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Abstract. The IMPS system by Farmer, Guttman and Thayer was an in-
fluential automated reasoning system, pioneering mechanisations of fea-
tures like theory morphisms, partial functions with subsorts, and the
little theories approach to the axiomatic method. It comes with a large
library of formalised mathematical knowledge covering a broad spectrum
of different fields. Since IMPS is no longer under development, this library
is in danger of being lost. In its present form, it is also not compatible
for use with any other mathematical system.

To remedy that, we formalise the logic of IMPS (LUTINS), and draw
on both the original theory library source files as well as the internal
data structures of the system to generate a representation in a modern
knowledge management format. Using this approach, we translate the
library to OMDoc/MMT and verify the result using type-checking in the
MMT system against our implementation of LUTINS.

1 Introduction

There are many libraries of formal knowledge, but unfortunately, each one needs
a different mathematical software system to interpret it — the system it was
originally written for. This barrier of non-interoperability severely limits possi-
ble uses of any one mathematical software system as well as progress on that
system itself. Helpful tooling that was implemented for one system often can not
be used for developing another. Some translations between different systems ex-
ist but they are often ad-hoc, only one-directional (although both systems are in
frequent use) or overly restricted by the logical frameworks or foundations. Ap-
proaching the problem with only direct system-to-system translations without
common ground also means inviting scaling problems: for n systems we would
need O(n?) translations.

Most theorem proving systems today tend to fix (in what we will refer to
as the big theories approach) one particular logical foundation along with its
primitives (i.e. types, axioms, rules, ...) and only use conservative extensions to
model domain knowledge (i.e. theorems, definitions, ...). This goes against the
way that modern mathematics is usually done on chalkboard or paper, where the
foundation is often hidden and almost never directly referred to. It also makes it
harder for two systems with different logical frameworks to successfully interact.

Another danger to effective use of mathematical knowledge libraries across
software systems is that if one of these systems eventually falls out of use, the



library is in danger of being lost to bitrot as fewer and fewer machines are
actually capable of running the required software to interpret it.

In this paper we attempt to “rescue” one library in particular from this fate
and make it interoperable at the same time. IMPS is an Interactive M athematical
Proof System, originally developed at The MITRE Corporation by William M.
Farmer, Joshua Guttman, and Javier Thayer. Its library is home to a large
amount of well-developed formalised mathematics with over 180 different theo-
ries and over 1200 distinct theorems and their proofs.

The IMPS system itself [TMI| has not been in active development or regular
use for well over 20 years now and thus the library is in acute danger of being
lost. The system (and its library) is especially interesting because it was the
first theorem proving assistant to make heavy use of theory morphisms and with
emphasis on the little theories approach to mathematics.

Concretely, we present a translation of the IMPS library into OMDoc/MMT
[Koh06] a content markup scheme for (collections of) mathematical documents
(including articles, textbooks, and theorem prover libraries) that shares key de-
sign choices with the IMPS system, such as the focus on theory morphisms and
adherence to the little theories approach.

Contribution We build on and complete the earlier and incomplete efforts by
[Li02] of translating the IMPS library to OMDoc. Our work differs from Li’s
previous attempt in that it does not try to translate from only the internal IMPS
data structures. Instead, our implementation also reads the corresponding source
files to extract additional structure from them. This allows us to compare and
corroborate data from one direction of inquiry with data from the other.

Concretely we extend and adapt Li’s export mechanism to create a JSON
representation of the internal IMPS data structures. Both this and the original
source files of the mathematical library are then parsed by our importer ex-
tension to MMT to create a structured and typed representation of almost all
mathematical objects in the source files, with the only notable exception being
proof scripts and macetes (theory-aware tactics).

This representation can then easily be translated into the OMDoc/MMT
language, with a formalisation of the foundational logic of IMPS (called LUTINS,
see Section 2.1) serving as a formal basis for the translation. The generated
output is verified (i.e. type-checked wrt. the LF meta-logic [HHP93|) by the
MMT system against the implementation of the underlying logic LUTINS to
establish a certain, if partial, level of correctness of the translation progress.

