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Abstract. MathWebSearch is an open-source, open-format, content-
oriented search engine for mathematical formulae. It is a complete system
capable of crawling, indexing, and querying expressions based on their
functional structure (operator tree) rather than their presentation.
In version 0.5, we concentrate on scalability issues in MathWebSearch
to take advantage of corpora in the giga-formula range. We re-implemented
the index to make it distributable and made all the APIs web standards
conformant. Our experiments show that this architecture results in a
scalable application.

1 Introduction

As the world of information technology grows, being able to quickly search data
of interest becomes one of the most important tasks in any kind of environ-
ment, be it academic or not. Here we tackle the problem of finding information
that is given in the form of (mathematical) formulae. Standard search engines
like Google cannot deal with formulae at all, severely limiting the reach and
utilization of technical, scientific, and engineering documents.

In this paper we present new work in the context of the MathWebSearch
system; a search engine that addresses the problem of searching mathematical
formulae from a semantic point of view, it finds formulae by their structure and
meaning not via their presentation.

In [KŞ06] we have presented the motivation, query language, and web front
end of MathWebSearch 0.1. In [KK07] we have re-examined the value propo-
sition of semantic search for mathematical knowledge homing in on the ben-
efits and sacrifices induced by the various search approaches [You06b; MM06;
LM06], from a user’s perspective. The result of this analysis is MathWeb-
Search 0.5, which we describe in this paper. The new version features significant
efficiency gains (space efficiency increased by a factor of five), new management
features, advanced searching capabilities, and a new user interface. The Math-
WebSearch system (see [MWS] for details) is released under the Gnu General
Public License.

The motivation for the work reported in this paper is the availability of
large1 corpora, such as the arXMLiv corpus [SK08] with almost three quar-
ters of a million scientific articles and an estimated giga-formula. This has not

1 We deem a corpus as large if it has more than 20 million expressions
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only re-kindled interest in formula search2, but also severely taxes the scala-
bility of systems. Scalability issues for presentation-based search engines have
been addressed in [SL11]. Such engines map formulae to “special words” which
can then be indexed by conventional bag-of-word information retrieval engines,
which have become extremely scalable over the last years. The case for Math-
WebSearch is completely different, since the content-based unification queries
it offers require an index data structure that reflects the inner structure of for-
mulae (rather than just pointers to words). Even with the space efficiency gains
in MathWebSearch 0.5, the indices will surpass the main memory of most
machines. Therefore, we have laid the foundations for distributing the Math-
WebSearch in this version.

Before we present MathWebSearch 0.5 from a technical perspective in
Section 3, we will recap unification-based querying. We evaluate the system on a
large corpus in Section 4 and see that we need to distribute MathWebSearch
to cope with linear RAM usage. Section 5 presents the necessary extensions of
the indexing. Section 6 concludes the paper and discusses future work.

2 Querying Mathematics by Unification

Retrieval of mathematical knowledge and information via unification-based queries
for content-encoded mathematical formulae is very natural. In [KŞ06] we have
already discussed instantiation queries, which can be used to retrieve par-
tially remembered formulae, e.g. the query for the formula for energy of a given
signal s(t) in Figure 1. Note that instantiation queries are more expressive as
a query language than e.g. regular expressions supported by some text-based
search engine, since we can use variable co-occurrences to query for co-occurring
subterms.

Query (query variables marked as named boxes) Result (Parseval’s Theorem)∫ max

min
f (x)2dx

1

T

∫ T

0

s2(t)dt =

∞∑
k=−∞

‖ck‖2

Fig. 1. An Instantiation Query

To see the full power of unification-based querying consider a student who
encounters

∫
R2 | sin(t) cos(t)|dt and wishes to know if there are any mathemati-

cal statements (like theorems, identities, inequalities) that can be applied to it.
Indeed, there are many such statements (for example Hölder’s inequality) and
they can be found using generalization queries. The idea behind answering
generalization queries is that the index marks universal3 variables in subterms
as generalization targets. Hence, the search engine looks for terms in the index

2 The next NTCIR-10 Challenge in spring 2013 will have a “math track”. NTCIR
evaluates information access technologies in a series of competition events in Japan

3 We consider an identifier as universal if it can be instantiated without changing the
truth value of the containing expression. In formal representations like first-order
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which, after instantiating the universal identifiers, become equal to the query. For
our example, we have in the index the term (we reuse the box notation for gen-
eralization targets in the index) in Figure 2, which the search engine instantiates

x 7→ t, f 7→ sin, g 7→ cos, D 7→ R2 in order to find the generalization query.

