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We start the paper with the design motivation whih inuened the devel-opment of the L
UI system. In Setion 3, various display failities inludinggraphial and natural language presentations are desribed. This is followed inSetion 4 by an illustration of a number of ontrol mehanisms for the e�etiveuse of proof tehniques. Setion 5 is devoted to the lient-server arhiteture.Finally, we disuss some related work and diretions for further work.2. Design ObjetivesIn the �eld of interative theorem proving, design priniples for the developmentof graphial user interfaes are still relatively rare. Some guidelines are presentedin [Eas98℄. The design objetives that we have foused on for our interfae are:Multi-Modal Visualization In any proof state the system should display theproof information to the user at di�erent levels of abstration and detail andfurthermore in di�erent modes (e.g. as the graphial representation of a prooftree, as a linearized proof, or in verbalization mode).Lean Proessing The interfae should work reasonably fast, and its installa-tion in other environments should be possible with minimal e�ort and storagerequirements.Antiipation The system should minimize the neessary interation with theuser by suggesting ommands and parameters at eah proof step. Optimally,the system should be able to do the straightforward steps autonomously.One priniple mentioned in [Eas98℄ is the guideline that \there should be a num-ber of omplementary views of the proof onstrution and the user should beable to hoose to see any number of the views simultaneously". In other words, amulti-modal visualization is desirable. Most proof systems however onen-trate just on one single view of the proof rather than on alternative presentations.In ontrast, L
UI provides di�erent and omplementary views of a proof suh asa graphial display or a linearized proof (see Setion 3). The traditional graphialtree representation of the proof is enhaned by dediated browsers for seletedtextual information (see Figure 1) and intensive use is made of hypertext teh-niques in order to illustrate onnetions between physially distant, but logiallyrelated portions of proofs in both the text-based and the graphial modes. Forinstane it is easy to inspet a proof line's premises with these links and to re-turn to the starting point by liking on the orresponding history button in thesymbol-bar. To add a natural language view of proofs, L
UI alls the Proverbproof presentation system that strutures and verbalizes proofs in natural lan-guage (see Setion 3.3).The lean proessing priniple has led to a distributed system arhitetureof L
UI/
mega, where L
UI is realized as an autonomous software agent (seeSetion 5), whih an be sent over the Internet as an applet while the 
megaserver resides on a dediated host. Sine L
UI is an autonomous agent, it main-tains its own representation of the proof state and autonomously omputes thevisualization information by using loal omputational resoures, thus reduingthe ommuniation bandwidth to a minimum. Thus the arhiteture inherits theadvantage from two kinds of setup: From one, where the whole dedution systemis installed loally on the lient mahine (loal omputation) as well as from one,where the logial and graphial omputations are entralized on a server the user2



ommuniates with, say, by a remote X onnetion. This enables the realizationof the onept of diret manipulation [Shn92℄, whih allows for immediatefeed-bak and a minimal time a user has to wait until an ation takes e�et.Diret manipulation is supported sine L
UI an reat to many forms of userinteration immediately by manipulating its internal representation of the proofstate rather than alling the server.Antiipation to minimize user interation, has always been a onern ofinterative systems, for instane by disabling ommands that are nonsensial (i.e.pre-seleting legal ations) or generating lists of ommands that are advisablein a urrent situation. In L
UI's internal representation of the proof state,many interfae-related reasoning tasks an be performed without the help ofthe underlying proof system. For example, L
UI supports and omplementsthe agent-based ommand suggestion mehanism [BS98a℄ provided by its hostsystem 
mega.We shall elaborate on these issues in the following setions.3. Multi-modal ViewsL
UI 's presentation features are, to a ertain extent, inuened by 
mega'sentral three-dimensional proof data struture PDS, whih will be presented insetion 3.1. The two subsequent setions disuss the prinipal proof presentationapabilities in L
UI : a strutural tree visualization with referenes to termsand inferene steps and a natural language display. To start with, onsider thefollowing example:1Theorem 1. (Example) Given that a � b and b � . Then a � .A proof of this theorem an be generated in 
mega in many ways, the easiestis by alling an external reasoner for suh a simple problem, e.g. the �rst-ordertheorem prover Otter [MC94℄, whih quikly �nds the proof. This externalproof is then translated into 
mega's proof format and inserted into the entralproof data struture PDS. Now, L
UI provides di�erent omponents to viewthis data struture (see Figure 1 for a sreen-shot). As in traditional theoremproving systems, L
UI an present a proof in a linear text form, in our ase asa higher-order variant of Gentzen's natural dedution (ND) alulus (as in theupper right frame in Figure 1). The formula of the highlighted line is pretty-printed in the term browser (see the lower right frame in Figure 1). For longproofs, suh a presentation laks transpareny and struture. Therefore L
UIo�ers two additional representations:� as a tree that models the logial dependenies between the di�erent prooflines, (see the upper left frame in Figure 1),� as a text in natural language as it would appear in a mathematial textbook(see Xdvi-window in the lower right orner of Figure 1). Currently, onlyompleted proofs an be presented in natural language.Furthermore L
UI uses hypertext tehniques to visualize essential onne-tions, e.g. between the proof lines in the standard linearized proof and the or-responding nodes in the tree representation.1 All examples in this paper are hosen for presentation purposes, not as an example of realistisale. 3