This two-layered implementation has the benefit of future-proofing the OM-
Doc export against potential changes in the format.

The OMDoc/MMT output of the translation not only offers a semantically
self-contained archive format, it could also be used in various ways by math-
ematical knowledge management systems or function as a reference point for
other knowledge in a (partially) shared meaning space.

Related Work There have been multiple attempts at translating libraries from
one theorem proving system to another in an ad-hoc manner. Examples in-



clude translations from HOL Light to Coq [KW10], from Isabelle/HOL to Is-
abelle/ZF [KS10] (benefiting from the shared logical framework), from HOL to
Isabelle/HOL [OS06] and from Mizar to Isabelle [KPU16].

The translation approach using OMDoc/MMT has been previously used (and
shown to be successful) in a number of importers for the MMT system for dif-
ferent mathematical systems, such as PVS [Koh+17]|, Mizar [lan+13] and HOL
Light [KR14], as part of the OAF (Open Archive of Formalisations) project
[OAF].

In all of these, the underlying logical foundation of the system has first been
formalised natively in OMDoc/MMT as part of the LATIN library — an OMDoc-
based atlas of formal logics, type theories, foundations and various translations
between them ([Cod+11; Rabl4|, available online at [LATIN]). The resulting
theory is then used as a meta-theory for importing the corresponding libraries.
These imports tend to focus on translating the statements of theorems only, and
pay less attention to the proofs, since proofs are often highly system-specific and
difficult to translate without also reproducing all of the machinery of the system
in question.

Li previously made an attempt to translate the IMPS math library to OMDoc
in [Li02]. This is incomplete in a number of ways: In particular, Li’s approach
did not handle quasi-constructors (a unique and important feature of IMPS, see
Section 3.2) and other important aspects (like theory morphisms with additional
assumptions, see Section 3.2), often because they are not represented in a useful
manner in the internal data structures. Furthermore, Li was only able to check
the syntactic validity of the generated XML, which makes the faithfulness of the
translation difficult to judge. Finally, there have been a number of substantial
representational changes from pure OMDoc to OMDoc/MMT, which renders this
translation unusable.

Overview This paper is a refined and condensed version of [Bet18], to which we
refer for details and code. In Section 2, we recap all involved systems, includ-
ing MMT, IMPS and OMDoc. After that, we outline the general idea and some
theoretical as well as implementation-related specifics of the translation process
in Section 3. Section 4 presents some applications for the OMDoc/MMT library
and Section 5 concludes the paper.

2 Preliminaries

2.1 Preliminaries: LUTINS

LUTINS (pronounced as in French, short for “Logic of Undefined Terms for
Inference in a Natural Style”) is the underlying logic of the IMPS system.
LUTINS is a variant of Church’s simple theory of types [Chu40]|. It was
developed to allow computerised mathematical reasoning that closely follows
mathematical practise as performed by mathematicians “in the wild”. And since
standard mathematical reasoning often focuses on functions, their properties and



operators on them, LUTINS allows for partial functions, and features a (partial)
definite description operator as well as a system of subtypes.

LUTINS is a classical logic in the sense that it allows non-constructive
reasoning, but non-classical in the sense that terms in LUTINS can be non-
denoting. It also supports A-notation for functions, an infinite hierarchy of func-
tion types for higher-order functions, and full quantification (existential and
universal) over all function types.

Languages, Sorts, and Expressions The notion of languages is central to
LUTINS. They contain two classes of objects: sorts and expressions. Sorts de-
note (non-empty) domains of mathematical objects and expressions denote mem-
bers of these domains. Expressions can be used to directly reference mathemati-
cal objects and to make statements about them using a LUTINS language given
by a set of sort declarations and (sorted) constant declarations (see [FGT98]).

We differentiate between atomic sorts (e.g. ind, zz, ...) and compound sorts,
the latter denoting the domain of n-ary functions for an arbitrary n (e.g. [zz, ind]
for n = 2). Sorts may overlap, but they cannot be empty. Every language includes
the base type x (sometimes also defined as x and always denoted as such in the
implementation), denoting the set {T,F} of standard truth values.

