
Theories as inductive types

Colin Rothgang

Supervised by

Prof. Dr. Alan T. Huckleberry

Dr. Florian Rabe

A thesis submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Science

(Mathematics)

at
Jacobs University Bremen

January 15, 2020

Theories as inductive types

Colin Rothgang

January 15, 2020

Abstract

Inductive types are a prime example in which formal and informal mathemat-
ics differ. In informal mathematics induction (like other basic language features)
is a pragmatic feature, i.e. while every inductive argument is rigorous, the induc-
tion principle itself is kept pragmatic. In formal mathematics the induction principle
must be formally defined, creating a tension between informal and formal mathemat-
ics. This makes informal mathematics a lot more general than formal mathematics
and begs the question how general (formal) inductive types can be.

In order to formalize induction in maximal generality, we consider an extremely
general structure for which inductive arguments can be carried out: the set of ex-
pressions over a given formal systems (specified by a theory). We therefore consider
a completely general theory and try to interpret it as an inductive type without
restricting to a specific foundation. We would like to allow all theories, but have to
restrict in practice because a formal induction principle is not known for all theories.
We design a foundation-independent structural feature for inductive types, which
elaborates theories as inductive types including the various induction principles. We
also define a convenience feature for definitions of functions by induction over induc-
tive types. We discuss further generalizations and limitations of these features and
show they suffice to define all primitive recursive functions. Furthermore, we design
a feature for the definition of proofs by induction. We implement these structural
features as an extension to the foundation-independent formal system Mmt and
use them to define a number of examples of inductive types and inductively-defined
functions. In particular, we define natural numbers and basic arithmetical functions,
lists, the zip function over a lists of given length and free monoids.

Contents

1 Introduction and Related Work 2

2 Preliminaries 4
2.1 Theories and theory morphisms in Mmt 4
2.2 Structural features . 5

3 Theoretical design 6
3.1 Motivating example . 6

1

Colin Rothgang

3.2 Supported inductive types . 7
3.3 Logical Framework with shallow-polymorphism (PLF) 8
3.4 Main design idea . 9
3.5 Concrete construction . 11

3.5.1 Formal definition of the inductive feature 11
3.5.2 Construction of the external declarations 12

3.6 Soundness . 15

4 Generalizations and limitations 15
4.1 Parametric inductive types . 15
4.2 Polymorphic types . 16
4.3 No-confusion axioms for dependently-typed constructors 17
4.4 Constructors with higher-order arguments 17
4.5 Dependently-typed induction . 18
4.6 Arbitrary recursion . 18
4.7 Quotients of inductive types . 19

5 Inductive definitions 19
5.1 Inductively-defined functions . 19
5.2 Primitive recursion . 20

6 Advanced features 21
6.1 Theories as inductive types . 21
6.2 Inductive Proofs . 21

7 Implementation 22

8 Conclusion and outlook 24

Appendix A Basic inductively defined types i

1 Introduction and Related Work

Motivation and related work Two major schools of thought in philosophy of math-
ematics are Platonism and Formalism. Platonism asserts that mathematical entities
exists in an abstract mathematical universe and mathematicians merely discover these
entities, whereas Formalism asserts that mathematical entities exist only as formulae in
formal languages. The Formalist approach, requires a formal definition of mathematical
entities, rather than merely describing them by their properties. This makes it less suit-
able for mathematical research. For formalization of mathematics in computer-readable
formats, however, the Formalist approach is required.

In order to minimize the difficulties expressing mathematics formally, using a strong
foundation allowing easy construction of most common mathematical structures and
definition patterns is imperative. An important example are inductive types, which are

Page 2 of 25

Colin Rothgang

used as a basic language feature in various languages, including the languages used by
the interactive-theorem provers Mizar [TB85], HOL Light [Har96] and Coq [Coq15].

At the same time, a main issue for formalized mathematics is the usage of different
languages based on strongly different foundations. For example the languages used by
Mizar, HOL Light and Coq are based on Tarski-Grothendieck set-theory, simple times
and logic, and dependent-types using propositions-as-types. it has been proposed [KR16]
to use a foundation independent language, in which other formal languages including
their foundations can be expressed. This language can then serve as an intermediate lan-
guage for translations. The foundation-independent language and system Mmt [RK13;
Rab14] (meta-meta-language or meta-meta-tool) has been developed, to allow expressing
and reasoning about other formal languages including their foundations.