Fig. 1. The L
UI interfae presenting the proof for Theorem 1. The standard text presentationis given in the upper right frame, whereas the orresponding proof tree is given in the upper leftframe. The term browser in the lower right frame displays the formula of the urrently fousedproof line/node. The lower left frame provides information on di�erent message streams fromthe 
mega system. The lower-right Xdvi-window presents the verbalized proof as generatedby Proverb.The ommand menu bar on top of the entire frame in Figure 1 provides aessto 
mega's proof tools that are organized in pull-down menus. Ions are usedas shortuts to spei� ommands or sub-menus. Command suggestions for thenext proof step are presented for quik and easy seletion in a speial suggestionwindow. Finally, a ontrol window (see the lower left frame in the window dis-played in Figure 1) provides aess to the output streams of 
mega's proesses.In the following subsetion we shall present the details of this visualization andthe motivation underlying its design.3.1. Hierarhial Proof Plan Data StrutureFinding a proof with 
mega an be viewed as a proess that interleaves proofplanning [Mel98, CS98℄, plan exeution, and veri�ation, all of whih is data-driven by the so-alled Proof Plan Data Struture (PDS).This hierarhial data struture represents a (possibly partial) proof at dif-ferent levels of abstration, alled proof plans . Its nodes orrespond to steps ofthe derivation and are justi�ed by methods. Coneptually, eah justi�ation rep-resents a proof plan for the orresponding derivation step at a lower level ofabstration (the expansion of the justi�ation). It is omputed when the methodis expanded. A proof plan an be reursively expanded, until a proof at the al-4



ulus level has been reahed. In 
mega, we keep the original proof plan in theexpansion hierarhy of the PDS. Thus, the PDS makes expliit the hierarhi-al struture of proof plans and retains it for further appliations suh as proofexplanation or analogial transfer of plans.When the expansion proess is ompleted, a veri�er an hek the orretnessof the proof. The expansion of maro steps provides the basis for an integrationof external reasoning omponents|suh as an automated theorem prover (ATP)or a omputer algebra system (CAS)|if eah reasoner's results an (on demand)be transformed into a sub-PDS. New piees an be added to the PDS by diretlyalling methods and rules, by inserting fats from a database, or by alling someexternal reasoner.L
UI supports 
mega's three-dimensional PDS in many ways. For in-stane, di�erent layers of the PDS an be analyzed separately and swithingto another layer is supported by ontext menus for eah node. In this sense,L
UI implements the philosophy of multi-dimensional representations of proofswithin its visualization and ontrol failities.3.2. Visualization { Proofs as Tree-like Maps with AssoiatedContentIf the proof information is onveyed in only one mode by the user interfae, itan lead to problems:� Presentation in linear form fails to onvey the struture of a proof.� Presentation in tree form may soon beome diÆult to survey beause of thelarge annotations assoiated with eah node.Beause of the inadequaies of purely linear or tree formats, a entral designdeision in L
UI was to separate the struture of the proof tree from its ontent.Consequently, the visualization of a proof in L
UI onsists of three parts:� a proof tree in a purely strutural form, where the individual nodes onveystatus information through their shape and olor.� a linear form of the ontent of the proof, by individual lines.� a number of o-referene failities for the onnetions within and between thetree and the linear proof visualization forms.The linear form of the proof display is fairly standard in most of its parts,where eah derivation step is presented in one single line. These steps of a deriva-tion usually �t into a reasonably sized window as the assoiated display demon-strates (see the upper right part of Figure 1). This may not be the ase for entriesin the part named \term". Therefore a separate frame seletively displays a sin-gle term in full length, whih an be ativated by liking on the term of interestin the linear format.Logial proofs are in general ayli direted graphs rather than trees, henethe graphial display of suh strutures poses problems: If a pure tree displayis produed by dupliating idential subproofs, the tree may grow very large.If, alternatively, multiple subtrees are displayed only one with pointers to theother positions, these pointers may easily render the visualization onfusing andunmanageable. Therefore, L
UI represents nodes with multiple predeessors(i.e. subproofs used more than one) as o-referene nodes: The subproof is5