Sorts are also divided into two kinds, * (read: star or prop) and ¢ (read: ind).
A given sort « is of kind « if either @« = x or «a is a compound sort into * (i.e.
a compound sort of the form [aq, ..., a,, %], sometimes also called a predicate).
In all other cases « is of kind ¢. This includes all atomic sorts except x itself.

LUTINS allows for sorts to be defined as subsorts of other sorts in multiple
ways. For instance, the natural numbers N form a subsort of the real numbers
R and the continuous (real) functions a subsort of the functions from R to R.

Each atomic sort is assigned a unique enclosing sort by the language that
defines it. This gives rise to a particular partial order on its sorts, which we will
call < (also sometimes called “the subsort relation”) that is intended to denote
set inclusion. A sort that is maximal in relation to < is called a type. The type
of a given sort a has the notation 7(«).

Subsorting also applies to compound sorts. In particular, if o9 < 79 and
o1 = 71, then [0g,01] < [r0,71]. This makes subsorting in LUTINS covariant
in its arguments, not contravariant as is common in settings without partial
functions. The compund sort [og,01] contains exactly those partial functions
that are never defined outside of g and never return values outside o;. For
example, you could pass any real number to a function expecting a natural
number (given that N and R have the same type). If the number is indeed not
a natural number, the expression will be undefined (see below).

All of this is helpful for mechanised deduction because the subsorting rela-
tion can give important information about the value of an expression, should
it be defined. Furthermore, many theorems have constraints that can easily be
expressed in terms of a subtype and the prover can be programmed to handle
these with special algorithms.



Partial Functions, Undefined and Non-Denoting Values The stated goal
of IMPS (and therefore LUTINS) is to allow for reasoning that is very close to
mathematical practice. This means that there needs to be a way to deal with
partial functions and undefined values since these make frequent appearances in
chalk-and-whiteboard mathematics. For example, all of the terms 2, /=3, In(—4)
are undefined in the standard theory of arithmetic over the real numbers.

Note that there is a subtle difference between a term that is “undefined” and
one that is “non-denoting”. According to Farmer, a term is undefined if it is not
assigned a “natural” meaning and non-denoting if it is not to be assigned any
meaning at all. Often, an undefined term is also non-denoting, but it can still
have a denotation. For example, the term % does not have a “natural meaning” in
standard real arithmetic, but is sometimes assigned a value in practice anyway.
In particular, IMPS follows the approach of partial valuation for terms but total
valuation for formulas (see [Far90] for more details). This means a term of type
* always has a denotation (if one of its constituents is undefined, that denotation
is F).

Definite Description One of the more prominent features of LUTINS is the
possibility of reasoning with definite description via the ¢ (or ‘ota) constructor.
Given a variable v of sort « of kind ¢ (not to be confused with the constructor
itself) and an unary predicate ¢ over «, the expression ¢ v : a.. ¢(v) denotes the
unique v, such that ¢(v), if there exists such a v. If there is no or more than one
v that fulfils the predicate, the t-expression is undefined.

For example, the expression ¢ = : R.(0 < z) A (z - x = 2) denotes /2 € R,
while the expression ¢ x : R.x - x = 2 is undefined.

Definite description can be very useful for dealing with functions, especially
partial functions, which is why it is featured so prominently in IMPS.

2.2 Preliminaries: IMPS

IMPS (short for “Interactive Mathematical Proof System”) is an interactive theo-
rem prover developed by William Farmer, Joshua Guttmann and Javier Thayer
from 1990 to 1993 [TMI]. It was one of the influential systems in the era of
automated reasoning.

One of the goals in developing IMPS was to create a mathematical system
that gave computational support to mathematical techniques common among
actual mathematicians.

