TGView3D: a System for 3-Dimensional
Visualization of Theory Graphs*

Richard MarCUS[OOOO_0002_6601_6457], Michael Kohlhase[0000—0002—9859—6337]
and Florian Rabe[0000—0003—3040—3655]

)

Computer Science, FAU Erlangen-Niirnberg

Abstract. We describe the TGView3D system, an interactive graph
viewer optimized for exploring mathematical knowledge as 3D graphs. To
exploit all three spatial dimensions, it extends the commonly-used force-
directed layout algorithms with hierarchical components that are more
suitable for the typical structure of mathematical knowledge. TGView3D
can also communicate with OMDoc-based knowledge management tools
to offer semantic, mathematics-specific interaction with the graphs.

1 Introduction

Digital libraries of both informal and formal mathematics have reached enormous
sizes. For instance, at least half a dozen theorem prover libraries exceed 10°
statements. Thus, it is getting more and more difficult to organize this knowledge
in a way that humans can understand and access it. While library sources,
generated presentations, and IDEs such as PIDE [Wenl9] give good access to
local knowledge structures, global properties of the induced knowledge spaces
are very difficult to assess.

Theory graphs provide a good representation for these global properties: the
nodes are theories and their edges theory morphisms that define interrela-
tions between theories. Concretely, we use OMDoc/MMT [Koh06; RK13], which
distinguishes multiple kinds of morphisms for theory graphs: Most importantly,
inclusions represent the inheritance relation, and views represent translations
and interpretations.

However, standard graph visualization techniques are not ideal for theory
graphs. Inclusions are highly prevalent and induce a directed acyclic subgraph,
which captures the primary structure of the graph, in particular the inheritance
hierarchy; therefore, they must be prioritized in the layout. Views may introduce
cycles or connect very distant theories; therefore, they must be layouted with
care to avoid intersecting edges, which can lead to a messy layout, especially in
the 2-dimensional case. For example, we have never been satisfied with the visu-
alization and user interaction features that state-of-the-art tools could provide

* The authors were supported by DFG grant RA-1872/3-1, KO 2428/13-1 OAF and
EU grant Horizon 2020 ERI 676541 OpenDreamKit. They are also grateful for hard-
ware support from and very helpful discussions about layout algorithms with Roberto
Grosso and Marc Stamminger as well as Jonas Miiller.

for our own graph of logic formalizations (LATIN; see [Cod+11]), containing
(only) a few hundred nodes and many includes representing the modular design
of logics and views representing logic translations. We will use this LATIN theory
graph as a running example.

Superseding our previous two-dimensional theory graph viewer [RKM17],
TGView3D is a three-dimensional theory graph visualization tool that adapts
traditional force-directed layout algorithms to make use of hierarchies and clus-
ters in theory graphs, using an approach similar to [DKMO06] except extended to
three dimensions.

TGView3D is based on the Unity game engine [UGE]. While there are dedi-
cated tools for interactive 3D graph visualization such as Gephi [BHJ09] or web
applications and frameworks (e.g., based on WebGL), we opted for Unity as it
allows fast implementation of typical 3D interactions and flexible platform sup-
port as well as efficient rendering of large graphs. Unity also allows building two
versions of TGView3D: a WebGL version that we can embed into browser-based
interfaces for casual users, and executables for VR hardware that offer better
performance for power users.

While Unity is proprietary, all of our code is licensed under GPLv3 and is
available at https://github.com/UniFormal/TGView3D. The web application
runs at https://tgview3d.mathhub.info and a demo video for the VR exe-
cutable is available at https://youtube.com/watch?v=Mx7HSWD5dwg.

2 Layouting and Interaction

3D Layouting To compute the layout for large graphs, force-directed graph draw-
ing is the typical choice. It introduces forces so that nodes repel each other in
general but that connected ones attract each other, aiming at a layout of con-
nected groups of nodes and short edges. However, this approach does not offer
special treatment for directed edges, and in theory graphs the directed acyclic
inheritance hierarchy is a central cognitive aspect. To better visualize this, lay-
ered graph drawing can be used instead. This 2D approach first places the nodes

RN TN N\
. W, /0. L) & LA N T

Fig.1: LATIN Graph with Static Layers

on a minimal number of layers with all edges pointing in the same direction and
then minimizes edge crossings by reordering the nodes within their layers. While
successful for the inclusion hierarchy, the restriction to layers makes it difficult
to incorporate arbitrary additional edges. The latter is needed all the time for

https://github.com/UniFormal/TGView3D
https://tgview3d.mathhub.info
https://youtube.com/watch?v=Mx7HSWD5dwg

theory graphs, where edges relating distant nodes are among the most interest-
ing. A key benefit of the 3D approach is that we can utilize the third spatial
dimensions to devise layout algorithms that cater to the structure of mathemati-
cal knowledge. Concretely, we can map the hierarchy to the graph vertically and
still get the advantages of force-directed layout algorithms.