displayed only in one plae, and the other ourrenes are represented as a speialnode { the o-referene node. In a sense, o-referene nodes take the role of alemma, but a o-referene node is not neessarily promoted into a lemma.Using this onvention, proof graphs an be visualized in L
UI as propertrees, where node ategories (representing the status of the node in the PDS)are expressed by olor and shape. The shape illustrates the major node ategoryand olor variations express more �ne-grained distintions:Terminal nodes are represented by upward pointing triangles, where assump-tions, assertions, and hypotheses are distinguished by their olor (green, yel-low, and orange).Intermediate nodes are represented by irles, where ground, expanded, andunexpanded nodes are distinguished by olor (dark blue, bright blue, andlight blue).Open nodes are represented by squares. Sine there are no further ategorialdistintions for open nodes, they have the same olor (red).Co-referene nodes, whih may or may not be terminal nodes, are representedby downward pointing triangles, they are uniquely olored in grey.Open nodes represent subgoals in the proof whih have not been solved yet,i.e. they are subjet to further derivations. Intermediate nodes represent the re-spetive level of abstration in the PDS : Ground nodes are at 
mega's aluluslevel, i.e. a set of ND rules that is large enough to ensure ompleteness. The otherintermediate nodes represent inferene steps at higher levels of abstration. Ex-panded nodes are nodes where the expansion to the next lower level was alreadyalulated, but is not displayed. In unexpanded nodes, the expansion has not yetbeen alulated.In order to obtain a good view of the proof tree, the user has ommands tomanipulate the appearane of that tree:zooming between tree overviews and enlarged tree parts,srolling to a desired tree part,fousing on a subtree by utting o� the remaining tree parts,abstrating away from details of a subtree derivation by hiding the display ofthat subtree, whih then appears as a double-sized red triangle.2Beause of the di�erent forms of proof display, espeially tree struture andontent, various overview formats are o�ered for the entire proof, where thereferenes between elements of this overview are very seletive and only triggeredby expliit user ommands. There are four di�erent forms of o-referenes inL
UI 's display:� Co-referenes within the linear form, inluding the \Pretty Term" frame. Twofailities are o�ered here. One is ativating the \Pretty Term" browser, whihis done by liking on the term of interest. The seleted term is then displayedin full length in the \Pretty Term" frame, while the line in whih that termappears is highlighted (see Figure 1). The other faility is for inspetingindividual justi�ations of a derivation, whih is ahieved by liking on thepremise of interest in a seleted line of proof. Again, this line is highlighted.2 Note that this subtree abstration is di�erent from abstration levels in the PDS.6