The development of the IMPS system has been heavily influenced (see [FGT98])
by three insights into real-life mathematics:

— Mathematics emphasises the axiomatic method. The characteristics of math-
ematical structures are captured in axioms. Theorems are then derived from
these axioms for all structures that satisfy the axioms.

Often, what is needed for a proof is a clever change of perspective to see that
one structure is indeed an instance of another theory, bringing additional
theorems to bear.



— Many branches of mathematics emphasise functions, including partial func-
tions. Moreover, the classes of objects studied may be nested, as are the
integers and the real numbers; or overlapping, as are the bounded functions
and the continuous functions.

— Mathematical proofs usually employ a mixture of both formal inference and
computation.

Special attention is directed at the interplay of computation and proof. Farmer,
Guttman and Thayer emphasise that, for example, a mathematician might de-
vote considerable effort into proving lemmas that justify computational proce-
dures® but are ultimately uninterested in the part of the derivation that is the
“‘implementation” of these procedures.

Therefore, IMPS also allows for inferences based on sound computation and
not merely formal inference. These are treated as atomic inferences, although
a full formalisation in — for example — a Gentzen-style system might require
hundreds or thousands of inference steps.

Little Theories When following the axiomatic method to do mathematics —
that is, logically reasoning from a given set of sentences in a formal language —
there are two prominent approaches to chose from, which we will refer to as the
“little theories” and “big theories” approach.

In the “big theories” version of the axiomatic method, all reasoning is carried
out in one highly expressive axiomatic theory. The set of axioms selected is
powerful enough, such that any model of them will contain all the mathematical
objects that are of interest to us, and deduction from these powerful axioms will
be enough to prove the relevant theorems in the theory. Popular examples for a
“big” axiomatic theory would be ZFC or the Calculus of Inductive Constructions.

Contrasted with that, the “little theories” approach uses a number of different
theories with smaller, less powerful sets of axioms, to develop mathematics in.
For example, one theorem could be true for all semi-rings, while another is
only true in the theories of commutative rings. Theorems are proved by logical
derivation from the axioms of whatever theory supplies the necessary structure
for the proof.

Both IMPS and MMT subscribe to the “little theories” approach to formal
mathematics, a design choice that was informed by the fact that the little theories
approach lends itself well to the mechanism of theory interpretations [FGT92].

Theories are the basic unit of representing mathematical knowledge in IMPS.
In fact, Farmer (in [FGT98]) calls IMPS “a system for developing, exploring, and
relating theories”.

Theory Morphisms A theory morphism (sometimes also called a theory in-
terpretation) is a translation between two theories that maps expression from
the one theory to expressions in the other, with the additional property that
theorems are always mapped to theorems ([Far93| and [FGT98]).

! [FGT98] gives the example of the algorithm for differentiating polynomials for this.



This is an integral part of the “little theories” approach as theory morphisms
are the tool to use to make results of one theory available in the other.

It is also close to mathematical practice, since seeing one structure as an
instance of another (and therefore bringing all theorems of the other structure
into play) is often the critical insight in non-trivial mathematical proofs.

2.3 Preliminaries: OMDoc/MMT

OMDoc (short for Open Mathematical Documents) is a semantics-oriented
markup format for STEM-related documents extending OpenMath developed by
the KWARC work group (see [Koh06]). OMDoc/MMT [RK13| re-conceptualises
the formal/modular fragment of OMDoc and greatly enhances its expressive
power. OMDoc/MMT retains OMDoc’s three distinct levels for expressions of
mathematical knowledge: Object Level Expressions (e.g. terms and formulae)
expressed in OpenMath, Declaration Level Constants (functions, types, judge-
ments) with an optional (object-level) type and /or definition and Module Level
Theories and Views; sets of declarations that inhabit a common name-space and
context.

Theories in OMDoc/MMT are structurally similar to theories in IMPS and
can include other theories. Hence MMT-theories allow for library development
in concordance to the little theories paradigm. Views in MMT behave (for all
purposes relevant in this paper) analogously to theory morphisms in IMPS.