Note that the variant query
∫
R2 | sin(t) cos(2t)|dt will not find Hölder’s inequality

since that would introduce inconsistent substitutions x 7→ t and x 7→ 2t.

∫
D

∣∣∣ f (x ) g (x )
∣∣∣ d x ≤ (∫

D

∣∣∣ f (x )
∣∣∣p d x

) 1

p

(∫
D

∣∣∣ g (x )
∣∣∣ q d x

) 1

q

Fig. 2. A Formula with Universal Variables in the Index

A very similar idea is used in variation queries where the indexed terms
are searched to match the search expression but only renamings of generic terms
are allowed. This type of queries prove to be helpful when the structure of the
term needs to be maintained.

Sometimes, however, one is in the position that the searching criteria is
somewhere between instantiation queries (i.e. parts are unknown) and gener-
alization queries (parts are probably instantiated already). In this case we give
the possibility to pose unification queries. As the name suggests, the query
just finds terms which are unifiable with the search expression. A query like

g2 cos(x ) + b sin(
√
y) would match the term a cos( t ) + b sin( t ) as we can sub-

stitute x 7→ √y, t 7→ √y, a 7→ g2, b 7→ b to get the term g2 cos(
√
y)+b sin(

√
y).

3 The MathWebSearch System, Version 0.5

The MathWebSearch system consists of the three main components pictured
in Figure 3. The crawler subsystem collects data from the corpora4. It transforms
the mathematical formulae in the corpus into MWS Harvests (XML files that
contain formula-URIreference pairs) and feeds them into the core system. The
core system (the MathWebSearch daemon mwsd) builds the search index and
processes search queries: it accepts the MathWebSearch input formats (MWS
Harvest and MWS Query ; see [KP]) and generates the MathWebSearch out-
put format (MWS Answer Set). These are communicated through the RESTful
interface restd which provides a public HTTP API conforming to the REST
paradigm.

logic, such variable occurrences can be effectively computed, but in semi-formal
settings like mathematical textbooks, they have to be approximated by heuristic
methods; see the discussion in the conclusion for details.

4 Note that we envision essentially one crawler per corpus. The crawlers are specialized
to the respective formula representation, the organization and access methods to the
corpus, etc. We have only implemented a crawler for the arXiv (see Section 4), but
additional crawlers can be patterned after this (see Section 6.1).
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Fig. 3. MWS-0.5 System Structure

These components have been implemented using POSIX-compliant [Pos]
C++. We use the MicroHTTPd library [Mic] API for handling HTTP, and
LibXML2 [Vei] API for XML parsing. The meta-data accompanying the internal
index is stored using an external database system. As we are dealing mainly with
key-value retrieval, the BerkeleyDB [Ber] API was preferred.

The system supports two main workflows:
1. The crawler sends an MWS Harvest to mwsd. The XML is parsed and an

internal representation is generated. This is used to update the Substitution
Indexing Tree and consequently the database.

2. The user sends an MWS Query to mwsd. The XML is parsed, an internal
query is generated. Using an efficient traversal of the index tree, formulas
matching the search term are retrieved and aggregated into a result. This is
translated to an MWS Answer Set and sent back to the user.

3.1 Substitution Tree Indexing in MathWebSearch

As we are interested in indexing mathematical formulae at a large scale (docu-
ment archives, text corpora), repetitive content is expected. After all, theorems
are built on top of other theorems and terms on top of subterms. With this in
mind, we chose a space-efficient internal representation based on substitutions.

@0

@1(@2)

f(@2)

b

f(a) f(b)

@1(@2) b

f

a b

Fig. 4. Example DFS
Substitution Tree

In the previous version of MathWebSearch, we
used a technique borrowed from Automated Theorem
Proving called Substitution Indexing [Gra96]. It in-
volves indexing expressions in a tree based on gener-
ality. The root is a generic variable and, as we go from
a node to one of its children, one or more substitutions
occur. For this version, we kept the substitution tree
model and performed a few changes to better fit our
design goals.

