Communication Protocols for Mathematical
Services based on KQML and OMRS

Alessandro Armando*, Michael Kohlhase', Silvio Ranise?

f FR 6.2, Univ. Saarland, Germany 1 DIST, Universita di Genova, Italy
kohlhase@ags.uni-sb.de {armando|silvio}@dist.unige.it

Abstract. In this paper we describe the first ideas for formalizing a com-
munication protocol for mathematical services based on KQML (Knowledge
Query and Manipulation Language) and OMRS (Open Mechanized Rea-
soning Systems). The claim is that the interaction level of a communication
protocol for mathematical services can be relatively generic (hence KQML
suffices), as long as the ontology of the computational behavior and inter-
nal state of the mathematical services is sufficiently expressive and concise
(which we have in OMRS).

The material presented in this paper is a first exploratory step towards
the definition of the interaction level in OMRS, supplies a concrete syntaz
based on the OPENMATH standard, and gives a semantics to communica-
tion of mathematical services in distributed theorem proving and symbolic
computation environments.

1 Introduction

It is plausible to expect that the way we do (conceive, develop, commu-
nicate about, and publish) mathematics will change considerably in the
next ten years. The Internet plays an ever-increasing role in our every-
day life, and most of the mathematical activities will be supported by
mathematical software systems (we will call them mathematical services)
connected by a commonly accepted distribution architecture, which we will
call the mathematical software bus. We have argued for the need of such
an architecture in [13], and we have in the meantime gained experiences
with prototype systems (the MATHWEB software bus [14] (MATHWEB-
SB) and the LoGic BROKER ARCHITECTURE [5] systems); other groups
have conducted similar experiments [15, 10] based on other implementation

Content Layer, e.g. OpenMath/CASL
Application Layer

Performative Layer, e.g. KQML

Presentation Layer, e.g. XML (DTD)
Session Layer, e.g. LU6.2

Transport Layer, e.g. TCP

Network Layer, e.g. IP

Link Layer, eg. X.21

Physical Layer, e.g. Ethernet

Figure 1. Artificial Communication: KQML and the OSI Reference Model

technologies, but with the same vision of creating a world wide web of co-
operating mathematical services. In order to avoid fragmentation, double
inventions and to foster ease of access it is necessary to define interface
standards for MATHWEB.! In [13], we have already proposed a protocol
based on the agent communication language KQML [12] and the emerging
Internet standard OPENMATH [8, 28] as a content language (see Figure 1).
This layered architecture which refines the unspecific “application layer” of
the OSI protocol stack is inspired by the results from agent-oriented pro-
gramming [19, 18], and is based on the intuition, that all agents (not only
mathematical services) should understand the agent communication lan-
guage, even if they do not understand the content language, which is used
to transport the actual mathematical content. The agent communication
language is used to establish agent identity, reference and in general
model the communication protocols. The content language is used for
transporting the mathematical content.

In this paper, we refine the communication protocol proposed for M ATH-
WEB based on the experiences gained since [13]. The problem with that
proposal was that pure OPENMATH [8] is too weak as a content language,
since it is geared towards the representation of mathematical objects, which

IWe will for the purposes of this paper subsume all of the implementations by the
term MATHWEB, since the communication protocols presented in this paper will make
the constructions of bridges between the particular implementation simple, so that the
combined systems appear to the outside as one homogenous web. There is a joint effort
underway to do just that at http://www.mathweb.org

3

is sufficient for content communication among symbolic/numeric computa-
tion services, but not for reasoning services. In [22] the second author has
presented an extension ®Doc¢ (OPENMATH Documents) of OPENMATH by
primitives for document structure, theory management, and proofs, arriv-
ing at a (structured) specification language for symbols, definitions, theo-
rems, theories, etc. which make up the content reasoning services need to
communicate about. Yet, this is still not sufficient to specify the interaction
of mathematical services on MATHWEB; this is where the KQML kicks in.
In fact, KQML was developed exactly for the purpose of agent interaction,
assuming that the content layer has already been specified.