The MMT System The OMDoc/MMT language is implemented in the MMT
system [Rabl8], which provides an API to handle OMDoc/MMT content and
services such as type checking, rewriting of expressions and computation, as well
as notation-based presentation of OMDoc/MMT content and a general infras-
tructure for inspecting and browsing libraries.

Since OMDoc/MMT avoids committing to a specific semantics or logical foun-
dation, foundation-dependent services and features (e.g. type checking, presen-
tation) are implemented using (foundation-independent) generic algorithms ex-
tensible by foundation-dependent calculus rules via plug-ins (e.g. for handling
content imported from external systems such as IMPS).

Theory Graphs Theories and the-

c—> ory morphisms naturally lead to the-

folsemn v foh “a ory graphs, with theories as vertices
ZFO<~~~FOD—~~~>HOL and morphisms as edges. In fact, OM-
mod Doc/MMT-theories and morphisms

: - mult form a category, which is exploited

L/“T\*\ by the MMT-system to induce and
- > y Y
(CGroup)_2dd_(Ring) translate knowledge in/between the-

Fig. 1. Meta-Levels in OMDoc/MMT ories analogously to IMPS).
The possible arrows in OM-

Doc/MMT are inclusions, which import all declarations from the domain to



the co-domain, views, which are judgement-preserving maps from the declara-
tions in the domain to expressions over the co-domain, structures, which are
omitted for this paper, and the meta-theory-relation, which behaves like an
include for most purposes (The meta-theory-relation connects theories that live
on different meta-levels; e.g. domain knowledge to its logical foundation and
conversely the logical foundation to the logical framework it is formalised in.).
An example graph is given in Figure 1. Dotted lines represent the meta-
theory-relation, hooked arrows are includes, squiggly arrows represent views,
and the normal (labelled) arrows represent structures. The MMT system also
provides a theory graph viewer (see [RKM17]), an example for which is given in
Figure 9. For our purposes, we fix as a foundation the logical framework LF (see
[HHP93]), since it is particularly well supported by the MMT system.

3 Implementation

3.1 The LUTINS Theory in LF

To formalise LUTINS in MMT, we use the logical framework LF, which pro-
vides a dependently typed lambda calculus with ¢) two universes type and kind
with type:kind and 4) dependent function types [],.,7T(x) (in LF-syntax:
{x:A}T(x)). If T does not contain the variable x, this is the same as the func-
tion type A — T. Dependent function types are inhabited by lambda expressions
Az @ Aid(x) (in LF-syntax: [x:A]t(x)). The usual rules in a lambda calculus (ex-

tensionality, beta-reduction, ...) hold.
To represent LUTINS, we created a LF meta-theory? that, for every concept
in the logic itself (like quantifiers, logical constructors, the primitive sorts, ...),

has a corresponding constant (44 of them). Furthermore, we declare:

1. a new LF-type tp:type, which serves as the universe of maximal IMPS-sorts,
2. a function sort : tp — type, and

3. afunction exp : {A : tp} sort A — type.
Given some maximal IMPS-sort A, the LF-type sort A then serves as the type
of all subsorts of that IMPS-type, and given a sort a : sort A, the type exp A
a corresponds to the LF-type of all IMPS-expressions of sort a.

We use the principles of higher-order abstract syntaz to specify binders in
IMPS. For example, consider an IMPS expression \z : A.t, where the A\-constructor
binds a new variable z : A. We formalise this behaviour by declaring the IMPS
lambda to be an LF function lambda, that takes an LF lambda expression as
argument which binds the variable z. As a result we get the LF expression
lambda ([x:A] t) being the application of the function lambda to the LF func-
tion [x:A]t, effectively “embedding” an LF function on IMPS expressions as an
IMPS function. Application in IMPS, quantifiers and other binders are treated
analogously.

