminated first during the transformation).

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 40

6. Conclusion

We have described the data model of the MBASE system, a web-based, dis-
tributed mathematical knowledge base (it is realized as a mathematical service
in MATHWEB) that offers the infrastructure for a universal repository of formal-
ized mathematics. We have explained how the distribution of MBASE supports
repositories from the archive server level, where large parts of formalized mathe-
matics are kept centrally, to the personal (scratch-pad) level, where a researcher
has a personal MBASE to manage her mathematical theories under develop-
ment. In between there may be workgroup or institute servers, that support
collaborative development of mathematical theories.

We have presented a methodology for building a hierarchy of representation
languages for a mathematical knowledge base. We have shown that using logic
morphisms allows us to define high-level language features, such as dependent
sorts in a step-by-step manner from lower (and more standard) ones, and ulti-
mately from axiomatic set theory. The intended meaning of the more expressive
logical systems is induced via the logical morphisms from the simpler logical sys-
tems, thus a knowledge base that is built up using the method proposed in this
article is truly grounded in set theory. An implementation of the logic morphisms
in a knowledge base system, such as the MBASE system under development in
Saarbriicken, will give constructive evidence to the old belief of working mathe-
maticians that all of mathematics can be relativized (and thus grounded) in set
theory.

We have instantiated this methodology by sketching the development of a
sorted A-calculus that we claim is well-suited for formalizing mathematical prac-
tice. It is an extension of the sorted A-calculus from (41) by dependent function—,
record—, and selection sorts. We have sketched the relativizations needed to in-
tegrate it into the MBASE system. The advantage of a sorted formulation over a
classical type-theoretic one (e.g. LF dependent type discipline or Jason Hickeys
“very dependent record types” (31)) is that consistency is a consequence of the
relativization, since the sorts are typed. This makes all objects simply typed,
and hence important meta-theorems like strong normalization of the built-in
reductions are relatively easy to prove.

The next step will be to develop inference procedures like higher-order match-
ing that are needed for answering high-level queries in MBASE. We conjecture
that this will be possible by adapting the methods (in particular, the structure
theorem) from (41). In fact, one key motivation to extend known representation
languages for mathematics by the additional structure developed in this article
was to use the additional structure for inference purposes. We conjecture that
the availability of such inference procedures will decide on the usefulness, and
thus ultimately on the success of a mathematical knowledge base system.

The MBASE service can be used as an ontology server giving a semantics
for system integration and furthermore, the formal representation of knowledge

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 41

elements allows semantics-based retrieval of distributed mathematical facts. Pos-
sible queries to MBASE could be glossed as follows:

1. For a formula A, give me all knowledge elements B, which are instances
of A; This kind of queries allows searching for all instances of a given
schema. This is particularly valuable if the formalism allows function and
predicate variables. For instance a schema A = VX, Y.F(X +Y =Y + X)
allows to search for knowledge elements that use/assert the commutativity
of addition using the variable F' to return the context.

2. Give me all theorems/simplifiers that are applicable to a formula C. In
this query, matching has to be augmented by quantifier elimination. It
is interesting to obtain a set of possible forward inferences in a concrete
situation.

3. Classify the mathematical structure given by the set S of arioms. This kind
of query could be issued, in order to retrieve the mathematical knowledge
about a concrete mathematical structure (which may turn out to be a well-
known one like a ring in disguise). A possible follow-up query could be one
whether there are “interesting” specializations of the structure that would
allow for stronger results.

These queries crucially depend on the notion of matching employed. The more
expressive (higher up in the taxonomy in Fig. 7) the representation formalism
is, the more powerful the matching algorithms can become (e.g. higher-order
matching in A7).

It will be necessary to augment the known matching algorithms to make them
aware of the logic morphisms: If we are only looking for formulae, building in
the language morphisms will be sufficient; if we want to be able to search for
proofs of a certain form, it will also be necessary to extend matching to proofs
and also to build in calculus morphisms. This will generate interesting research
questions that we will address in due course, but not in this article.