Following the same idea, we design a language feature for inductive types without com-
mitting to a specific foundation. This feature interprets a theory as the type of all
well-typed terms which can be constructed by the declarations of the theory, the type
of the theory. Our investigation is based on the Mmt language and system, as Mmt
provides universally applicable theories, without committing to a particular logic.

There are three ways to define a language feature like induction in a formal language:

1. Including it as a primitive feature in the language (as done in Coq)

2. Elaborating inductive definitions into a concrete definition in the language (as done
in Isabelle/HOL)

3. Elaborating inductive definitions into an axiomatization of the defined type (as
done in PVS)

In order to stay as foundation independent as possible, we envision to use the third
method and elaborate inductive definitions into an axiomatization.

For such tasks structural features were proposed [Ian17]. The idea of structural features
is to elaborate a theory using a (structural) language feature to an elaboration, a theory
axiomatizing the theory without using the language feature. In practice this approach
has barely been used in Mmt up to this point.

Contribution In this paper, we develop a structural feature for inductive types and
to extend the implementation of Mmt to elaborate them using a minimal foundation.

The elaboration of inductive types is based on two different ideas, an abstract idea and
a construction idea:

1. We can formalize a theory as its initial model (a model of a theory is intuitively a
second theory over which all expression are defined and a morphism from the first
to the second theory).

2. We can elaborate a theory as the type of well-typed terms over the declarations of
the theory.

Page 3 of 25

Colin Rothgang

We implement this structural feature as a plugin to the Mmt system, as well as a
number of convenience features and describe how they can be used to define functions
by induction. We show that our features allows the definition of all primitive recursive
functions and discuss possible generalizations.

Overview Two concepts are fundamental for our investigation, Mmt theories and
structural features. They are introduced in sections 2. Section 3 describes the design of
the structural feature in its simplest form and proves its soundness, further generaliza-
tions and limitations of the design of the feature are discussed in section 4. In section we
describe 5 how functions can be defined by induction over inductive types and section 6
discusses advanced additional features, namely the definition of the type of a theory and
proofs by induction over inductive types. Finally, the implementation of the feature(s)
is outlined in section 7.

2 Preliminaries

2.1 Theories and theory morphisms in Mmt

One fundamental concept for Mmt are declarations and theories:

Definition 2.1 (Declaration).

A (symbol) declaration in Mmt is of the form

Dec ::= n : o[= o] symbol declaration
o ::= n | o(o∗) | o(Dec∗, o) Mmt expression

, where n is a name and the expressions o after the colon and the equality sign are the
(optional) type and the (optional) definien. For our purpose, we assume every symbol
declaration has a type, but not necessarily a definien. Besides symbol declarations we
also consider derived declarations. Derived declarations are of the form:

Dec ::= n : n o∗ = {Dec∗} Derived declarations

Definition 2.2 (Theories).

We will introduce a simplified (non-modular) definition of theories. The full version
can be found in [RK13]. A theory T is of the form

TDec ::= T Dec∗ = Dec∗ atomic theory declaration
T ::= t | t(o∗) theories

, where D1, . . . , Dq are the theory-parameters of t and Dec are declarations in Mmt.

For each theory T let dom(T) denote the set of symbols declared in the theory T and
Obj(T) the set of well-formed terms generated by the declarations in dom(T). Finally,
we need to introduce the notion of theory morphisms of a theory.

Page 4 of 25

2.2 Structural features Colin Rothgang

Definition 2.3 (Theory morphism).

Given theories A and B a theory-morphism m : A → B is of the form

MDec ::= M : T → T = {Ass∗} atomic morphism declarations
Ass ::= c := o assignment to symbol
M ::= m | idT |M ;M morphisms

such that for each symbol c ∈ dom(A) the morphism m contains exactly one assignment
c := o with o ∈ Obj(B). Furthermore, a well-typed theory-morphism m must preserve
judgement i.e.

• m preserves types: c : tp⇒ m(c) : m(tp) and

• m preserves definitions: c = def ⇒ m(c) = m(def).

A well-typed theory-morphism m : A → B induces a judgement preserving mapping
Obj(A) → Obj(B) i.e. `A o : o′ ⇒`B m(o) : m(o′) and `A o = o′ ⇒ `B m(o) = m(o′)
as shown in [Rab14]. In fact Mmt theories form a category with respect to theory
morphisms [MR19].

2.2 Structural features

Structural features can be used to extend the declaration-level syntax of a language
without having to extend the foundation of the language. Instead structural features
allow to elaborate (derived) declarations using the feature to declarations in the basic
language.