As such, we improved query times, by impos-
ing a fixed substitution ordering. Hence, the query
term describes a deterministic path through the in-
dex. The chosen ordering instantiates the left-most
variable first, equivalent to DFS traversal of the operator tree. An example in-
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dex, containing the terms f(a), f(b) and b, is presented in Figure 4. Note that
the edges in the tree are labeled with the operators and operations: @1(@2)
stands for the application operation.

Additionally, we save space by performing two steps of pre-processing for
inserted terms, as well as query terms.

Firstly, we detect and reduce identical subterms. This is done by breaking
the term into all possible subterms and detect equivalent subterms. Following
this, the term is rewritten using only unique subterms (repeated matches are
replaced through references to the first match in DFS order). For example the
term f(a, g(b), g(b)) can be rewritten to f(a, g(b),@[4]), where @[4] represents
the 4th term in DFS order: the subterms in DFS order are: f(a, g(b),@[4]), f , a,
g(b), g, b.

Furthermore, query terms with repeating identical query variables are re-
duced and handled as query terms with no repeating query variables. More
importantly, this makes the search process stateless, as no previously matched
query variable instantiations need to be stored.

Secondly, we hold an internal dictionary which maps symbols (in Content-
MathML, represented by element name, attributes and text content) to integer
IDs. The encoding relies on the fact that there are relatively few distinct tokens
(compared to the number of expressions, for example). This achieves significant
memory savings at a small price, since each (inserted or query) term is encoded
exactly once.

3.2 Search Front ends and Embeddings

For practical applications, mwsd serves as a search back-end that needs to be em-
bedded into a front-end system, which hides some of the complexities of writing
MathWebSearch queries from the user. One example of a front-end system
we are experimenting with is given in Figure 55 Here the user can enter queries
in the LATEX extended with the \qvar macro for query variables. This is then
transformed into the content-MathML-based MathWebSearch queries by the
LATEXML daemon [GSK11] (the formula is also presented to the user with the
query variables colored red). Upon receiving the resulting URIs, the frontend
assembles a list of formulae and paper titles which link to the original paper.
In this situation we are making use of the fact that TEX/LATEX is a lingua
franca for technical communication in the Mathematics community. For other
communities, leveraging the MS Office equation editors might be an attractive
option. For active document settings (e.g. in semantic publishing systems like
Planetary [Koh+11]), formulae might be instrumented with a “search similar for-
mulae” interaction. The same holds for integrated semantic development system
such as Mathematica.

5 The demo is temporarily available at http://arxivdemo.mathweb.org/index.php?

p=/article/MWS; we will provide a more permanent location for the final version of
the paper.
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Fig. 5. MWS-0.5 arXivDemo Search Interface

4 Evaluation

We evaluate the MathWebSearch implementation on a large corpus of math-
ematical formulae:

The arXMLiv Corpus Our group is working on the translation of the almost
750.000 TEX/LATEX articles on Physics, Mathematics, and Computer Science in
the Cornell ePrint archive (see http://www.arXiv.org) to MathML [SK08].
The arXMLiv corpus is the result of translating ∼72% of the arXiv papers.
For our evaluation we have harvested ca 65% (the fragment that have been con-
verted without errors), resulting in a total of 115 million expressions. A trivial
estimation suggests that the full arXMLiv corpus would contain approx. 245 mil-
lion formulae. To harvest these, the arXMLiv crawler goes recursively through
the pages of [arXMLiv] extracting the content MathML6 elements, combines
them with URI references, and reports them to MathWebSearch. We will
now report on a performance analysis for MathWebSearch parametrized on
harvest size (see Figure 6). As our index also indexes subformulae, we include
them in the harvest size. Note that in the arXMLiv corpus a formula has 5.6
proper subformulae on average7 so we estimate the number of indexable formula
occurrences in the arXiv corpus to be 6.6 × 245 × 108 or 1.6 billion. Note that

6 The result of the transformation contains both Content and Presentation MathML
representations in parallel markup.

7 This rather low number comes from the fact that roughly 2/3 of the formulae in
the arXMLiv corpus consist of only one letter; these are largely irrelevant for search
purposes.
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many of these formulae will actually be identical, leading to space savings in the
index: recall that the URIs of the subformula occurrences are stored in a data
base indexed by the leaves of the index (see Figure 3). Thus the index grows
with the formula, whereas the database grows with the formula occurrences.