Finally, there are many kinds of data mining applications that could be run on
a larger collection of formal mathematical knowledge. For instance it would be
interesting to search for similarity of mathematical structures. Also to search for
possible logic morphisms between theories that may be reused later to transport
proofs.

References

[1] A. Adams, H. Gottliebsen, S. Linton, and U. Martin. VSDITLU: a Verifiable
Symbolic Definite Integral Table Look-up. In Ganzinger (28), pages 112
126.

2] Hassan Ait-Kaci and Jacques Garrigue. Label-selective lambda-calculus:
Syntax and confluence. In Proceedings of the 13th International Conference

[10]

[11]

[12]

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 42

on Foundations of Software Technology and Theoretical Computer Science,
volume 761 of LNCS, Bombay, India, 1993.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfen-
ning, and Hongwei Xi. TPS: A theorem-proving system for classical type
theory. Journal of Automated Reasoning, 16:321-353, 1996.

Alessandro Armando, Michael Kohlhase, and Silvio Ranise. Communication
protocols for mathematical services based on KQML and OMRS. In Man-
fred Kerber and Michael Kohlhase, editors, CALCULEMUS-2000, Systems
for Integrated Computation and Deduction, St. Andrews, Scotland, 2000.
AKPeters. in press.

Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Towards
an evolutionary formal software-development using CASL. In C. Choppy
and D. Bert, editors, Proceedings Workshop on Algebraic Development Tech-
niques, WADT-99. Springer, LNCS 1827, 2000.

C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: An inter-
face between isabelle and maple. In Proceedings of International Symposium
on Symbolic and Algebraic Computation (ISSAC’95), pages 150-157. ACM
Press, 1995.

A. Bauer, E. Clarke, and X. Zhao. Analytica — an Experiment in Combin-
ing Theorem Proving and Symbolic Computation. Journal of Automated
Reasoning, 21(3):295-325, 1998.

C. Benzmiiller, L.. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Ker-
ber, M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siek-
mann, and V. Sorge. QMEGA: Towards a mathematical assistant. In William
McCune, editor, Proceedings of the 14th Conference on Automated Deduc-
tion, number 1249 in LNAI, pages 252-255, Townsville, Australia, 1997.
Springer Verlag.

Christoph Benzmiiller, Matthew Bishop, and Volker Sorge. Integrating TPs
and QMEGA. Journal of Universal Computer Science, 5(2), 1999.

Matthew Bishop and Peter B. Andrews. Selectively instantiating definitions.
In Kirchner and Kirchner (40), pages 365-380.

R. Boulton, K. Slind, A. Bundy, and M. Gordon. An interface between
CLAM and HOL. In Jim Grundy and Malcolm Newey, editors, Theorem
Proving in Higher Order Logics: Emerging Trends, Technical Report CS-98-
08, pages 87-104, The Australian National University Canberra, 1998.

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 43

Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML). W3C Recommendation TR-XML, World Wide Web Con-
sortium, December 1997. Available at http://www.w3.org/TR/PR-xml.
html.

Jacques Calmet and Karsten Homann. Towards a mathematics software
bus. Theoretical Computer Science, 107, 1997.

Olga Caprotti and Arjeh M. Cohen. Draft of the Open Math standard. The
Open Math Society, http://www.nag.co.uk/projects/OpenMath/omstd/,
1998.

Lassaad Cheikhrouhou and Jorg Siekmann. Planning diagonalization
proofs. In Fausto Giunchiglia, editor, Artificial Intelligence: Methodology,
Systems and Applications, number 1480 in LNAI, pages 167-180, Sozopol,
Bulgaria, 1998. Springer Verlag.

Language Design Task Group CoFI. Casl — the CoFI algebraic specification
language — summary, version 1.0. Technical report, http://www.brics.
dk/Projects/CoFI, 1998.