2 This formalisation is part of the LATIN foundations see https://gl.mathhub.info/
MMT/LATIN/blob/master/source/foundations/imps/lutins.mmt
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For propositional judgements (i.e. axioms and theorems) in IMPS, we use the
judgements-as-types paradigm by introducing an operator thm : exp bool —
type, assigning to each proposition a type which we can think of as the “type of
proofs” for that proposition. Correspondingly, we consider a proposition A to be
“true” if the type thm A is inhabited. Axioms correspond to undefined constants
of type thm A, whereas theorems correspond to defined constants of that type,
their definition being a proof (although proofs are omitted in this paper).

the IMPS
system

OMDoc Output

Fig. 2. Overview: Red: Source Files, Blue: Our contributions, Yellow: Independent
systems Cyan: Resulting OMDoc

3.2 Translation

We now present the actual transformation process. It starts with IMPS library
files® and uses several software systems over a number of different steps, which
are outlined below. Figure 2 gives a high-level schematic view of all involved
systems and processes. The individual steps of the translation process are as
follows:

— Generate JSON from IMPS data structures For this, we modified Li’s
exporter to export (the relevant aspects of ) the internal data structures in
IMPS directly to JSON, which is easy to read (for both human and machine)
and gives us direct access to the data in the internal data structures, instead
of an outdated OMDoc translation of those structures.

— Import and combine JSON and IMPS sources Parsing from both IMPS
library source files and JSON generated from internal data structures, gives
the possibility of including more data in the translation, even data that is
not represented on a symbolic level within IMPS.

3 Which — like the original IMPS system — are written in the T language — a dialect of
Scheme — and are hence often referred to simply as “T-files” in the following sections.



— Translate combined structures to MMT/OMDoc The last step uses
the LF-implementation of LUTINS. In this form, they can also be type-
checked by MMT to verify their correctness. The final OMDoc output is also
generated by the MMT system, which always produces OMDoc in the current
standard of the format.

(def-atomic-sort nn 553 Name
"lambda(x:zz, 0<=x)" ;33 Defining Expression
(theory h-o-real-arithmetic) ;;; Home Theory
(witness "0")) ;3; Witness to show the sort non-empty

Fig. 3. IMPS Source Code: Def-Form defining the atomic sort nn via predicate

Def-Forms IMPS source files contain information in so-called “def-forms” (short
for “definition forms”). Each def-form is essentially the specification of one IMPS
object, from constants, theories, languages to translations. Figure 3 shows an
example.

To avoid unnec-
essary work in im-
plementation, we did

foundational 17 414 (100%) 1918 (93.8%) a survey of the

Group Amount ‘ foundation‘ imps-math-library

advanced 10 0 (0%) 119 (6.2%) imps—matp—libr.ary
unused 5 0 (0%) 0 (0%) to determine which
def-forms were used
Fig. 4. Survey results for usage of each def-form how often. In Fig-

ure 4 we consider a
def-form “unused”, if it does not appear in the library, even if it is supported by
IMPS. We classify a def-form as “foundational” if it appears in the foundation
sub-library. All other def-forms (called “advanced” in this context) were initially
given low priority.

S-Expressions There are different ways of representation in which IMPS dis-
plays mathematical objects to the user. One of the most important features of the
JSON export mechanism is the export of mathematical expressions in s-ezpression
syntax (as popularised by LISP) instead of string syntax.

For example, consider the axiom commutative-law-for-addition of the
theory h-o-real-arithmetic. In string presentation, it is printed like this:

forall(y,x:rr,x+y=y+x)

In s-expression syntax, however, this axiom is printed as follows:

(forall ((rr y x)) (= (apply-operator + x y)
(apply-operator + y x)))

While the string representation might be more familiar to the human eye,
s-expressions are considerably easier to parse mechanically and make dealing
with binding strength and operator precedence unnecessary. They also simplify
parsing function applications and quasi-constructors.
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Quasi-Constructors In addition to the LUTINS core logical constructors it is
also possible for a user of IMPS to define additional constructor-like forms called
“quasi-constructors”. These are implemented as “macros” or “abbreviations”.