Definition 2.4 (Derived declaration).

Derived declarations are declarations build using the third production in definition 2.1.
In this paper we assume derived declarations Dd are of the form:

Dd ::= l : f F ∗ = S∗

Given a derived declaration l : f F1 F2 . . . Fn = S1 . . . Sm, we call l its name, f its
feature, Fi its arguments and Sj its internal declarations. We can regard the internal
declarations Sj to form a theory with theory parameters Fi, the body of the derived
declaration. For the purpose of this paper, we will assume that derived declarations
occur only inside theories.

Definition 2.5 (Outer Context of a derived declaration).

Given a derived declaration Dd contained in a theory T , its outer context Con(Dd)
is the union of the set of theory-parameters Di of T with the set of arguments Fj of Dd.

We will use a slightly different definition for structural features than proposed in [Ian17],
which is more practical for our purposes.

Page 5 of 25

Colin Rothgang

Definition 2.6 (Structural feature).

A structural feature is a triple (f, ε, ν), where f the the name of the feature, ε its elabora-
tion function and ν its validity predicate. The validity predicate is a predicate on the set
of derived declarations of the form l : f F1 . . . Fn = S1 . . . Sm. A derived declaration
satisfying the predicate is said to be well-formed. The elaboration function must map
any well-formed derived declaration Dd of the form l : f F1 . . . Fn = S1 . . . Sm to a list
of declarations called the external declarations of Dd. The set of external declarations of
Dd is also called its elaboration, will be denoted by E and is often regarded as a theory.

Definition 2.7 (Soundness of a structural feature).

A structural feature F is called sound if it elaborates each well-formed derived dec-
laration of feature F to a well-formed and well-typed elaboration.

In other words a structural feature is called sound if its elaboration preserves soundness.

3 Design of the structural feature for inductive types

In this section we will describe the design of a structural feature inductive := (inductive,
εinductive, νinductive) for (mutually) inductive types and illustrate it on the example of nat-
ural numbers.

Firstly, we will discuss as a motivating example how to formalize natural numbers as an
inductive type. Then, we will discuss which sorts of inductive declarations we want to
support. Based on this, we will choose and describe the (minimal) foundation necessary
to formalize inductive definitions. Finally, we will discuss how inductive definitions can
be elaborated within this framework.

3.1 Motivating example

We will use natural numbers as a motivating example. Natural numbers N can be seen
as the inductively-defined type n with two constructors z : n and s : n → n . In our
language natural numbers can then be defined as:

Example (Natural numbers).

inductive nat() =

n : type

z : n

s : n → n

We want to elaborate this into a foundation-independent axiomatization of natural num-
bers. The idea is to elaborate this inductive type into the Peano axioms of natural

Page 6 of 25

3.2 Supported inductive types Colin Rothgang

numbers. In our system they can be formalized as:

n : type

z : n

s : n → n

injective s0 : {x0 : nat, x1 : nat} x0
.
=6 x1 → s x0

.
=6 s x1

no conf s z : {x0 : nat} z .
=6 s x0

induct n : {n′ : type, z′ : n′, s′ : n′ → n′} n → n′

induct z : {n′ : type, z′ : n′, s′ : n′ → n′} z′ .
= induct/n n′ z′ s′ z

induct s : {n′ : type, z′ : n′, s′ : n′ → n′, x0 : n}

s′ induct/n n′ z′ s′ x0
.
= induct/n n′ z′ s′ (s x0)

Here the last three axioms induct ∗ formalize the principle of induction: Given a set

n′ and constructors z′ and s′ satisfying the same axioms, there is an isomorphism
(n, z, s) → (n′, z′, s′). Our declarations formalize the following equivalent universal
property: Given (n′, z′, s′) there exists a (unique) morphism (n, z, s) → (n′, z′, s′).

In general, we will specify inductively-defined types of an inductive type as internal
declarations as in above example. The elaboration will also follow the same basic idea.

3.2 Supported inductive types

We will now discuss which sorts of internal declarations we want to support with our
feature. In order to decide on which declarations to support, we will look at existing
implementations of inductive types in other formal systems like Isabelle/HOL, Coq or
PVS and discuss which sorts of declarations they support.