However, in order to build a protocol based on something as general
as the KQML we need a way to specify the state and the strategies of
the mathematical services themselves. This is exactly what the OMRS
framework has been developed for: to supply a specification framework for
mathematical software systems. In OMRS, a mathematical software sys-
tem is structured in three layers: the logic layer (specifying the deductive
machinery), the control layer (specifying the strategies for controlling in-
ference), and the interaction layer (specifying the interaction capabilities
of the mathematical software system with others and with humans).? The
main claim of this paper is that the interaction level of a communication
protocol for mathematical services can be relatively generic (hence KQML
suffices), as long as the ontology of the computational behavior and inter-
nal state of the mathematical services is sufficiently expressive and concise
(which we have in OMRS).

The plan of the paper is as follows. In Section 2, we briefly review
KQML and present a simple ontology for reasoning services in MATHWEB
(Section 2.1). In Section 3, we hint the main concepts of the OMRS
framework. Then, in Section 4, we put together KQML and OMRS to
validate our claim on a significant example. In Section 5 we discuss a
migration path for the existing MATHWEB software bus implementations
towards a joint architecture based on the protocol presented in this paper.
Finally, in Section 6, we draw some conclusions.

2 The KQML and MATHWEB

KQML, the Knowledge Query and Manipulation Language,® is a language
and protocol for exchanging information and knowledge among software

2The OMRS framework initially conceived to specify deduction systems has been
extended to support the specification of computer algebra systems in [6]. For the sake
of simplicity in this paper we use the original OMRS framework.

3More information can be obtained from http://www.cs.umbc.edu/kqml.

[tell(A,B.X) |
| ask-if(A,B,X) | Pre: bel(A, X)
Pre: want(A, know(A,Y)) know(A,want(B, know(B,Y)))
Post: intend(A, know(A,Y)) intend(B, know(B,Y))
know(B,want(A, know(A,Y))) Post: know(A, know(A,bel(A, X)))
know(B, bel(A, X))

Legend: Y stands for bel(B, X), bel(B,—-X), or —bel(B, X).

Figure 2. Semantics of KQML performatives

agents. It is both a message format and a message-handling protocol and
can be used as a language for an application program to interact with an
intelligent system or for two or more intelligent systems to share knowledge
in support of cooperative problem solving.

KQMmL focuses on an extensible set of performatives, which defines the
permissible operations that agents may attempt on each other’s knowl-
edge and goal stores. The performatives comprise a substrate on which
to develop higher-level models of inter-agent interaction such as contract
nets and negotiation. Following [24], KQML performatives can be modeled
as actions which modify the cognitive states of the agents. The cognitive
states of the agents can be modeled by means of the predicates:

e bel(A, X) asserts that X is true for agent A (where X is a state-
ment about the application domain), or equivalently that X is in the
(virtual) knowledge base of A.

e know(A,Y) asserts that Y is known to be true by A. (Here and
below Y is a statement about the cognitive states of the agents).

e want(A,Y) asserts that A desires the state described by Y to occur.

e intend(A,Y) asserts that A has every intention of achieving the state
described by Y.

Notice that while the meaning of know, want, and intend is fixed, the
meaning of bel depends on the application. The semantics of KQMI perfor-
matives is given in terms of the preconditions and postconditions describing
the applicability conditions and the effect of the performatives respectively.
A (simplified) account of the semantics of the ask-if and tell performa-
tives is given in Figure 2. (The specification of the deny performative can
be obtained from that of tell by replacing every occurrence of bel(A, X)
with —bel(A, X).)