(a) Query Times

(b) Memory Usage

Fig. 6. Experimental Performance Analysis

Average query times We’ll start with the time efficiency aspect, as this is highly
relevant for a search system. The average query times 8 are presented in Fig-
ure 6(a). This experiment involves measuring several query response times. A
standard query has answsize = 30 and limitmin < 9000. Response times are mea-
sured for standard queries (fresh and cached) from 0 up to 5 qvars. Additionally,
stress queries with answsize = 10000 are used.

As one can see, the query response times are fairly constant as the harvest
data increases. This fits with the theory, as the querying process will follow
the same paths in the index (because the query data remains constant). The

8 Note that the queries were sent from the local network, to eliminate any channel
delays
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small increase is due to the slightly higher density of the index tree (which
affects retrieval of the right path). The gap between the fresh and cached stress
queries is expected, due to the fact that the current bottleneck is retrieving the
meta-data from the external database. Hence, caching significantly improves the
results. In comparison to MathWebSearch 0.1 [KŞ06], which reported query
times below 50 ms for simple queries and 200 ms for stress queries on a harvest
size of 1.6 million, we see that the query times have not increased (even after
normalization for hardware effects).

Memory usage The graph in Figure 6(b) presents the memory footprint of the
mwsd process, as the system indexed 11.5 million expressions (67 million includ-
ing subterms) harvested from the arXMLiv corpus. In comparison to Math-
WebSearch 0.1, which reported a memory footprint of 770 MB for a harvest
size of 1.6 million, we see a space efficiency improvement by a factor of five. Con-
trary to our expectations of logarithmic increase, we see a fairly linear graph;
the fact that the gradient became steeper after ∼33 million expressions is par-
ticularly unexpected. We are still investigating this.

Nevertheless, the experimental results are valuable to estimate the memory
necessary to index the entire arXiv corpus. Assuming linear scaling across the
245 million formulae estimated for the arXiv, the memory necessary to index all
the formulae would be 245 × 8/11.5 ≈ 170Gb according to our experiment. As
this transcends the RAM of most machines, we have extended mwsd so that it
can be distributed: a reasonable size computer cluster could easily accommodate
the entire arXMLiv corpus and thus provide content-based formula search for
arXiv.org.

5 Distributing MathWebSearch

We are currently implementing a distributed version of MathWebSearch. The
core components, like the RESTful interface, the data formats, and the indexing
data structures, remain the main building blocks. We complement them with a
distributable version of our storage data structure, data persistency, migration
and load balancing. Next, we will present some of the design decisions.

5.1 A Distributable Substitution Tree

As presented in Section 3, the main indexing data structure is a DFS substitution
tree. To represent the tree in a manner that supports cross-machine links, we
use three types of index nodes:

Internal Index Nodes are used to navigate through most parts of the tree.
Their data stores mappings from token ID to the corresponding index node.

Leaf Index Nodes represent the end of a particular formula and its corre-
sponding ID in the URL+URI database.

8
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Remote Index Nodes represent cross-sector links. Their data consists of a
pair of memory sector ID and node ID, which uniquely determine the corre-
sponding index node.

As harvests are fed into the system, the index is built. Instead of building
it on the heap (with no control over individual node’s memory locations), the
system places index nodes inside specific memory sectors.

Memory sectors are basically the smallest units of replication, migration,
and load balancing. Each consist of a forest of index node trees packed into a
continuous area of memory of fixed size9. Also, for each memory sector, we have
an attached local database corresponding to the leaf index node results. As the
index grows, individual sectors get filled with these trees. When a sector reaches
a given threshold, two new sectors are created and the contents of the original
sector get split between the new ones.