All implementations allow for non-mutual induction with simple-typed first-order con-
structors (i.e. constructors only allow for 0-ary arguments). Most systems allow para-
metric constructors (whose type may dependent on a type-argument) and for mutu-
ally inductively-defined types. Additionally, some systems like Coq support certain
dependently-typed constructors and provide limited support for constructors of higher-
order (e.g. with higher-order arguments only in positive positions). We would like to
allow for mutual induction and dependently-typed, polymorphicly-typed and shallow
polymorphic (a limited form of dependent-typed declarations, as explained below) inter-
nal declarations. Additionally, we will see that our design will allow for certain outgoing
declarations (term-level declarations which are not themselves constructors) and for con-
structors with a definien (their importance is discussed in section 5). An overview of
different systems and the supported internal declarations is given in below table:

Page 7 of 25

3.3 Logical Framework with shallow-polymorphism (PLF) Colin Rothgang

System Isabelle/HOL Coq PVS our feature

mutual induction yes yes no yes

parametric type parame-
ters

arbitrary arbitrary arbitrary

dependently
typed construc-
tors

no yes predicate
subtypes

yes

higher order con-
structors

no limited no limited

outgoing no no no yes

defined construc-
tors

no no no yes

3.3 Logical Framework with shallow-polymorphism (PLF)

Based on our choice of supported internal declarations, we decide to use the logical
framework (LF) extended with shallow polymorphism (PLF) as our Foundation. PLF
is strong enough to express the declarations we need, but still a rather minimal system,
supporting the goal of using this feature to represent inductive types in formal systems
using differing foundations.

LF is a logical framework based on the λ− π calculus (the typed-lambda calculus with
an dependently-typed product (quantifying over types (i.e. (typed variables) only)).
Therefore, LF supports first order dependent-function types with the proposition-as-
types principle to represent first-order minimal logic. This logic allow the logical con-
nectives ∧,∨,⇒,¬ and a primitive symbol ⊥ defined in terms of ⇒,¬ and ⊥. They
correspond to→,¬ and ⊥ in LF. There are three sorts of objects in LF: types, kinds (in
particular the universal kind type) and expressions (build from the former two).

We will additionally allow for shallow-polymorphism, i.e. declarations may use Π types
(corresponding to universal quantification) quantifying over kinded variables, however
only in the beginning of their type. More formally, shallow-polymorphic types must
be of the form {d1 : D1, d2 : D2, . . . , dr : Dr} A1 → A2 → . . .→ As → As+1 . Here the

{d1 : D1, d2 : D2, . . . , dr : Dr} denotes the Pi-type with arguments di of type Di .

We will also assume an typed equality and inequality symbol
.
= and

.
=6 , which can be

defined in this framework.

Given a declaration decl : {d1 : D1, d2 : D2, . . . , dr : Dr} A1 → A2 → . . .→ As → As+1

in PLF, we will call tp := {d1 : D1, d2 : D2, . . . , dr : Dr} A1 → A2 → . . .→ As → As+1

its type and As+1 its return type. There are two different sorts of types of a declarations:

1. A declaration is called a Type-Level declaration iff its return type is a kind

2. A declaration is called a Term-Level declaration iff its return type is a type

Page 8 of 25

3.4 Main design idea Colin Rothgang

Furthermore, a declaration of the form decl : A1 → A2 → . . .→ As → As+1 is called
simply-typed. Non simply-typed declarations are called dependently-typed. The type
of a simply-typed declaration is called a simple type, the type of a dependent-typed
declaration is called a dependent type.

3.4 Main design idea

Since we want to support mutual inductive definitions as well as shallow-polymorphic
types, it will be useful to specify the inductively-defined types as type definitions in the
internal declarations. Afterwards, the constructors of each type are listed.

Let Dind be a derived declaration l : f E1 . . . Fp = S1, . . . , Sm of the feature inductive

contained in a theory T . Let I denote its body. For now, we will assume that Dind takes
no parameters, i.e. p = 0. We will discuss the case p > 0 in section 4.1. We want to
describe how the internal declarations Si are elaborated. In our example, the declared
inductive type is nat , it takes no arguments Ei and the internal declarations are n , z
and s .

We will differentiate between Type-Level and Term-Level internal declarations. We
denote the set of Type-Level declarations of Dind by TPL(Dind) and the set of Term-
Level declarations of Dind by TML(Dind). We define the types inductively-defined by
Dind as the set of return types of the Type-Levels in TPL(Dind) and denote them by
types(Dind).

We distinguish two sorts of Term-Level internal declarations, constructors of Type-Levels
tpl ∈ TPL(Dind) defined by Dind and outgoing Term-Level declarations. Constructors
for a Type-Level tpl ∈ TPL(Dind) are Term-Levels tml whose return type is a type
defined by Dind. Let Constr(tpl) denotes the set of all constructors of a Type-Level
tpl. In case of natural numbers, the only Type-Level declaration is n , the Term-Level
declarations are z and s , both are constructors of the Type-Level declaration n .