In addition, KQMTL provides a basic architecture for knowledge sharing
through a special class of agents called communication facilitators which
coordinate the interactions of other agents.

det rm ned
? ble negatlon saw
va 1d properly sat unsatirﬁable
proof mo el counter-model counter-proof
m

state | For input formula F reasoning system R has
proof found a proof for F'
model constructed a model for F'
mcm constructed models for both F' and —F
counter-model constructed a model for —F
counter-proof found a proof for —F'.
valid determined that F'is valid by some method
properly-sat determined that F'is neither valid nor unsatisfiable
unsatisfiable determined that F is unsatisfiable (<= —F valid)
satisfiable determined that F is satisfiable (has a model)
negation-satisfiable | determined —F is satisfiable (has a model)
determined determined one of the above

Figure 3. States of Mechanized Reasoning Systems

2.1 Reasoning Services in MATHWEB

A MATHWEB reasoning service is a mechanized reasoning system that tries
to determine whether a given logical formula is valid (satisfied by all mod-
els), satisfiable (satisfied by some models), or unsatisfiable (not satisfied
by any models). Automated theorem provers typically try to determine
validity (theorem-hood) of a formula F* by finding a proof for F, or try-
ing to refute the satisfiability of its negation —=F. Model generators try to
follow a dual approach, they try to construct a model for a formula F'; if
they succeed, then F'is shown to be satisfiable, if they fail, exhausting all
possibilities, then F' is unsatisfiable.

4This will in general be of the form Ay A ... AN A, = C, where the A; are the
assumptions (e.g. supplied by some background theory) and C the conclusion.

6

<achieve sender="A"
receiver="kqml-xml://mathweb.org#atp"
reply-with="id1"
language="0penMath">
<0OMOBJ><0OMA><0MS cd="reasys" name="determined">F'</0MA></0OMOBJ>
</achieve>

<subscribe sender="A"
receiver="kqml-xml://mathweb.org#atp
reply-with="id2"
language="0penMath">

"

<ask-if

receiver="kqml-xml://mathweb.org#atp
reply-with="id3"
language="0penMath">
<0OMOBJ><0OMA><OMS cd="reasys" name="valid">F'</0MA></0MOBJ>
<0OMOBJ><0OMA><OMS cd="reasys" name="proper-sat">F'</0MA></0MOBJ>
<0OMOBJ><0MA><OMS cd="reasys" name="unsatisfiable">F'</0MA></0OMOBJ>
</ask-if>
</achieve>

Figure 4. Querying a reasoning System for semantic status of F’

In MATHWEB we use the simple general hierarchy of states of mech-
anized reasoning systems to interact with the systems in KQML, which is
shown in Figure 3. With this ontology, it is simple to communicate with
all sorts of automated reasoning systems in KQML. For instance, the mes-
sages in Figure 4 are the normal way to request a judgment about the
theorem-hood of a formula F.

Upon receiving the first message, the service atp at mathweb.org,” will
try to determine the semantic status of the formula F by, e.g., concurrently
starting one or several theorem provers and model generators in order to
achieve the determined status. Upon receiving the subscribe message, it
responds with an appropriate message (as if processing the ask-if message,
most likely with a tell message) immediately after the status has been
determined.

Querying an automated theorem proving system for a proof is simi-
lar, only employing an ask-one message using the more concrete statuses
model, proof, counter-model, counter-proof, or mcm. These are defined
in a special OPENMATH content dictionary reasys (CD, see the refer-
ences in the OPENMATH symbols OMS in Figure 4), which is available from
http://www.mathweb.org/omdoc/cd/reasys.ocd.

51t speaks the XML representation of KQML described in this paper, as we see by the
prefix xml-kqml, so the representation of the messages is appropriate.

3 An Overview of OMRS

An OMRS specification consists of three layers: the logic layer (specifying
the assertions manipulated by the system and the elementary deductions
upon them), the control layer (specifying the inference strategies), and the
interaction layer (specifying the interaction of the system with the environ-
ment). Notice that this layering allows for an additional and complemen-
tary way to structure the specifications w.r.t. the standard approach based
on modularity. This domain-specific feature of the OMRS specification
framework is fundamental to cope with the complexity of functionalities
provided by state-of-the-art implementations.