For example, in IMPS, there exists the notion of quasi-equality: two expres-
sions are quasi-equal if and only if they are either both undefined or are both
defined with the same value. In mathematical notation, this would be captured
by the following biconditional:

FEi~ FEy = (El\l,\/ Eg\l,) D FE =F

More precisely, a quasi-constructor consists of three elements: a name (some-
thing like quasi-equals), a list of variables (F; and F5) and a schema (the right
hand side above, see Figure 5 for an example from the library).

In addition to the user-defined quasi-constructors, the IMPS system also has
a small number of so-called “system quasi-constructors” that are hard-wired into
the deductive machinery. Quasi-equality is one of them. Quasi-constructors are
polymorphic in their schema variables, even if this polymorphism is not made
explicit in the notation.

The translation of quasi-constructors turned out to be quite challenging. As
Li states in [Li02], the corresponding lambda expressions for quasi-constructors
are not represented as symbols in IMPS and can therefore not be translated into
JSON directly, like other expressions.

However, user-defined
quasi-constructors are used
extensively throughout the
source. A survey of the
T source files and the
JSON output of just the
foundation section iden-
tified 58 quasi-constructors
used hundreds of times within the library-section imps-math-library. Thus any
effort to translate this library would be incomplete without a rigorous treatment
of quasi-constructors.

Instead of manually adding each individual quasi-constructor to the theory
that defines it, or automatically resolving them immediately when parsed (which
would need a lot of typing information not easily available at that stage of the
translation) we decided to formulate one global LF-theory (called QuasiLutins)
for them. There, we implemented all quasi-constructors as an instance of the
same data type that also represents ordinary constructors (as seen in Figure 6).

(def-quasi-constructor I-IN
"lambda(x:uu,a:sets[uul, #(a(x)))"
(language indicators)
(fixed-theories the-kernel-theory))

Fig. 5. The quasi-constructor i-in, as declared in IMPS

inQC : { A, a : sort A } exp @ — exp (sets[a]) — exp bool
= [U,u,x,a] (a @ x) |

Fig. 6. The same quasi-constructor, implemented in LF

This turned out to be the most effective and most faithful approach to the
original sources, since the separation of theories makes clear what is part of
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the original LUTINS and what is not. It is also possible to stick to genuine
polymorphism this way, without having to re-derive too much typing information
during translation.

Theory Morphisms IMPS translations (which are all interpretations in the
IMPS library, i.e. all the obligations of the translation are theorems in the target
theory) are translated as MMT wviews.

Some theory morphisms in IMPS (see Figure 8 for
an example showing the translation of groups to sub-
groups) have a collection of assumptions that need
to be fulfilled (i.e. need to be theorems in the target
theory for the morphism to be applicable). These as-
sumptions can be used to state that certain conditions
must be met (e.g. in the example from above, the tar-
get set (indicator function) must not be empty).
Fig.7.  Theory  mor- Views in MMT, however, are not designed to have
phisms with axioms assumptions. To circumvent this obstacle, we create
a copy of the target theory Ta, called 75 that includes 73, but also has all the
assumptions associated with the theory morphism as additional axioms (see
Figure 7).

(def-translation GROUPS->SUBGROUP
(source groups)
(target groups)
(assumptions
"with(a:sets[ggl, nonempty_indic_q{a})"
"with(a:sets[ggl, forall(g,h:gg, (g in a) and (h in a)
implies (g mul h) in a))"
"with(a:sets[ggl, forall(g:gg, (g in a) implies (inv(g) in a)))")
(fixed-theories h-o-real-arithmetic)
(sort-pairs
(gg (indic "with(a:sets[ggl, a)")))
(constant-pairs
(mul "with(a:sets[ggl, lambda(x,y:gg, if((x in a) and (y in a),
x mul y, ?gg)))™)
(inv "with(a:sets[ggl, lambda(x:gg, if(x in a, inv(x), 7gg)))"))
force-under-quick-load
(theory-interpretation-check using-simplification))

Fig. 8. IMPS Source Code (from “subgroups.t”): Subgroup Translation

4 Applications
Continued Theory Library Development Translating the IMPS theory library

into OMDoc/MMT format allows us to use the theories contained therein in
future projects and enables the continuing development of other theories that
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build upon them (without depending directly on the IMPS system itself). They
are now also available to other tools and automated methods (e.g. as data for
machine-learning approaches to auto-formalisation).