All other internal declarations (for instance untyped declarations or declarations of a
higher-type universe than kinds), will not be accepted by inductive (i.e. the derived
declaration Dind fails the validity predicate νinductive). We will also reject internal dec-
larations containing a constructor with an argument of higher-order depending on an
inductively-defined type. This will be discussed in more detail in subsection 4.4.

We will regard each inductively-defined type tp(tpl) as the type of well-typed expres-

sions over the constructors of tpl . In particular, for each term tm of type tp(tpl)

there is a unique Term-Level tml and unique arguments x1, . . . , xs for tml s.t.

tml x1 . . . xs
.
= tm .

The basic idea for elaborating Dind is to use this property to define each of the the types
defined by Dd by formally expressing this property.

Therefore, the elaboration of the internal declarations for inductive should consist of:

Page 9 of 25

3.4 Main design idea Colin Rothgang

1. All the Type-Level declarations and their constructors. For this purpose it suffices
to copy all internal declarations into the elaboration.

2. Declarations stating that each term of an inductively-defined type tp(tpl) generated
by the constructors Constr(tpl) is generated uniquely (no-confusion declarations)

3. Declarations stating that the inductively-defined types contain no more than the
terms generated by the respective constructors (no-junk declarations)

For the no-confusion declarations, we will need to assume that the constructors are
not dependently-typed, to produce all required declarations. Nevertheless, we will try to
develop a design that works also for dependently-typed constructors as far as possible, to
ease the development of an improved feature that can also work with dependently-typed
constructors (as envisioned in section 8).

We will express these requirements as follows in the elaboration.

The copied internal declarations By copying the internal declarations into the
elaboration we ensure the elaboration is a theory morphism.

No-confusion For each constructor we need declarations stating its injectivity. Addi-
tionally, for each constructor we need declarations stating that for each other constructor
of the same return type their images are disjoint. For dependent-typed constructors these
declaration are not well-typed (as the equality requires both sides to have the same type),
so we are forced to assume the constructors are simple-typed (meaning the type has no
named arguments used in the type of the constructor).

No-junk This will be the trickiest part. The idea is to use our abstract idea already
mentioned in the section 1 to represent the no-junk requirements. We formalize it by
stating that any model E ′ of the elaboration is (up to isomorphism) the initial model II
of I, i.e. for any model E ′ of the internal declarations, there exists a (unique) morphism
II → E ′ and hence E → E ′. For each internal declaration dint in I we will denote
its image under this morphism by d′int. We can represent this requirement by includ-

ing one declaration for each internal declaration as follows: For each Type-Level tpl

of type tp(tpl) we state the existence of a function induct/tpl : tpl→ tpl′ given the

declarations S′i ∈ E ′ for each Si . Let induct denote the resulting map mapping each

inductively-defined type tp(tpl) to the corresponding type tp(tpl′) in E ′ and each term

tm of an inductively-defined-type tp(tpl) to the corresponding term induct/tpl(tm)

in E ′ and acting by identity on all other types and terms. Then, we can define the pushout
induct∗ of induct at the level of product types, mapping each component term sepa-

rately via induct . Interpreting the argument list of an internal declaration as a n-tuple

of the arguments, we can apply induct∗ to said argument list. For each constructor

Page 10 of 25

3.5 Concrete construction Colin Rothgang

tml : argsTp→ tp(tpl) of tpl we obtain the requirement for the map inducttpl to re-

spects the type and (if existent) definien of tml as shown in the commutative diagram

in figure 1 and state it in the the corresponding declaration induct/tml .

argsTp tp(tpl)

induct∗(argsTp) induct(tp(tpl))
!

= tp(tpl′)

tml

tml′

induct∗ induct

Figure 1: The no-junk requirement for a constructor tml of tp(tpl).

For an outgoing Term-Level tml the requirement is very similar, except that the return
type tp of tml is not an inductively-defined type and hence untouched by induct, so
tp = ind(tp). Thus, the diagram collapses collapses to the following diagram in figure 2:

argsTp

tpinduct∗(argsTp)

tml

tml′

induct∗

Figure 2: The no-junk requirement for an outgoing Term-Level tml.

To each declaration in the elaboration we additionally add all parameters in Con(Dind)
(similar to the design of parametric theories).