The Logic Layer. The logic layer of an OMRS specification describes
the assertions manipulated by the system and the elementary deduction
steps the system performs upon such assertions. For example, a resolution-
based theorem prover may manipulate first-order clauses by resolving and
factorizing them. As another example, a linear arithmetic decider may ma-
nipulate polynomial inequalities by cross-multiplications and sums. At the
logical level, the computations carried out by the system amount to con-
structing and manipulating structures consisting of assertions connected
through elementary deduction steps (like proof trees). The key concept of
the logic layer is that of reasoning theory. Roughly speaking, a reasoning
theory (RTh) [16] consists of a set of sequents (i.e., assertions) and a set of
inference rules over such sequents. An RTh defines a set of reasoning struc-
tures, i.e. graphs labeled by sequents and rules. The notion of reasoning
structure generalizes the standard concept of derivation so as to capture,
e.g., provisional reasoning and sub-proof sharing.

The Control Layer. Most real-world systems carry out their control
strategies by making use of non-logical information, used exactly for con-
trol purposes. Examples of such control information are some history about
how an assertion was produced, the number of times a certain inference
step has been applied, the order in which some assertions must be selected
for applying some reasoning steps, etc. Control information is used and
modified during computation, at the same time as logical inferences are
performed. The control layer of an OMRS specifies how reasoning sys-
tems manipulate the logic information, i.e., which strategies are used to
select and apply the inference steps at each point of the computation. The
concept of Annotated Reasoning Theories formalizes the control layer: It
accounts for the simultaneous manipulation of logic and control informa-
tion. More precisely, an annotated reasoning theory consists of a reasoning

theory and an erasing mapping. The sequents of the reasoning theory asso-
ciated to the annotated reasoning theory are (annotated) sequents over an
extended syntax which encode both logic and control information; the in-
ference rules specify how such information is manipulated by the reasoning
system. Finally, the erasing mapping specifies what is the logical content
of the annotated sequents. The interested reader is urged to see [1] for a
complete discussion of the control layer of the OMRS framework.

Both reasoning theories and annotated reasoning theories can be glued
together yielding composite reasoning theories and annotated reasoning
theories respectively.

The Interaction Layer. The OMRS interaction layer specifies the in-
teraction of the reasoning system with the environment. At present only
exploratory work has been carried out on this (see, e.g., [29, 3]) and a
rigorous development of the interaction layer is part of the future work.
The work described in this paper is a first exploratory step towards the
definition of the interaction level in OMRS.

4 Constraint Contextual Rewriting as a Case Study

We show the applicability of our ideas by specifying a distributed version
of Constraint Contextual Rewriting (CCR, for short) [2, 4]. We do this
by first providing an OMRS specification of CCR (adapted from [1]) and
then by describing an agent-oriented architecture for CCR obtained by
turning the decision procedure into an autonomous agent which interacts
with the simplifier via KQML performatives. We will show that the OMRS
specification plays a fundamental role in the specification of the agent-
oriented architecture.

CCR extends traditional conditional rewriting by exploiting the func-
tionalities of a decision procedure as described in [4, 2]. We illustrate CCR
by means of a simple example. Let us consider the problem of simplifying
the clause a < 1V f(a) = a using the following fact as a conditional rewrite
rule:

r>0= f(z)==z (1)

where < and > are the the standard ‘less-than’ and ‘greater-than’ relations
over the integers (resp.) and f is an uninterpreted function symbol. The
basic step of the simplification process is to select a literal (called the focus
literal) from the clause and start rewriting it, while assuming the negation
of the remaining literals (called the context). For the clause above, let
f(a) = a be the focus literal and {a £ 1} be the context. Application of

9

(1) turns the focus literal into the identity a = a, under the proviso that
the instantiated condition, namely a > 0, is entailed by the context. This
can be established by means of a decision procedure for linear arithmetics
by asking the decision procedure to check the satisfiability of the sets of
literals obtained by adding the negation of the condition to the context,
namely {a ¥ 0,a £ 1}. The simplification activity concludes that the
identity a = a is true by rewriting.