« If_based

by ‘isabelle] ! ”é P kripke
\ we R Ny :
ch‘urch RN\ \dfol based” : T 7
\\zfc, /s, - idtefface 7 ‘ ’ T/,
\ ’ 2 . . hollight | .
I . - N fo]
) N\ utins et ‘T caté. orical
*minignak, _
focused \ o 6l ifol

\‘ \ 1) 4
SN\proof Ab€ory | st piep-ipr
N\

.
PN
. o, \4 't .
K SO -
NN Y | fBsfol
AN SN owl.omdoc 4
. RN -
° # wangations
< <\ logie
literafs ‘s e
N .
- » e -
. -

Fig. 2: LATIN Graph with Hierarchic Forces

However, static layers in the style of layered graph drawing (cf. Figure 1)
are still problematic in this combination: it prevents nodes from forming groups
vertically, which can lead to inefficient use of space, e.g. all nodes could end
up on a single layer. Therefore, we use a less restrictive relative hierarchy
instead, i.e., we aim at a consistent edge direction going from bottom to top.
We accomplish this by adding a force that pushes nodes connected by inclusions
either downwards or upwards without statically fixing a set of layers. In many
cases, this hierarchic force already influences the layout sufficiently to yield good
visualizations. But we also added a way to force every node that includes N to
appear above IN: we first position the nodes in any way that conforms to the
hierarchy (e.g., placing them all on the same layer) and then restrict the force-
directed node movement so that nodes may only “overtake” each other in the
correct direction. This achieves our goals to preserve the relative hierarchy while
allowing the force-directed algorithm to work relatively freely (cf. Figure 2).

Now, the layout algorithm can organize the theory graph efficiently: hierar-
chic relations create a vertical ordering, and minimizing the length of other edges
creates node groups. Adding the view edges to the layout in Figure 2 would then
reorganize the positions of node clusters but keep the relative hierarchy intact.

http://latin.omdoc.org/

theory
FOL

/?http:/Nlatin.omdoc.or
#COS5E66
AddNode

© o, ee Ineqf@

Fig.3: TGView3D User Interface: Theory FOL within LATIN

Interaction Figure 3 gives an example of the TGView3D user interface. It shows
the node for the FOL theory in the LATIN graphs with its attributes. Nodes and
edges may be typed, and colors are used to differentiate the types visually. Users
explore the theory graph by moving through the 3-dimensional visualization
and using interaction features that can be accessed within the UI. Additionally,
we provide graph editing features for advanced users like developers or library
maintainers, e.g., adding and removing nodes and edges.

Compared to 2D, the nodes have more space to form recognizable clusters,
but a problem of the 3D-visualization is the visual overlap induced by the place-
ment of nodes along the third dimensions. To cope with this, TGView3D pro-
vides the option to hide parts in the distance, thus presenting the user a vertical
slice of the graph. Even so, showing all types of edges at once can still result
in cluttered layouts, but, since users often want to focus on certain aspects of
the theory graph, the main interaction concepts in TGView3D revolve around
giving users control over the layout composition. Accordingly, TGView3D allows
the user to hide currently not required edge types and, optionally, recalculate
the layout based on this selection. The latter, in particular, can be used to ana-
lyze how the types of theory morphisms affect the graph layout and thus to get
insights about different dependencies in the theory graph.

Another core feature is following the inheritance hierarchy of inclusions. In
practice, this means that we need to support the transition between inspecting
the graph globally and exploring local structures. Both are important for mathe-
matical knowledge: looking at the whole graph at once reveals groups of theories
and dependencies between these groups, whereas the relation between individual
nodes give insights about the respective theories and theory morphisms. Given
the limitations of space, separating groups visually by packing nodes closely to-
gether will eventually result in too much local overlap, while a more even spread
makes it harder to recognize clusters. Therefore, TGView3D gives the user direct
control over the node spacing in addition to the possibility of moving through the
graph. To allow crawling through the graph and focusing on the local neighbor-

hood of nodes, we give users the option to hide all edges except those of selected
nodes. Last, to bridge the gap between local and global exploration, TGView3D
can also compute node bicones, which show the transitive inclusions of a node,
i.e., the two trees of nodes that can be reached by following the inclusion relation
forwards and backwards. This gives the user information about the role of an
individual node in relation to the full graph.