3.5 Concrete construction

3.5.1 Formal definition of the inductive feature

Definition 3.1 (The validity predicate νinductive).

A derived declaration of the feature inductive is accepted by the predicate νind iff is
it well-formed and –typed as a theory and all internal declarations are supported as
described in section 3.2 (i.e. they have shallow-polymorphic types and no arguments of
higher-order in an inductively-defined type in negative positions).

Definition 3.2 (The elaboration function εinductive).

The elaboration function εinductive elaborates a well-formed derived declarations D of
feature inductive into an elaboration consisting of exactly the following declarations:

1. A copy of each internal declarations

Page 11 of 25

3.5 Concrete construction Colin Rothgang

2. An injectivity declaration for each constructor and a no-confusion declaration for
each pair of constructors of the same inductively-defined type as defined in section
3.5.2.

3. One induct declaration for each internal declaration as defined in section 3.5.2.

Definition 3.3 (The inductive feature).

The inductive feature is a triple (inductive, εinductive, νinductive), with νinductive and εinductive as
defined in the above definitions 3.1 and 3.2.

We will now describe in detail how the external declarations are defined.

3.5.2 Construction of the external declarations

Firstly, we copy all internal declarations into the elaboration. In the example nat, we
simply need to copy the internal declarations n , z and s into the elaboration.

n : type

z : n

s : n → n

This obviously preserves soundness, since the internal declarations form a well-typed
theory, otherwise the derived declaration is not well-formed.

Secondly, we build the no-confusion declarations: For each constructor
tml : {d1, d2, . . . , dr} A1 → A2 → . . .→ As → tp(tpl) y1 . . . yt of tpl (for some (not

necessary all) arguments yi of tpl), we build an injectivity declaration injective tml i

for each argument ai : Ai of tml in which tml is not dependently-typed. This way

we state that if any argument to tml is different so will be the result, which is clearly

equivalent to the injectivity of tml . Wlog. we assume that those are exactly the named
arguments Di (otherwise we consider them as unnamed arguments), i.e. we build

injective tml i : {d1, . . . , dr, a1 : Ai, . . . , as : As, a
′
1 : A1, . . . a

′
s : As} (ai

.
=6 a′i)

→ (tml d1 . . . dr a1 . . . as
.
=6 tml d1 . . . dr a

′
1 . . . , as)

for each 1 ≤ i ≤ s. In the example nat, we generate the injectivity axiom for s (z
takes no arguments, so no injectivity declaration is required):

injective s : {x0 : nat, x1 : nat} x0
.
=6 x1 → s x0

.
=6 s x1

Since the types of the arguments of the constructors have the correct types by def-
inition the application of tml to its arguments is well-typed. As the constructor

tml is not dependently-typed the type of the constructor applied to the arguments

d1, . . . , dr, a1, . . . , as and d1, . . . , dr, a
′
1, . . . , a

′
s are also equal for both sides of the

.
=

Page 12 of 25

3.5 Concrete construction Colin Rothgang

symbol, so the injectivity declarations are well-typed. As they are clearly well-formed
Mmt declarations it follows that these declarations preserve soundness.

Thirdly, assuming tml is non dependently-typed (i.e. r = 0) we also build the non-

confusion declarations stating the image of tml is disjoint with the image of any

other non-dependently-typed constructor of tpl . For every other such constructor

tml′ : B1 → B2 → . . . → Bt → tpl y1 . . . yt of tp(tpl) we build the declaration

no conf tml tml′ stating that the images of tml and tml′ are disjoint:

no conf tml tml′ : {a1 : A1, . . . , as : As, b1 : B1, . . . , bt : Bt}

tml a1 . . . as
.
=6 tml′ b1 . . . bt

In the example nat we generate the no-confusion axiom for z and s :

no conf z s : {x0 : nat} z .
=6 s x0

Soundness of the no conf declarations follows similarly to the soundness of the injectiv-
ity declarations: Well-formedness as Mmt declarations in obvious and the application of
the constructors is well defined by the definition of their arguments. The well-typedness
of the

.
= i.e. checking that the terms on both sides of the

.
= symbol have same type

is by assumption, otherwise the declaration is not generated, since then the terms are
definitely not equal. This can be checked, since the constructors are not dependently-
typed.