Memory Sector 1 [9/12]

@0

@1(@2)

f(@2)

b

f(a)

@1(@2) b

a

f

(a) Initial Index Tree

Memory Sector 2 [10/12]

@0

@1(@2)

f(@2) g(@2)

b

f(a)

@1(@2) b

a

f g

Memory Sector 3 [7/12]

g(@2)

g(@3(@4))

g(f(@4))

g(f(x))

@3(@4)

f

x

(b) Distributed Index Tree

Fig. 7. Tree Distribution across Memory Sectors

In Figure 7, we present an example of term insertion which causes a tree
split. Consider the initial tree containing the expressions f(a) and b and memory
sectors of size 12 units, as depicted in Figure 7(a). We consider a memory model
where each link and each node costs 1 unit. Let’s insert g(f(x)). As the resulting
tree would overflow the current memory sector, a new one is created and parts
of the tree are migrated to this new sector (See Figure 7(b)). To split the tree,
the system performs a DFS traversal. As it traverses, the algorithm monitors
two factors:

– the size of the already explored part of the tree (equivalent to the proportion
of the split)

– the DFS fringe (each internal index node in here will generate remote index
nodes).

We want to minimize the number of remote index nodes, while making the best
balancing effort. In the current version, we choose the split which separates the

9 The exact size depends on the RAM sizes of the nodes where the system will run,
typical values ranging between 256Mb and 2048Mb.
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trees with at most 40-60 bias, while minimizing the number of generated remote
index nodes.

By representing the sectors as memory mapped files, persistency is achieved,
since the contents of a sector can be easily dumped to, and loaded from secondary
storage. Additionally, migration becomes trivial, since the persistent copy can
be sent across the network, and re-mapped into another system’s memory (of
course, we assume endian-compatible machines).

Last but not least, by clustering the big index into continuous memory sec-
tors, we can further reduce its size. By restricting sector sizes to 2 Gb, we can
use 32bit relative pointers and further reduce the overall memory footprint of
the tree. We have not been able to conduct large tests yet, however, since with
64bit pointers we could not determine any significant differences in memory con-
sumption between the centralized and decentralized implementations, with the
32bit ones, we expect a memory reduction on the order of 40%.

5.2 Architectural Overview

RESTful Interface

Admin Client

Expression Encoder Slave 1

Slave 2

Slave k

...

Master

Fig. 8. Distributed Architecture - Communication Flow

Figure 8 portrays the major system components, as well as the communi-
cation flow around the cluster. There are a couple of central components listed
on the figure, as well as some internal ones which are not, all of which to be
explained in this section.

There are two main entry points for the application. The first one is the
RESTful Interface, which like its centralized counterpart, is tasked with waiting
on incoming requests (in the form of HTTP POSTs), reading and forwarding
them. Moreover, it will also be in charge of replying to the connected client
with the response to his request, once it is resolved. The Expression Encoder is
an intermediary component that encodes the received input data (from REST
requests) into the respective internal format (for either updates or queries) that is
to be used throughout. This encoding is algorithmically similar to the centralized
version, (see section 3.1), yet adapted for distributed communication. The second
entry point in the application is through admin clients. These are entities that
can be used to connect to the cluster and issue live commands as well as monitor
state.
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Since our architecture follows a Master-Slave communication model, the main
coordination in the cluster is done by the Master Node. Its responsibility is to
direct external requests, from either the RESTful interface or from admin clients,
to the respective slave nodes that should handle them. Furthermore, it is also
tasked with internally coordinating communication and work among the various
slave nodes. As such, on cluster start-up, the master comes online, prepares
the internal book-keeping (including the connection to the REST daemon) and
proceeds to listen for incoming connections. These can be either slaves connecting
to it to join the cluster setup, or admin clients. It is important to note that, the
master will only handle overview tasks – above the actual memory sector level,
so it will not impose a bottleneck.

Slaves, on the other hand, are in charge of serving, updating and querying
across memory sectors. Each Slave is in charge of a partition of the memory
sectors, on which it performs actions upon receiving messages. These can be data
messages (update or query) or admin messages (like dropping or loading specific
memory sectors). While updates and queries can originate from any node, admin
messages are always sent from the master node. Upon coming online, slaves need
runtime information to locate the master and connect to it. After establishing
connection, the master issues them a unique machine ID that will represent them
throughout the session, along with some extra information to help coordinate
further communication.

For this, the master maintain the following internal metadata-structures:

Slave Map represents the mapping between assigned Slave Machine IDs to
their addresses. This is used by slaves to directly connect to each other.

Memory Sector Distribution Map represents the mapping between assigned
Memory Sector IDs to the slave machine IDs of the servants. This is used
to resolve requests that need to go to a specific memory sector directly into
a message to a machine.