Arjeh Cohen, Hans Cuypers, and Hans Sterk. Algebra Interactive! Springer
Verlag, 1999. Interactive Book on CD.

N. G. de Bruijn. The mathematical vernacular, a language for mathematics
with typed sets. In R. P Nederpelt, J. H. Geuvers, and R. C. de Vrijer,
editors, Selected Papers on Automath, volume 133 of Studies in Logic and
the Foundations of Mathematics, pages 865 — 935. Elsevier, 1994.

Stephen Deach. Extensible stylesheet language (xsl) specification. W3c
working draft, W3C, 1999. Available at http://www.w3.org/TR/WD-xs1.

H.D. Ebbinghaus. Finfihrung in die Mengenlehre. Wissenschaftliche
Buchgesellschaft, 1977,

William M. Farmer. Theory interpretation in simple type theory. In
HOA’93, an International Workshop on Higher-order Algebra, Logic and
Term Rewriting, volume 816 of LNCS, Amsterdam, The Netherlands, 1993.
Springer Verlag.

William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An
Interactive Mathematical Proof System. Journal of Automated Reasoning,
11(2):213-248, October 1993.

T. Finin and R. Fritzson. KQML — a language and protocol for knowl-
edge and information exchange. In Proceedings of the 13th Intl. Distributed
Artificial Intelligence Workshop, pages 127-136, Seattle, WA, USA, 1994.

[25]

[26]

[27]

28]

[29]

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 44

Adolf Abraham Fraenkel. Zu den Grundlagen der Cantor-Zermeloschen
Mengenlehre. Mathematische Annalen, 86:230-237, 1922.

Andreas Franke, Stephan M. Hess, Christoph G. Jung, Michael Kohlhase,
and Volker Sorge. Agent-oriented integration of distributed mathematical
services. Journal of Universal Computer Science, 5:156—-187, 1999.

Andreas Franke and Michael Kohlhase. System description: MATHWEB, an
agent-based communication layer for distributed automated theorem prov-
ing. In Ganzinger (28), pages 217-221.

Harald Ganzinger, editor. Proceedings of the 16th Conference on Automated
Deduction, number 1632 in LNAI. Springer Verlag, 1999.

Gerhard Gentzen. Untersuchungen iiber das logische Schlieflen T & 1. Math-
ematische Zeitschrift, 39:176-210, 572-595, 1935.

[ILF] The ILF Group. The ILF mathematical library. Internet page at http:

[30]

[31]

32]

33]

[34]

[35]

[36]

//www-irm.mathematik.hu-berlin.de/~ilf/mathlib.html.

J. Harrison and L. Théry. A Skeptic’s Approach to Combining HOL and
Maple. Journal of Automated Reasoning, 21(3):279-294, 1998.

Jason J. Hickey. Formal objects in type theory using very dependent types.
In Foundations of of Object Oriented Languages 3, 1996.

J. Hindley and J. Seldin. Introduction to Combinators and Lambda Calculus.
Cambridge University Press, 1986.

Douglas Howe. Semantic foundations for embedding hol in nuprl. In Mar-
tin Wirsing and Maurice Nivat, editors, Algebraic Methodolgy and Software
Technology, volume 1101 of LNCS, pages 85-101. Springer Verlag, 1996.

Xiaorong Huang and Armin Fiedler. Presenting machine-found proofs. In
McRobbie and Slaney (46), pages 221-225.

Dieter Hutter. Reasoning about theories. Technical report, Deutsches
Forschungszentrum fiir Kiinstliche Intelligenz (DFKI), 1999.

Dieter Hutter and Claus Sengler. INKA - The Next Generation. In McRob-
bie and Slaney (46), pages 288-292.

[IMPS] The imps online theory library. Internet interface at ftp://math.

[37]

harvard.edu/imps/imps_html/theory-library.html.