Fourthly, we build the no-junk declarations: For each Type-Level tpl :

{d1, . . . , dr} A1 → . . .→ As → type with constructors c1, . . . , cm , we build an induct

declaration induct/tpl :

induct/tpl : {c′1, . . . , c′m, d1, . . . , dr, a1 : Ai, . . . , as : As}

tp(tpl)→ tp(tpl′)

In case of nat, we generate the no-junk declaration for the Type-Level n :

induct/n : {n′ : type, z′ : n′, s′ : n′ → n′} n → n′

Here soundness is obvious as the declaration’s type is a well-formed function type.

For each constructor tml : {e1, e2, . . . , er} B1 → B2 → . . .→ Bs → tp(tpl) y1 . . . yt

of tpl , we build the corresponding no-junk declaration induct/tml :

induct/tml : {c′1, . . . , c′m, e1, . . . , er, b1 : Bi, . . . , bs : Bs}

induct/tpl M (tml e1 . . . er b1 . . . bs)
.
=

Page 13 of 25

3.5 Concrete construction Colin Rothgang

tml′ induct(e1) . . . induct(er) induct(b1) . . . induct(bs)

, where M denotes the list of named arguments for induct/tpl (n′ z′ s′ in our example

nat). In the example nat, we generate no-junk declarations for the constructors z and
s of n :

induct/z : {n′ : type, z′ : n′, s′ : n′ → n′} z′ .
= induct/n n′ z′ s′ z

induct/s : {n′ : type, z′ : n′, s′ : n′ → n′, x0 : n}

s′ induct/n n′ z′ s′ x0
.
= induct/n n′ z′ s′ s x0

Soundness follows from the definition of the arguments to the constructor making its
application to the arguments well-typed (analogously for the primed constructor and
arguments), the well-typedness of constructor arguments of an inductively-defined type

is ensured by definition of the induct function. Finally, the well-typedness of the
.
=

symbol follows by the definition of the induct function.

Finally, for each outgoing Term-Level tml : {e1, e2, . . . , er} B1 → B2 → . . .

→ Bs → tp for some tp : type, we build the no-junk declaration induct/tml :

induct/tml : {c′1, . . . , c′m, e1, . . . , er, b1 : Bi, . . . , bs : Bs}

(tml e1 . . . er b1 . . . bs)
.
=

tml′ induct(e1) . . . induct(er) induct(b1) . . . induct(bs)

In the example nat, there are no outgoing Term-Levels, so no further declarations need
to be generated. The well-typedness of the application of the outgoing Term-Level to
its arguments follows by their definitions, the well-typedness of the primed constructor
to its arguments follows by definition of the arguments and of the inductive function.

By assumption tml is not dependently-typed, hence the types of the terms of both

sides of the
.
= symbol are the same and the

.
= is well-typed. Thus, the no-junk

declarations for outgoing Term-Levels are well-typed.

All in all, we elaborate the derived declaration nat:

inductive nat() =

n : type

z : n

s : n → n

to the elaboration:

n : type

Page 14 of 25

3.6 Soundness Colin Rothgang

z : n

s : n → n

injective s0 : {x0 : nat, x1 : nat} x0
.
=6 x1 → s x0

.
=6 s x1

no conf z s : {x0 : nat} z .
=6 s x0

induct/n : {n′ : type, z′ : n′, s′ : n′ → n′} n → n′

induct/z : {n′ : type, z′ : n′, s′ : n′ → n′} z′ .
= induct/n n′ z′ s′ z

induct/s : {n′ : type, z′ : n′, s′ : n′ → n′, x0 : n}

s′ induct/n n′ z′ s′ x0
.
= induct/n n′ z′ s′ (s x0)

3.6 Soundness

In this subsection, we will sketch the soundness-proof for the inductive feature.

Theorem 3.4. inductive is sound.

Sketch of proof of soundness of the inductive-feature. Here we need to check that the
elaboration is well-typed and it it is satisfiable i.e. it has a model. For the second part
we assume that all outgoing term-levels are compatible (i.e. consisting) with the no-junk
and the no-confusion conditions and with each other. This assumption is necessary, as
this question is in general undecidable. In this case, the elaboration will alway have a
model (namely the initial model) as detailed above.

The well-typedness of the elaboration follows from the well-typedness of each external
declaration, as shown in above section 3.5.

4 Generalizations and limitations

4.1 Parametric inductive types

In this subsection, we will generalize the design of the feature inductive to also allow
for parametric inductive types. We allow to two types of parameters of inductive types,
for fixed parameters and for variable parameters (recursively uniform parameters and
recursively non-uniform parameters in Coq).