� Co-referenes within the proof tree. Through this faility the onnetion ofa o-referene node is re-established temporarily. Pointing to a o-referenenode leads to the temporary appearane of a line between that node and thenode it o-refers to, that is, the root of the subtree representing the subproofhidden behind the o-referene node.� Co-referenes between the linear form and the proof tree. The onnetion be-tween struture and ontent an be established through this faility. Clikingon a node ativates a yellow box next to that node in the tree display whihontains a label and a term. The referred line in the linear form of the proofis highlighted.� Co-referenes between plain text and the proof tree, the linear form and themenu bars of L
UI . There are urrently two o-referenes of this kind. Oneis from the node of a proof tree or proof line to a verbalization of the justi�a-tion of this node in natural language as desribed in setion 3.3. The seondkind of o-referene is from hypertext douments (like the online doumen-tation), where hyperlinks an be used to diretly ativate L
UI ommands(see setion 4).3.3. Proofs in Natural LanguageWhile L
UI annot read natural-language input yet,3 it makes use of theProverb system [HF97℄ to present proofs in natural language. Proverb em-ploys state-of-the-art tehniques of natural language proessing and generation.Like most appliation-oriented natural language generation systems,Proverb has a pipelined arhiteture [Rei94℄ onsisting of three proessingphases, eah realized by a dediated omponent: a maro-planner, a miro-planner, and a surfae realizer. The maro-planner linearizes a proof and plansommuniative ats by a ombination of hierarhial planning and fous-guidednavigation. The miro-planner then maps ommuniative ats and domain on-epts into linguisti resoures, it paraphrases and aggregates suh resoures toprodue a text struture that ontains all neessary syntati information. Therealizer TAG-GEN [KF95℄ exeutes this text struture and generates the sur-fae sentenes that are passed on to LATEX2e. The formatted text is then �nallydisplayed in an Xdvi-window (f. Figure 1).While the underlying arhiteture is standard for many language generationsystems, Proverb has a number of speial features that are partiularly usefulfor presenting mathematial proofs: a fous mehanism to ontrol the presenta-tion of proof steps in ontext, paraphrasing apabilities to augment the system'sexpressiveness, and aggregation operators that an be employed to express fatsthat share some of their referents and prediates.The fous mehanism is inspired by Reihman's theory of disourse [Rei85℄. Ithypothesizes a set of nested fous spaes whih regulate referential aessibilityof disourse referents, that is, lemmata, theorems, and logial fats in the domainof mathematial proofs. The fous spaes are used to antiipate whether or nota partiular disourse referent in the ommuniative at onsidered is in theaddressee's fous of attention. This determines for example whether the premises3 We are urrently working in a ollaborative e�ort within the SFB 378 to read a mathematialtext from a text book. 7



for a derivation step are omitted, expliitly repeated, or impliitly hinted at bythe onlusion or the method justifying that step.The paraphrasing apabilities are based on the systematization of Meteer'sText Struture [Met92℄ that guarantees the ompositional expressibility of do-main onepts in natural language terms through a hierarhy of semanti ate-gories. For example, depending on the embedding ontext the logial prediatepara(C1; C2) an verbally be expressed as a quality relation (\line C1 is parallelto C2"), as a proess relation (\line C1 parallels C2"), or as a property asription(\lines C1 and C2 are parallel" or \the parallelism of lines C1 and C2").Finally, the aggregation operators onstitute some spei� instanes of gen-eral and linguistially-motivated struture modi�ation operations, suh as thosefound in [DH93℄. Apart from domain-spei�, pattern-based optimization rules,there are two sorts of aggregation operators with a general sope in Proverbthat handle prediate grouping and semanti embedding. The prediate group-ing aggregation ondenses two assertions with the same prediate into a singleone, e.g. Set(F ) ^ Set(G) an ompatly be expressed as \F and G are sets".Semanti embedding allows the skilful verbalization of one assertion, suh that itembeds into another one. For example in Set(F )^Subset(F;G) the verbalizationof Set(F ) as the noun phrase \the set F" allows this expression to be embeddedinto \F is a subset of G," yielding \The set F is a subset of G".Altogether, implementing the linguistially motivated onepts of fousspaes, paraphrasing, and aggregation into Proverb signi�antly ontributesto the prodution of a shorter and better readable proof verbalization in om-parison to a diret verbalization of the lines of a proof trae. The presentation ofmathematial proofs in natural language by Proverb an be further improvedby taking into aount the user's bakground knowledge and assoiated reasoningapabilities.

Fig. 2. Verbalization of a Proof Planning Method.