Patrick Ion and Robert Miner. Mathematical Markup Language (MathML)
1.0 specification. W3C Recommendation REC-MathM1.-19980407, World
Wide Web Consortium, April 1998. Available at http://www.w3.org/TR/
REC-MathML/.

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 45

[IsabelleKB] The isabelle online theory library. Internet interface at http://

38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

wwwéd.informatik.tu-muenchen.de/“isabelle/library-Isabelle98-1.

Manfred Kerber. How to prove higher order theorems in first order logic.
In John Mylopoulos and Ray Reiter, editors, Proceedings IJCAI'91, pages
137-142, 1991. Morgan Kaufmann.

Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating computer
algebra into proof planning. Journal of Automated Reasoning, 21(3):327-
355, 1998.

Claude Kirchner and Hélene Kirchner, editors. Proceedings of the 15th Con-
ference on Automated Deduction, number 1421 in LNAI. Springer Verlag,
1998.

Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on
the Resolution Principle. PhD thesis, Universitiat des Saarlandes, 1994.

Michael Kohlhase. @Doc: Towards an internet standard for the administra-

tion, distribution and teaching of mathematical knowledge. In Proceedings
AISC’2000, 2000. forthcoming.

Michael Kohlhase. OMDoc: Towards an OPENMATH representation of
mathematical documents. Seki Report SR-00-02, Fachbereich Informatik,
Universitat des Saarlandes, 2000. http://www.mathweb.org/omdoc.

Michael Kohlhase and Frank Pfenning. Unification in a A-calculus with
intersection types. In Dale Miller, editor, Proceedings of the International
Logic Programming Sympsion. ILPS’93, pages 488-505. MIT Press, 1993.

J. Loeckx, H.-D. Ehrig, and M Wolf. Specification of Abstract Data Types.
Teubner, Chichester;New York;Brisbane, 1996. ISBN 3-519-02115-3.

M.A. McRobbie and J.K. Slaney, editors. Proceedings of the 13th Conference
on Automated Deduction, number 1104 in LNAI, New Brunswick, NJ, USA,
1996. Springer Verlag.

Atsushi Ohori. A polymorphic record calculus and its compilation. ACM
Transactions on Programming Languages and Systems, 17(6):844-895, 1995.

Lawrence C. Paulson. Set theory for verification: I. from foundations to
functions. Journal of Automated Reasoning, 11:353-389, 1993.

[PVS] Pvs libraries. http://pvs.csl.sri.com/libraries.html.

[49]

Art Quaife. Automated deduction in von Neumann-Bernays-Godel set the-
ory. Journal of Automated Reasoning, 8(1):91-148, 1992.

[50]

[51]

[52]

[53]

M. Kohlhase, A. Franke: MBASE: Mathematical Knowledge and Context 46

Dave Raggett, Arnaud Le Hors, and Tan Jacobs. HTML 4.0 Specification.
W3C Recommendation REC-html40, World Wide Web Consortium, April
1998. Available at http://www.w3.org/TR/PR-xml.html.

Julian D.C. Richardson, Alan Smaill, and Tan M. Green. System description:
Proof planning in higher-order logic with Aclam. In Kirchner and Kirchner
(40).

Jorg Siekmann, Christoph Benzmiiller, Lassaad Cheikhrouhou, Armin
Fiedler, Andreas Franke, Helmut Horacek, Michael Kohlhase, Andreas
Meier, Erica Melis, Martin Pollet, Volker Sorge, Carsten Ullrich, and Jiirgen
Zimmer. Adaptive course generation and presentation. In P. Brusilovski,
editor, Proceedings of ITS-2000 workshop on Adaptive and Intelligent Web-
Based Education Systems, Montreal, 2000.

G. Smolka. The Oz programming model. In Jan van Leeuwen, editor,
Computer Science Today, volume 1000 of LNCS, pages 324-343. Springer-
Verlag, Berlin, 1995.