Hierarchical Clustering In MMT theory graphs, all nodes and edges are labeled in
two orthogonal ways: with their logical URI, which follows the namespace struc-
ture chosen by the user, and their physical source URL, which follows the project
and folder structure of the source files. TGView3D uses this information to define
clusters, which are visualized by using the same color for the respective nodes and
adding a cluster label. Beyond that, TGView3D permits collapsing these clusters
into a single bigger node to reduce graph complexity and enable step-wise graph
exploration. In that case, all edges of the original
nodes are propagated to the cluster node. This also
4 allows for nested clusters, which is important to effi-
ciently reduce the graph to a size where humans can
recognize clear structures and computers can handle
the computational load better. With this method, we
can compress the graph shown in Figure 2 drastically
(cf. Figure 4) and still show all edge types at the same
time.
Indeed, mathematical libraries often yield large
Jiggndoc.org theory graphs with a single connected component,
and theory graphs visualizations should not always
Fig.4: LATIN Graph: pe self-contained. As an complementary approach to
Hierarchic Clustering clustering, TGView3D can also be opened with a sub-
graph built for a particular theory, containing some
neighborhood of that theory. The key difference is that instead of collapsing
nodes into clusters, the user preselects a certain cluster to reduce the size of
the loaded graph. In that case, TGView3D reveals the origin of external nodes
and gives users the option to load the respective subgraphs to add them to the
current one, thus gradually increasing the size of the visible subgraph.

catffory_theory

type. theories

Integration with Other Systems While TGView3D is a standalone system, one
of its key motivations is to serve as a compo-
nent of our larger MathHub system (hosted
at https://MathHub.info), a web portal
for formal mathematical libraries in OM-
Doc/MMT format. In particular, the access
of subgraphs via namespaces is enabled by the
MMT system. For integration with other sys-
tems in general, the TGView3D web applica-
tion is called by URL parameters that govern which graph to load. It can call
other systems by opening URLs attached to the nodes and edges, e.g., in re-
sponse to user interaction. Thus, every library, namespace, and theory viewed

[z

include ZFC_FOL
type ZFC_FOL

constant i
% u—(u— o)

constant subset
B8 u —(u > o)

constant subset]
fype {A: u}{B: u}({x} ded x in 4 — ded x in B) — ded A subset B

Fig. 5: Source View in MathHub

https://MathHub.info

in MathHub allows opening a corresponding subgraph in TGView3D in a new
page. Vice versa, the MMT URI of every node or edge in TGView3D can be used
to view the sources of the respective object in MathHub (cf. Figure 5). It is also
straightforward to add the functionality of opening nodes and edges in a locally
running version of MMT’s source editor instead.

3 Conclusion and Future Work

TGView3D is an interactive 3D graph viewer that can handle hierarchical rela-
tions and clusters efficiently. While it can handle arbitrary graphs, it is designed
to particularly support theory graphs as they occur in mathematical libraries.
Therefore, it allows for hierarchical clustering and filtering methods and our lay-
out algorithm makes use of the third spatial dimension to visualize hierarchies
and optimize the node organization in a force-directed manner.

In addition to continuous improvements to the graph viewer itself, future
work will be to create an ecosystem that simplifies the process of importing
different kinds of graphs into TGView3D. Extending this, we want to allow
more customizability and offer preconfigured builds that are tailored towards
domain-specific use cases.

References

[BHJ09] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. “Gephi: an
open source software for exploring and manipulating networks”. In: Third
international AAAI conference on weblogs and social media. 2009.

[Cod+11] Mihai Codescu et al. “Project Abstract: Logic Atlas and Integrator (LATIN)”.
In: Intelligent Computer Mathematics. Ed. by James Davenport et al. LNAI
6824. Springer Verlag, 2011, pp. 289-291. URL: https://kwarc. info/
people/frabe/Research/CHKMR_latinabs_11.pdf.

[DKMO06] Tim Dwyer, Yehuda Koren, and Kim Marriott. “Drawing directed graphs
using quadratic programming”. In: IEEE Transactions on Visualization
and Computer Graphics 12.4 (2006), pp. 536-548.

[Koh06] Michael Kohlhase. OMDoc — An open markup format for mathematical
documents [Version 1.2]. LNAI 4180. Springer Verlag, Aug. 2006. URL:
http://omdoc.org/pubs/omdocl.2.pdf.

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”. In:
Information & Computation 0.230 (2013), pp. 1-54. URL: http://kvarc.
info/frabe/Research/mmt.pdf.

[RKM17] Marcel Rupprecht, Michael Kohlhase, and Dennis Miiller. “A Flexible, In-
teractive Theory-Graph Viewer”. In: MathUI 2017: The 12th Workshop
on Mathematical User Interfaces. Ed. by Andrea Kohlhase and Marco Pol-
lanen. 2017. URL: http://kwarc . info /kohlhase /papers/mathuil?7 -

tgview.pdf.
[UGE] Unity Game Engine. URL: https://unity3d.com (visited on 03/07/2019).
[Wen19] Makarius Wenzel. “Interaction with Formal Mathematical Documents in

Isabelle/PIDE”. In: Intelligent Computer Mathematics (CICM) 2019. Ed.
by Cezary Kaliszyck et al. LNAI 11617. Springer, 2019, pp. 1-15. port:
10.1007/978-3-030-23250-4.

https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
https://unity3d.com
https://doi.org/10.1007/978-3-030-23250-4

	TGView3D: a System for 3-Dimensional Visualization of Theory Graphs
	1 Introduction
	2 Layouting and Interaction
	3 Conclusion and Future Work