A more reent presenta-tion faility is the naturallanguage presentation at themore abstrat level of proofplans [ML99℄. Proof planning isbased on reasoning steps simi-lar to those used by mathemati-ians. It is therefore more nat-ural to generate a verbalizationon this level. The ommunia-tion with the user is failitatedby presenting a verbalization ofa method in a hypertext windowwhen the orresponding node ofthe tree presentation is likedon. This hypertext presentationof a method o�ers further linksto the verbalization of proofsof subgoals introdued by themethod (see Figure 2). Currently, this loal presentation of methods an beaggregated to a global presentation of the whole proof plan, but needs furtherelaboration. 8



4. Controlling 
mega
mega's main funtionalities are available via the strutured menu bar in L
UI'smain window. Its entries partition the oneptually di�erent failities of the
mega-system into topis, suh as Theories, Extern, Planner, and Agent. Theseprovide all ommands of the respetive oneptual ategory. Commands may befurther grouped into submenus. For example, the topi Rule provides di�erentinferene rules that de�ne the basi alulus of the 
mega system. These rulesare grouped into ategories reeting their logial e�et on a proof, for instaneelimination or introdution rules.One important feature of L
UI is its dynami and generi menu extension,i.e. ommands are inrementally added at run-time when they are required andthe user an easily reate new menu entries by speifying new ommands. Thisis ahieved by de�ning ommands separately from 
mega's ore system. Someommands are then loaded initially. Others|for instane, ommands that exe-ute domain spei� tatis|are loaded only when the appropriate theory (seebelow) is imported. Thereby a ommand is always attahed to a single menutopi and, if appropriate, to one or several submenus.Theories Mathematial knowledge in 
mega is hierarhially strutured withrespet to so-alled theories, whih ontain signature information, axioms, def-initions, theorems, lemmata, and the basi means to onstrut proofs, namelyrules, tatis, planning methods, and ontrol knowledge for guiding the proofplanner.Eah theorem T has its home theory and therefore a proof of T an usethe theory's signature extensions, axioms, de�nitions, and lemmata without ex-pliitly introduing them. A simple inheritane mehanism allows the user toinrementally build larger theories.The user an both use and manage 
mega's knowledge base through L
UI.In partiular, it is possible to load theories or their single omponents inremen-tally and separately, browse through available assertions and import them intothe ative proof. Furthermore, if a theorem has been proved and the proof isveri�ed, it an be stored in its home theory.Rules and Tatis orrespond to inferene steps at di�erent levels of abstra-tion. (We will refer to both rules and tatis with the generi term inferene).While rules belong to a (low level) logi alulus, tatis are more abstrat. Theyare programs that, when exeuted, produe a sequene of less abstrat inferenesteps. Generally, eah inferene is assoiated with exatly one ommand whihinvokes it in a given partial proof.The hierarhi organization of theories and their inremental importationnot only a�ets their availability for a proof but also L
UI 's menu struture.Sine theories ontain rules and tatis, these are also inrementally loaded andeah attahed ommand is dynamially appended to the orresponding topi inthe menu. Sine rules are always de�ned in 
mega's base theory, they are justsorted by their type: elimination rules, introdution rules, strutural rules, et.The menu for tatis is divided into sub-menus aording to the theories thetatis belong to. These sub-menus an be further lassi�ed aording to theategories spei�ed within these theories. This supports the user in navigatingand �nding appropriate inferenes. An inferene an be listed in several subtopis9



Fig. 3. Command Widget
Inferenes are applied by ex-euting the attahed ommands.In general, it is neessary to pro-vide some arguments for the ap-pliation of an inferene, whihan be spei�ed inside a generiommand window. The om-mand window adjusts itself au-tomatially to the number of ar-guments and provides some helpto �nd the requested parameters(f. Figure 3 for an example).The user spei�es the argumentseither by manually entering them or by a mouse-lik on the appropriate node.Planner 
mega's proof planner searhes in the spae of partial proof plans,where methods are the plan operators. The planner transforms a partial PDSby method appliation and by reursive method expansion until it obtains aomplete PDS, i.e. a PDS whih represents (an be expanded into) an NDproof.The ommands for 
mega's planner are grouped into L
UI 's planner menu.The interfae displays the growing partial plan as an abstration of the PDS .