Expression Root Map represents the mapping between an encoded expres-
sion token ID to the memory sector id of its container10. This is used by
the master to resolve a request on a given expression directly to a memory
sector that it will be found on.

Split Tree Record represents the history of splits for all the memory sectors
in the system, as well as data about the designated remote index node IDs. It
maps each remote index node ID to the corresponding memory sector. This is
used by the slave nodes to resolve remote index node jumps to the subsequent
memory sectors. Also, this is lively updated throughout the cluster in case
of memory sector splits.

Some of this metadata is also copied to the slaves: The Slave Map and Mem-
ory Sector Distribution Map are fully replicated, as slaves need to resolve requests
pertaining to memory sectors that they might not be responsible for. Further-
more, the part of the Split Tree Record that related to the memory sectors a
slave is responsible for is also replicated on each respective slave, for the same

10 The memory sector forest contains trees starting from these expression roots
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resolution reasons. The Expression Root Map is only used by the master to di-
rect encoded requests (and it is modified on every update going towards memory
sectors).

Another important observation is that, once a master-slave connection is
established, this enables a two way communication protocol. Through this, the
master is allowed to send messages to the slave at any given time (such as query
or update requests or status notices), while the slave is responsible to periodically
check-in with the master (currently, every 60 seconds) via heartbeats. For each of
these heart-beats, the master will lazily11 ask the slave to update their internal
mappings, should it be necessary. If a slave fails to respond within the allotted
time, it will be assumed dead by the master and thus it and all mapping entries
that would lead to it or its memory sectors will be invalidated.

Distributed Updates In the current setup, the only way to load the main in-
dex of the system is via admin commands. Through this, the master takes in
an MWS harvest file and proceeds to read and parse the expressions. For each
one, the Expression Encoder is used to transform it into internal representation.
Afterwards, if the Expression Root already exists in some memory sector, the
prepared insertable item is forwarded to the respective machine that is responsi-
ble for it, by performing a lookup on the Expression Root Map and subsequently
on the Memory Sector Distribution Map. If the Expression Root did not exist,
than it will be assigned to a memory sector in a Round Robin fashion and then
the request will be forwarded. Finally, once the request reaches the respective
memory sector, a DFS of the tree starting at the Expression Root will end in
two possible ways. Either a leaf index node is reached and a database insertion
will be triggered, or a remote index node will be discovered, case in which, after
mapping resolution, the remaining request will be forwarded to the respective
machine and the algorithm recurses there.

Distributed Querying As for queries, upon receiving a request Q, the RESTful
interface assigns it an unique ID and passes it on to the Expression Encoder
and then onto the master. From here, the same resolution used for insertion is
employed to find the slave which serves the memory sector containing the root
of the query expression. Here, the query is first searched in the slave cache. In
case of a hit, the response is sent back to the RESTful interface, which uses the
assigned ID to reply to the client. If the query misses the cache, the slave node
initiates and coordinates the internal searching process. The expression look up
starts within the memory sector. Whenever a remote index node is reached,
the query is forwarded to the respective memory sector. However, when a leaf
index node is reached, the respective solutions are fetched from the database,
forwarded to the coordinating slave node and cached there. An individual search
process is stopped either when there are no more pending remote queries, or when

11 The lazy updates allow us to not worry about invalid connections or two-way com-
munication requests; if messages need to be routed to machines that do not have an
address cached, the requests are just dropped.
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a set limit of results is reached. To increase performance, remote requests are
handled asynchronously, results are sent directly to the coordinator (the slave
which initiated it) and queries are processed in bulks12.

6 Conclusion and Future Work

We have presented a scalable extension of a search engine for mathematical for-
mulae. In contrast to other approaches, MathWebSearch uses the full content
structure of formulae and is easily extensible to other content-oriented formats.
Our first evaluation shows that query times are low and essentially constant
in index/harvest size, so that a search engine can scale up to web proportions.
Contrary to our expectations, index size is linear in harvest size for the arXiv
corpus, which transcends the main memory limits of standard servers. There-
fore, developing parallelization/distribution strategies is a priority. This paper
reports the establishment of the core distribution algorithms and functionality
and shows viability of the approach in principle. Exploring the distribution, man-
agement, and load balancing of a distributed cluster of search nodes is beyond
the scope of this paper.