4.1 An OMRS Specification of CCR

An OMRS specification of CCR can be given by an annotated reasoning
theory resulting from the combination of three annotated reasoning theo-
ries® each modeling a distinct reasoning module: the top level simplification
loop (simp), the rewrite engine (cr), and the decision procedure (cs). The
functional dependencies between the modules are depicted in Figure 5.(a).
simp takes a clause (cl) and returns a simplified clause (cl’). cr performs
conditional rewriting on the input literal (1) by using cs as rewriting con-
text and returns a rewritten literal (I'). cs takes a conjunction of literals
cnj and a context cs as input and returns a new context c¢s’ obtained by
extending cs with the literals in cnj.

The annotated reasoning theory for the overall simplification activity is
the following (for details, see [1]). The sequents have the following forms:

e cl— cl’ asserts that clause ¢l’ (modeled as a finite set of literals)

simp
is the result of simplifying clause ¢,

e cs 1l —¢cr ' asserts that literal I’ is the result of rewriting [using cs
(also called constraint store) as context,

e cnj :: cs —rcs cs', asserts that cs’ is the result of extending ¢s with the
literals in enj, cs-init(cs), asserts that cs is the “empty” constraint
store, cs-unsat(cs) asserts that c¢s is an inconsistent (w.r.t. the theory
decided by the decision procedure) constraint store, and

e | < [’ asserts that the literal [is smaller than the literal I’ w.r.t. a
simplification ordering (see, e.g., [11] for a definition).

Let R be a set of conditional equations of the form ¢nj = (s = t), where
cnj is a set of literals intended conjunctively. The rules of the annotated

5For the lack of space we confine ourselves to specifying the control layer and provide
an informal explanation of the logic content. The interested reader may consult [1] for
the details.

10

In: ¢
Out: o’
'
simp. simp
In: ¢, cs
e reset |
Out: cs tell (P) |
ask-if (1)

In: csl cs
Out: I’ cs

cr

tell(l) |
deny(1)
Out: true (or failure)
In: csl cr

(a) (b)
Figure 5. A control-level specification (a) and an agent-based architecture (b)
of the case study

reasoning theory are the following:”

1-t 1-fal
c U {true} —simp {true} RS U {false} —simp ¢! ciTratee

cs-init(esg) el i esg —cs es es il —er I
cdu{l} —simp ¢l U {U'}

cl-simp

Rules cl-true and cl-false specify how to simplify a clause when true
and false are in it, respectively. Rule cl-simp says that a literal [in a
clause ¢l U {l} can be replaced by a new literal I’ obtained by rewriting [in
context cs (premise cs :: | —¢r I'), where cs is obtained by extending the
empty rewriting context csy (premise cs-init(csg)) with the negated literals
in ¢l (premise cl :: csy —>cs cs).

{I} :: cs —¢cs s’ cs-unsat(cs’)
cs i |l —cr true

cxt-ent

cs enjo —cr O to], < 1soly
cs : l[soly —cr U[to]y

crew

for each conditional rewrite rule cnj = (s = t) in R. c¢s:cenj —cr 0
abbreviates c¢s :: | —¢r true, for all | € enj and s[lo],, denotes the expres-
sion obtained from s by replacing the sub-expression at position v with
lo. Rule cxt-ent asserts that a literal | can be rewritten to true in the
rewrite context cs if the result of extending cs with the negation of [yields

7If_l is an atomic formula, then I stands for —I; if [is a negated atom of the form —m,
then [abbreviates m. If cl is a set of literals, then ¢l abbreviates {l | { € cl}.

11

| reset(A,B) |
Pre:
Post: bel(B,c) iff ¢ € esg where ¢sg is s.t. cs-init(csp)

Figure 6. Semantics of the reset performative

an inconsistent rewrite context (premise cs-unsat(cs’)). Finally, rule crew
says that the sub-expression so at position u in the expression [can be
rewritten to to in the rewriting context cs if cnj = (s =t) € R, o is a
ground substitution s.t. the literal /[to],, is <-smaller than I[so], (premise
l[to]y < [so]u), and the instantiated conditions cnjo are entailed by the
rewriting context ¢s (premise c¢s :: enjo —cr ().