Fig. 4. Conurrent ATPsExternal Systems 
mega employs several ATPs, onstraint solvers, and CASsas external reasoners to be applied to spei� proof problems. Automated the-orem provers that are urrently available to 
mega are the �rst-order sys-temsOtter, Spass, ProTeIn,Bliksem, Sathmo,Waldmeister, and EQP,(f. [BCF+97, HF96, FK99℄) and the higher-order theorem provers Tps(f. [BS98b℄ and Leo [BK98℄. The omputer algebra systems inlude the ex-perimental system �CAS (f. [KKS98℄) as well as the full-blown systems GAP,Maple, and Magma.An interesting aspet of 
mega is its ability to employ several ATPs on-urrently. The graphial user interfae supports the ontrol of parallel ATPs byproviding a speial widget as displayed in Figure 4, whih helps the user to mon-itor the ativities of every single running ATP. Messages report the status ofan ATP as either not available, still running, or whether the prover has found aproof or failed to do so. The window enables the user to interatively tailor thetime resoures given to single ATPs or to kill running proesses entirely.Command Suggestion Mehanism Another feature of 
mega that an onlybe fully exploited with a graphial user interfae is its elaborate mehanism to10



guide the user when interatively proving a theorem. It suggests ommands, ap-pliable in the urrent proof state|more preisely ommands that invoke someND-rules or tatis|together with sets of suitable instantiations of the ommandarguments. It is based on two layers of autonomous, onurrent agents whihsteadily work in the bakground of the 
mega system and dynamially updatetheir omputational behavior with respet to the state of the proof and/or spe-i� user queries of the suggestion mehanism. By exhanging information viablakboards the agents ooperatively aumulate useful ommand suggestionswhih are then heuristially sorted and presented to the user.These suggestions are displayed in a separate window (see the right side ofFigure 1). The entries of this window are onstantly updated by the suggestionmehanism, whih is based on the omputation of the soiety of agents. Theommand that is most likely to be useful in the urrent proof state is always inthe �rst position. However, the user an hoose any of the proposed ommands.As long as the ommand is not yet exeuted (by on�rming the argument settingsin the orresponding ommand widget), the suggestions are still updated, givingthe user the opportunity to rethink his deision.The suggestion mehanism always proposes a ommand together with sev-eral possible sets of instantiations for the ommand's arguments. Suh a set is ameaningful ombination of parameters, e.g. proof lines, terms, et., the ommandis appliable to. The sets are heuristially sorted and the best one is immediatelyproposed to the user by providing it as default arguments to the ommand. How-ever, all other omputed sets of argument instantiations an still be displayed andhosen within the respetive ommand widget. One an browse the suggestionsor ask for a single argument (f. the arrow buttons on the lower left and next tothe arguments in Figure 3, respetively). Furthermore, the user an speify oneor several of the arguments as �xed and all the suggestion mehanism again byliking on the reompute button (f. Figure 3) to get possible suggestions forthe remaining parameters.Online Help The online doumentation of 
mega ontains desriptions ofommands, planning methods, and the ontent of the theories. It is based onHTML and an be viewed with any standard web browser. Besides the usualreferenes to related help topis, the hyperlink mehanism is extended to allowinteration with L
UI , i.e. the exeution of ommands and all of menus byliking on links within a help page. This yields a nie tool that is used interalia to introdue new users to the system (see Figure 5). Furthermore the dou-mentation of theorems and problems ontains ommands to import them into aurrent problem or to exeute a proof sript respetively.5. The Agent ArhitetureA mathematial assistant system alls for an open and distributed system ar-hiteture. In suh an arhiteture, the developer of a dedution system or arespetive tool upgrades it to a so-alled mathematial servie by wrapping itinto an agent-oriented parel, with an interfae to a ommon mathematial soft-ware bus [Hom96, HC96℄.The funtionality of the software bus is realized in the MathWeb system(see [FK99, FHJ+99℄ for details) by the trader model shown in Figure 6, whihlimits the entral administration of the bus to a so-alled trading point that11