Alignments Using flexible alignments (see [Miil4-17]) between different libraries
(such as those of the PVS, HOL Light, and Mizar projects, for which there exist
similar translation efforts), we can guide library developers to corresponding
parts of other formalisations, give decent approximate translations of content
across libraries, or help users more familiar with IMPS towards content of other
systems by re-using notations that would otherwise be system specific.

OMDoc/MMT Services With the OMDoc/MMT translation of the IMPS theory
library, IMPS also gains access to library management facilities implemented
at the OMDoc/MMT level. There are two ways to exploit this: publishing the
translated IMPS libraries on a dedicated server, like the MathHub system, or
running the OMDoc/MMT stack locally.

Browsing and Interaction The transformed IMPS content can be browsed in-
teractively in the document-oriented MathHub presentation pages (theories as
active documents) and in the MMT web browser. Both allow interaction with
the IMPS content via a generic Javascript-based interface.

Graph Viewer The MMT system includes a theory graph viewer [RKM17] that
allows interactive, web-based exploration of the OMDoc/MMT theory graphs. It
builds on the vis.js JavaScript visualisation library, which uses the HTML5
canvas to layout and interact with graphs client-side in the browser.

The IMPS theory library relies substantially on theories as a structuring mech-
anism (as a consequence of taking the little theories approach), which makes
a graph viewer particularly attractive. Figure 9 shows the full graph of the
foundation library section, generated from only the OMDoc translated from
IMPS?.

5 Conclusion

We have developed a representation of the IMPS logic LUTINS and an auto-
mated translation of the IMPS mathematical theory library in the OMDoc/MMT
format. This saves the IMPS library from be coming inaccessible and allows con-
tinued development and cross-fertilisation.

This information architecture is essential for system interoperability. In our
case we have shown that we can use the language-independent MMT tool chain
for IMPS. In particular, with the library browser and the theory graph viewer,
we have instantiated two generic periphery systems for IMPS.

4 Note that the theories shown here are all part of the library; they are not duplicates
created by the process from Figure 7.
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LTS FAMILY-INDICATORS

thé:l;érnel-fﬁébry

GENERIC-THEORY-1 h-o-real-arithmetic |
IV INDICATORS
< GENERIC-THEORY-2 >

PURE-GENERIC-THEORY-0

<PURE-GENERIC-THEORY-1 >
Y PURE-GENERIC-THEORY-2 .. 5RE-GENERIC-THEORY-3
GENERIC-THEORY-4 > e
PURE-GENERIC-THEORY-4
PURE-GENERIC-THEORY-L1-WITH-1-SUBSORT >
< PURE-GENERIC-THEORY-2-WITH-1-SUBSORT >

“PURE-GENERIC-THEORY-2-WITH-2-SUBSORTS

< PURE-GENERIC-THEORY-3-WITH-2-SUBSORTS >

Fig. 9. Theory Graph of the foundation section

Future Work Our results can also easily be extended to use LFX (LF + X, an
extension to the LF framework, see [LFX]) to give shallower (i.e. more structure-
preserving) encodings of IMPS features without having to sacrifice the advantages
of logical frameworks via the use of structural features (see [IanlT]).

Finally, in future efforts, we would like to extend the current export to also
include proofs and macetes of the IMPS system as non-opaque data. For this
to be possible, we would have to represent the IMPS proof calculus in LF, and
develop a LF representation for proof commands. In our experience, both tactic-
level proof scripts as well as full proofs are even harder to make interoperable
than the statement level of libraries and may thus be less useful.

Software Sources All software that is mentioned in this paper is available on-
line: i) imps2json: https://gl.mathhub.info/IMPS/theories i) MMT ex-
tension: https://github.com/UniFormal/MMT/tree/imps i) MMT archive:
https://gl.mathhub.info/IMPS/imps
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