4.2 An Agent-Oriented Architecture for CCR

As depicted in the schema of Figure 5.(b), the agent-oriented architecture
for CCR consists of two agents which interact by exchanging KQML mes-
sages. The agent on the left of Figure 5.(b) encapsulates the top level
simplification loop (simp) and the rewriter (cr) whereas the agent on the
right encapsulates the decision procedure (cs).®

The protocol consists of the repeated application of the following pat-
tern of interaction. Whenever simp tries to apply rule cl-simp it initiates
the interaction with cs by issuing on the channel a message containing the
reset performative. (The semantics of the reset performative is given
in Figure 6.) This has the effect of initializing the constraint store of cs
(cf. precondition cs-init(esg) in cl-simp). Next, simp sends cs the set of
literals occurring in the context via the message te11(cl)? (cf. precondition
cl i esg —cs ¢s in cl-simp) and finally it asks cr to rewrite the focus lit-
eral (cf. precondition ¢s :: | —¢r I'). cr rewrites the input literal using the
available rewrite rules and in doing this it may ask cs to determine whether
the current focus literal is entailed by the context via the message ask(l).
In reply to this request cs sends back a message of the form tell(l) or of
the form deny(l). (Notice that cr may query cs also when it is trying to
establish the conditions of a conditional rewrite rule.)

In order to complete the description we must specify how the bel pred-
icate is interpreted by the agents. Firstly we require that the decision

8For simplicity, we consider only two agents since we are interested in the interplay
between the ‘simplification’ activity (namely clause simplification and rewriting) with the
logical services provided by the decision procedure. However, the proposed methodology
can easily be adapted to specify agent architectures with three or more agents.

9We omit the first two arguments of the performatives (namely the ‘sender’ and the
‘recipient’) whenever their identity can be inferred from the context.

12

procedure trusts the simplifier. This is formalized by the following axiom:
Ve.(bel(simp, ¢) = bel(cs, c))

This fact allows the decision procedure to extend its own knowledge base
using the information issued by the simplifier via the tell performatives.
Secondly we must specify the inference capability of the decision procedure.
This is done by means of the following axiom:

Vp.VesVes'.((bel(cs, p) A bel(cs, cs) A bel(cs,p i cs —vcs ¢s')) = bel(cs, cs'))

where bel(cs, cs) abbreviates A{bel(cs,c) : ¢ € cs} and bel(cs,p :: cs —cs
cs')) states the provability of the sequent p :: ¢s —¢s ¢s' in the annotated
reasoning theory of Section 4.1.

5 Implementation and Interfaces

How can the ideas presented in this paper help with the implementation
and management of MATHWEB? A general interaction protocol based
on Internet standards transforms closed architectures like the MATHW EB-
SB [14] and the LoGgic BROKER ARCHITECTURE [5] systems into an open
MATHWEB architecture. Currently, the former uses the distributed pro-
gramming features provided by the MOZART programming language [27]
for communication, while the latter takes advantage of the communication
functionality provided by CORBA [9]. As a consequence, mathematical
services either have to be embedded into a MOZART agent wrapper, or
have to implement a CORBA interface, or have to do both, if they want to
communicate with services that are not present on both architectures.

In order to achieve a joint system that reuses much of the current func-
tionality in a KQML-based architecture, it is sufficient to augment each of
the systems above by an agent that does the KQMIL-communication and
serves as a bridge. This agent is a KQML facilitator agent that listens to a
given network port (by default the OPENMATH port 1473) and relays KQML
messages to the other agents in its architecture (by MOZART or CORBA
communication). This allows to reuse the existing implementations and
internal communication among agents as well as providing a standardized
interface to the Internet.

Note that this also allows other implementations than the ones listed
above to participate in MATHWEB as long as they implement the same out-
ward appearance (e.g. KQML, OMRS, and ®Doc). To simplify KQMIL mes-
sage passing, we will for the moment identify agent names with transport

13

addresses, since agent mobility seems not to be a problem in MATHWEB.
Agent names in MATHWEB are quadruples of the form

(method) : | /{machine):(port)#(agent)

that resemble URLs. For example the name of the broker agent would be
kgml-xml://mathweb.org:1473#broker.