Fig. 5. The Online Help System.provides routing and authenti�ation information to the mathematial servies.We will desribe this model in more detail below.We have implemented and experimented with ourMathWeb system, wherethe integrated theorem proving systems and tools an be distributed worldwideand interat over the Internet. They an be dynamially added to and subtratedfrom the oordinated reasoning repertoire of the omplete system. For this, wehave embedded all of 
mega's external reasoners presented in the previous se-tion. Now, they jointly handle an average load of tens of thousands of infereneproblems a day.L
UI is now just one of the ooperating mathematial servies, but it isspeial in the sense that it is the only part diretly visible to and interatingwith the user. In this way it has to meet speial requirements: L
UI must beable to display the mathematial servies that are urrently ative, it must beable to suggest external servies that may be appropriate for the urrent task,and it must be able to ontrol external systems of whih it might not always beable to get omplete information.Loating the servies that are urrently available is ahieved by providingL
UI with a list of servies that might be available, and it then tries to on-tat eah of these servies during initialization and tests whether a onnetionwith the servie is possible. Apart from this, L
UI 's own representation of theservie's apabilities is urrently limited to a general lassi�ation of the servie,for instane whether it is a theorem prover or a omputer algebra system, andsome information about ommand syntax and ag settings that are important12
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distributed Oz applicationFig. 6. The Arhiteture for Distributed Mathematial Servies.for ontrolling the servie needs extension by a list of more spei� qualities andweaknesses of the servie.Given its limited knowledge about ollaborating servies, L
UI 's answer tothe problem of �nding the right one is pragmati: it simply starts all problem-related servies on the mathematial bus. The user an eliminate those reasonersthat she thinks might not be suitable to solve the problem. L
UI will allseleted servies in parallel in order to maximize the likelihood of suess andminimize the waiting time of the user. The use of several reasoners for the sametask has the additional advantage of ross-validating results if needed. In anyase, the proofs found by these systems have to be transformed into the internalproof format of the 
mega system; this proof transformation proess itself runsin parallel to the ongoing user interation.The Maintenane Advantage The agent arhiteture that separates 
mega'slogial kernel from its graphial user interfae has inreased both its eÆienyand maintainability.It is quite ommon in loal omputer networks that users have relativelylow-speed mahines on their desktop, whereas some high-speed servers that areaessible for everyone operate in the bakground. Running the user interfaeon the loal mahine uses the loal resoures that are suÆient for this task,while the more powerful servers an be exploited for the really omplex task ofatually searhing for a proof.The maintenane advantage applies to both the user and the developer.
mega is a rather large system (roughly 17 MB of Common Lisp (CLOS)ode for the main body of the urrent version), omprising numerous assoiatedmodules (suh as the integrated automated theorem provers and omputer alge-bra systems) written in various programming languages. It is a diÆult task toinstall the omplete system, in partiular, suessful installation depends on thepresene of (proprietary) ompilers or interpreters for the respetive program-ming languages.In our arhiteture the user only installs the L
UI lient, whih onnets13