Even though based on standard practices from distributed systems, the sys-
tem architecture presented here is tailored to the case of distributed substitution
indexes and unification-based queries. Standard database distribution techniques
do not seem to be applicable, since there indexes essentially contain metadata
about locating or accessing data efficiently (and are thus orders of magnitude
smaller than the data itself), whereas the substitution tree index is basically an
organization of the data (formulae) itself optimized for sharing. Generic database
features, such as ACID properties, which might benefit from database distribu-
tion techniques are not currently in the scope of this system.

We conclude the paper with a tabulation of open research areas for informa-
tion retrieval in mathematical/technical documents.

6.1 Additional Corpora

The arXiv corpus we are currently using for benchmarking is paradigmatic for
the “informal but rigorous mathematics” that dominates mathematical com-
munication today. Here, the Content MathML has to be heuristically recon-
structed from the presentation in the sources. This is unnecessary for corpora
of formalized mathematics, e.g. the Mizar Mathematical Library [MizLib] with
over 50 000 formal theorems. The problems of obtaining the content MathML
are different here: Even though the representations are formal in principle, the
surface languages are human-oriented, and fully explicit representations need
reconstruction processes (e.g. for reconstructing elided types and arguments,
resolution of operator overloading, etc.). We are currently working on Content

12 Although the client only requests 30 items, up to 1000 may be retrieved internally
and placed into the cache.
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MathML exporters for the Mizar Library and the TPTP (Thousands of Prob-
lems for Theorem Proving) library [SS]. Other future targets could be the input
files of mathematical software systems e.g. computer algebra systems like Math-
ematica, numerical computation systems like MatLab, or statistics programs like
the R system [Tee11].

6.2 Extending the Indexing

A current weakness of the system is the fact that it can only search for formu-
lae that match the query terms up to α-equivalence. Many applications would
for instance benefit from stronger equalities. Our search in the running exam-
ple might be used to find a useful identity for

∫∞
0
f(x) · g(x)dx, if we know that

s(x)·s(x) = s2(x). MathWebSearch can be extended to an E-Retrieval engine
(i.e., search modulo an equational theory E or logical equivalence) without com-
promising efficiency by simply E-normalizing index and query terms (see [NK07]
for a first implementation).

In the long run, we plan to extend MathWebSearch, so that it can take
more document context information into account, i.e., not just keywords from
the text around the formulae but e.g. the topology of theories in the OMDoc
format: It would be very useful, if we could restrict searches to formulae that
are consistent with current (mathematical) assumptions.

6.3 Result Ranking

Advances in ranking have made word-based search engines scalable from a user
point of view. For formula search engines ranking is an open research question,
there is only one paper that covers this in a more presentation-search oriented
setting [You06a]. To solve the problem, we have to consider the following aspects:
1. What is a good measure for relevance in theory (pagerank only applies to
pages)? 2. How can be compute this efficiently. 3. Can we organize the index,
so that it finds the most relevant hits (as estimated by this measure) first? 4. Is
a single measure enough? We plan to look at the following simple measures as
starting points: 1. pagerank by citations over the papers 2. the size (whatever
that means) of the substitutions (small might be beautiful) 3. similarly, the size
of the formulae 4. popularity of the papers (by download) Finally, we would like
to allow specification of content queries using more widely known formats, like
LATEX: strings like \frac{1}{x^2} or 1/x^2 could be processed as well. This
can be reached by applying an extension (by query variables) of the LATEX to
XML transformation used on the arXiv to process queries. The new LATEXML
daemon [GSK11] allows integrating this efficiently.

6.4 Advanced Search Services

Another important application of the unification search in MathWebSearch
is applicable theorem search (like our example with Hölder’s inequality in Sec-
tion 2). The MathWebSearch system already supports the necessary queries
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(unification), but the arXiv corpus we are currently using does not have the nec-
essary degree of formalization (explicitly marked up universal quantifications).
We plan to utilize (possibly shallow) linguistic technologies to reliably analyze
phrases like “Let f and g be functions from R to R. . . ” that mark the identifiers
f and g as universal and to retrieve the associated sortal restrictions. Note that
the linguistic capabilities of the variable spotter have to be considerable to de-
tect the difference between “. . . where c is a natural number” and “. . . where x
is the number between 1 and n, such that. . . ” (only is c universal) or to detect
that universals in a negative scope are indeed existential.
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