Since @Doc and OPENMATH use an XML representation for mathe-
matical objects, a first step for using KQML in MATHWESB is to supply an
XML encoding of KQML. We have set up an XML document type definition
for KQML (see http://www.mathweb.org/omdoc/dtd/kqml.dtd) based on
the 1997 KQML proposal by Finin and Labrou [25]. Finally, MATHWEB-
SB supports the commonly-used presentation-layer (see Figure 1) trans-
port protocols xml-rpc, http:get/put, and sockets that can be used for
kgml-xml message passing.

6 Conclusion

We have laid down the first ideas for implementing a communication pro-
tocol for reasoning services using KQML and OMRS. The former provides
the high-level performative- and message-layers, while the latter gives the
specification infrastructure for determining (and for the agents to reason
about) the meaning of interactions of reasoning services. Together with
@Doc [23] as a content language, this gives a suitable basis for communi-
cation of mathematical services in MATHWEB [26].

The motivation for this paper and the general approach taken comes
from our experience with the MATHWEB-SB [14] and the LoGic BROKER
ARCHITECTURE [5] systems, and the perceived need for a standardized
interaction layer. Both systems have a largely ad-hoc set of interaction
primitives, following the needs of the growing systems. Conceptually it is
clear, that all of these primitives can be mapped into KQMmL, if we provide
specification schemata for the internal states of reasoning systems, which
we have started in this paper. The next step will be to implement the
communication by kqml-xml. We have already implemented a kqml-xml
interface for MATHWEB. So it only remains to develop a kqml-xml-aware
broker service and a KQML-xml/CORBA bridge.

For other MATHWEB services, such as mathematical knowledge bases
(e.g. the MBASE system [21]) or symbolic computation systems, a corre-
sponding ontology must still be developed, in order to access them via
KqQMmL. For the former, the problem will be relatively simple as the KQML
views agents a virtual knowledge bases anyway, for the latter, a suitable
variant of OMRS has been presented in [17].

14

References

1]

[10]

Alessandro Armando, Alessandro Coglio, Fausto Giunchiglia, and Sil-
vio Ranise. The Control Layer in Open Mechanized Reasoning Sys-
tems: Annotations and Tactics. To appear in [20], 2000.

Alessandro Armando and Silvio Ranise. Constraint Contextual
Rewriting. In R. Caferra and G. Salzer, editors, Proc. of the 2nd Intl.
Workshop on First Order Theorem Proving (FTP’98), pages 6575,
1998.

Alessandro Armando and Silvio Ranise. From Integrated Reasoning
Specialists to ”Plug-and-Play” Reasoning Components. In Calmet and
Plaza [7], pages 42-54.

Alessandro Armando and Silvio Ranise. Termination of Constraint
Contextual Rewriting. In H. Kirchner and Ch. Ringeissen, editors,
Proceedings of the 3rd International Workshop on Frontiers of Com-
bining Systems, FroCoS’2000, pages 47 61. Springer LNAT 1794, 2000.

Alessandro Armando and Daniele Zini. Towards Interoperable Mecha-
nized Reasoning Systems: the Logic Broker Architecture. In A. Poggi,
editor, to appear on the Proceedings of the AI*IA-TABOO Joint Work-
shop ‘From Objects to Agents: Evolutionary Trends of Software Sys-
tems’, Parma, Italy, May 29 30, 2000. (See also the article in this
volume)

P. G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification
and Integration of Theorem Provers and Computer Algebra Systems.
In Calmet and Plaza [7], pages 94 106.

Jaques Calmet and Jan Plaza, editors. Proceedings of the Interna-
tional Conference on Artificial Intelligence and Symbolic Computation
(AISC-98), Springer LNAT 1476, 1998.

Olga Caprotti and Arjeh M. Cohen. Draft of the Open Math stan-
dard. The Open Math Society, http://www.nag.co.uk/projects/
OpenMath/omstd/, 1998.

The Object Management Group. The Common Object Request Broker
Architecture. http://www.corba.org/.

Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton,
Konrad Slind, Graham Robinson, Mike Gordon, and Tom Melham.

[13]

[18]

[19]

15

The Prosper Toolkit. In Proceedings of the Sizth International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS-2000, Springer LNCS, 2000.

N. Dershowitz and J.P. Jouannaud. Rewriting systems. In Handbook
of Theoretical Computer Science, pages 243 320. Elsevier Publishers,
Amsterdam, 1990.

T. Finin and R. Fritzson. KQML — a Language and Protocol for
Knowledge and Information Exchange. In Proceedings of the 13th
Intl. Distributed Artificial Intelligence Workshop, pages 127-136, Seat-
tle, WA, USA, 1994.

Andreas Franke, Stephan M. Hess, Christoph G. Jung, Michael
Kohlhase, and Volker Sorge. Agent-Oriented Integration of Distributed

Mathematical Services. Journal of Universal Computer Science, 5:156
187, 1999.

Andreas Franke and Michael Kohlhase. System Description: MATH-
WEB, an Agent-Based Communication Layer for Distributed Auto-
mated Theorem Proving. In Harald Ganzinger, editor, Proceedings of
the 16th Conference on Automated Deduction, pages 217 221. Springer
LNAT 1632, 1999.

D. Fuchs and J. Denzinger. Knowledge-Based Cooperation between
Theorem Provers by Techs. Seki Report SR-97-11, Fachbereich Infor-
matik, Universitdt Kaiserslautern, 1997.

F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning Theories: To-
wards an Architecture for Open Mechanized Reasoning Systems. Tech-
nical Report 9409-15, IRST, Trento, Italy, 1994.

K. Homann. Symbolisches Lisen mathematischer Probleme durch Ko-
operation algorithmischer und logischer Systeme. PhD thesis, Unver-
sitdt Karlsruhe, 1996. DISKI 152, Infix; St. Augustin.

N. R. Jennings and M. Wooldridge. Handbook of Agent Technol-
ogy, chapter Agent-Oriented Software Engineering. AAAT/MIT Press,
2000.

Nicholas R. Jennings and Michael J. Wooldridge, editors. Agent Tech-
nology : Foundations, Applications, and Markets. Springer, 1998.

16

[20]

[21]

[22]

[23]

[24]

[25]

T. Jebelean and Alessandro Armando, eds. J. Symbolic Computation.
Special Issue on Integrated Symbolic Computation and Automated
Deduction, 2000.

M. Kohlhase and A. Franke. Mbase: Representing Knowledge and
Context for the Integration of Mathematical Software Systems. to
appear in [20], 2000.

Michael Kohlhase. @Doc: Towards an Internet Standard for the Ad-
ministration, Distribution and Teaching of Mathematical Knowledge.
In Proceedings of AI and Symbolic Computation, AISC-2000, Springer
LNAI, 2000. in press.

Michael Kohlhase. OMDoc: Towards an OPENMATH Representation
of Mathematical Documents. Seki Report SR-00-02, FB Informatik,
Universitdt des Saarlandes, 2000. http://www.mathweb.org/omdoc.

Y. Labrou and T. Finin. A Semantics Approach for KQML A Gen-
eral Purpose Communication Language for Software Agents. In Third
International Conference on Information and Knowledge Management
(CIKM’94), November 1994.

Yannis Labrou and Tim Finin. A Proposal for a New KQML Specifi-
cation. Tech Report TR CS-97-03, University of Maryland, Baltimore
County, 1997.

The MathWeb group. MathWeb.org: Supporting Mathematics on the
Web. http://www.mozart-oz.org/.

The Oz group. The MOZART Programming System.
http://www.mozart-oz.org/.

M. Dewar ed. Special Issue on OPENMATH Bulletin of the ACM Spe-
cial Interest Group on Symbolic and Algebraic Mathematic (SIGSAM)
2000, in press.

C. Talcott. Reasoning Specialists Should Be Logical Services, Not
Black Boxes. In Workshop on Theory Reasoning in Automated Deduc-
tion (CADE12), pages 1 6, 1994.