to the main system and exhanges data with it via the Internet. Thus the userinterats with the lient, whih an be physially anywhere in the world, while the
mega kernel is still on our server (here in Saarbr�uken, where it is maintainedand developed). Sine L
UI is realized via the distributed programming systemenvironment Mozart/Oz [Smo95℄,4 whih is freely available for various platformsinluding UNIX and the MS-Windows family of operating systems, this keeps thesoftware and hardware requirements of the user moderate. The installation of thelient is further simpli�ed by running L
UI as a Netsape applet, i.e. L
UI isautomatially downloaded via the Internet. Thus we are able to provide urrentversions of 
mega and L
UI without the need for re-installation at the user'ssite.To redue the bandwidth needed for ommuniation, 
mega implements aninremental approah based on Smalltalk's MVC triad5, whih only transmitsthe parts of the PDS that are hanged by a user ation. This not only improvesresponse time for a low-bandwidth Internet onnetion but also fouses the user'sattention to the e�ets of an ation.Sine the presentation of the proof tree is de�ned by a ontext-free grammar,it is rather easy to onnet L
UI to provers other than 
mega; we have exper-imented with Leo [BK98℄ and InKa [HS96℄ and �-Clam [RSG98℄. In this senseL
UI an be seen as a generi proof viewer.Distributing 
mega Up to this point, we have onsidered a lient-server net-work with one server that is dediated to 
mega itself and several lients thatuse this server. In reality, a 
mega network may onsist of several servers thatan be aessed via a gateway servie. The gateway daemon runs on one mahinethat provides the 
mega servie. It an start the atual 
mega proess and itsassoiated modules on any of the servers, depending on their urrent work load.In this way, we are able to employ the whole omputational power of a loal areanetwork with a bakground of several larger servers.6. Related WorkUser interfaes are the subjet of an important disipline in omputer sienewith its own onferenes, workshops and researh groups. Many industrial appli-ations spend substantial e�ort just on the interfae with up to eighty perentof the systems soure ode being developed for a friendly interfae. The teh-niques and methods of this disipline slowly but surely �nd their way even torather theoretially oriented �elds suh as automated theorem proving, wherethe importane is inreasingly well reognized.Most interfaes of ATP systems provide graphial illustrations of proof stru-tures and their elements, and failities to set up ommands in the proof environ-ment. The semantis of proof steps are often expressed by graphial objets andannotations. Examples for this sort of visualization are binary deision diagramsfor �rst-order dedution systems [PS95℄, whih have speial display failities forthe relation between quanti�ed formulae and their instantiation, and naturaldedution displays of sequent proofs [Bor97℄ where the soping struture of the4 http://www.mozart-oz.org/5 See for instane http://st-www.s.uiu.edu/users/smarh/st-dos/mv.html for anoverview. 14



proof is visualized by adjaent or by nested boxes enlosing segments of prooflines. Another presentation tehnique displays proof steps in an appropriatelyformatted and interative way. The Theorema system [BJK+97℄ an present aproof in natural language by employing �xed natural language shemata. Detailsthat are temporarily hidden an be exposed by liking on the orresponding rootof the proof line.A verbalization omponent on top of Nuprl uses a natural language generatorand presents proofs at the level of tatis [HMBC99℄.CtCoq [BKT94℄ is a rather elaborate presentation system whih distributesthe proof information about a proof over three setions of a multi-paned window:a Command window reords the sript of ommands sent to the proof engine, aState window ontains the urrent goals to be proved, and a Theorems windowontains the results of queries into the proof engine's theorem database.Other approahes put partiular emphasis on visualization by making thetree format of the proof struture expliit in the display. The user interfae ofthe SEAMLESS system [EM97℄ provides display failities for a proof graph atdi�erent levels of abstration in a framed window: a variety of lay-out operationsinludes zooming and reuse of lemmata.The user interfae of INKA [HS96℄ allows for the display of indution proofskethes at varying levels of detail. Its features inlude status information, typ-ially expressed by di�erent oloring, ontext-sensitive menus of possible userations, and proof by pointing.The proof veri�ation systems VSE [HLS+96℄ has a very elaborate user inter-fae that enables the proof engineer to verify industrial software by visualizingrelations between underlying theories (spei�ations).The ILF system [Dah98℄ uses an interfae to display proofs in natural lan-guage and in a tree like struture, where the logial ontent of nodes is displayedseparately. Furthermore, queries an be sent to the MIZAR library and several�rst-order automati theorem provers running in parallel under ontrol of theinterfae.
mega in some sense ombines features of SEAMLESS, CtCoq, and ILF.Its graphial display is similar to that of SEAMLESS, but the set of node at-egories and their display is �xed to the partiular proof environment. However,L
UI 's tree visualization an easily be adapted to a di�erent set of node ate-gories and display options. Its display of status information is similar to that ofCtCoq, but the database window is handled di�erently. The onurrent handlingof external reasoners is related to ILF, but sine 
mega's logi is higher-order,a larger variety of automati systems has been integrated. The handling of o-referenes and the ombination of tree-like and linear display together with thehyper-link mehanism to visualize referenes between both are unique to L
UI.7. ConlusionsL
UI represents an agent-based, distributed approah to user interfaes fortheorem provers. It provides advaned ommuniation failities via an adaptableproof tree visualization tehnique and through various seletive proof objetdisplay methods whih enable the user to better understand the proof and toguide the proof searh.Even though L
UI was originally developed for the 
mega system it is notrestrited to it in priniple. We have also used it as an independent interfae to15
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