Fixed parameters Ei are parameters from the outer context of the derived declaration
(parameters to the derived declaration or a theory containing it). We add them as pa-

rameters to each external declaration i.e. each external declaration dext : {d1 . . . , ds} tp
becomes dext : {E1, . . . , En, d1 . . . , ds} tp′ , where tp′ is like tp with all references to
another internal declaration replaced by that reference applied to all fixed parameters.
In the no junk declarations, we need to supply these fixed parameters only once for the

Page 15 of 25

4.2 Polymorphic types Colin Rothgang

model and not for each declaration in the model. Consequently, when defining functions
by induction fixed parameters must be specified only once.

Variable parameters are named parameters of individual internal declarations. They are
treated like other arguments of internal declarations (shallow polymorphism ensures this
will be well-typed). This is described in detail in section 3.5. In the no-junk declarations
and inductive definitions they are must be specified like other arguments of internal
declarations for each declaration in the model.

In particular, if all internal declarations share a variable parameter, this parameter can
be specified differently for different constructors when defining functions by inductions.
This allows to define a wider class of functions:

For example given the below inductive type:

inductive finite sequence() =

seq : {a : type, m : n} type

empty : {a : type} seq a z

add : {a : type, m : n} seq a m → a → seq a (s m)

we define the following inductively-defined function (generating the sequence 0, 1, . . . , p):

inductive definition nat sequence(p : n) : finite sequence() =

seq = [a : type] seq a p

empty = [a : type] seq (leq z) z

add : [a : type, q : n, fseq : seq a p, x : a] add (leq (s (min a)))

(min a) fseq (s (min a)) .

Here geq : n → type denotes the type of natural number less or equal to a given

natural number and max the projection from leq n down to the argument n . In
this definition we use the information provided by the variable type parameter a in
the definition. The definition therefore can’t be implemented (this way) without using
variable parameters.

4.2 Polymorphic types

By the choice of PLF as the foundation, internal declarations may use shallow-poly-
morphism. By design of the inductive feature, the no-junk declarations take a list of
declarations potentially using shallow-polymorphism (exactly when the corresponding
internal declarations use it) as arguments. This way, the no-junk declarations will have
named arguments, which are themselves shallow polymorphic. Therefore, the type of

Page 16 of 25

4.3 No-confusion axioms for dependently-typed constructors Colin Rothgang

these no-junk declarations will be a second-order polymorphic-type. As PLF only allows
for first-order dependent types, these no-junk declarations are not well-typed in PLF.

This issue arises already in the example list given in appendix A.

This issue arises only for dependently-typed internal declarations and only for vari-
able parameters, but as they are relatively common this is still a significant restriction.
However, the elaboration must always be well-typed if the internal declarations are a
well-typed theory.

To resolve this issue, a different foundation than PLF must be used for the elabora-
tion: In particular, there is no problem if plain LF is used as Foundation or arbitrary
dependent-types are allowed in the foundation (as in for instance Martin-Löf type the-
ory). Alternatively, one could allow second-order dependent-types in the foundation,
but require first-order dependent-typed internal declarations.

We leave it to the users of the feature to choose an appropriate foundation.

4.3 No-confusion axioms for dependently-typed constructors

As already hinted, in the section 3 the no-confusion axioms cannot be generated for
dependently-typed constructors (at least not within LFP), so currently only axioms
stating injectivity in arguments in which a constructor is not dependently typed are
generated and no no-confusion axioms for dependent-typed constructors.

An example in which this issue occurs is the inductive type:

Cardinality() =

Cardinality : type

card : {a : int} Cardinality

, where int m denotes the interval ((0,m)) of natural numbers between 0 and m and

int the type of all such intervals. Then, Cardinality is the type of equivalence classes

of sets of same cardinality (there is only one each) and card the corresponding quotient
map.

This is a well-known problem and in general undecidable. For this reason, only certain
sorts of dependently-typed constructors can be supported by any feature for inductive
definitions. This is explained in more detail in section 4.5.

4.4 Constructors with higher-order arguments

In this design of the structural feature inductive, we are elaborating the internal declara-
tions to an elaboration, which axiomatizes the initial model of the internal declaration
up to isomorphism (i.e. the initial model is the only model (up to isomorphism) of the
elaboration). This construction doesn’t work however, for constructors with arguments

Page 17 of 25

4.5 Dependently-typed induction Colin Rothgang

of higher-order in an inductively-defined type: The idea is that due to the induct∗ al-
lowing to define inductive functions on the inductively-defined types, there are more
function of inductively-defined types in the elaboration than in the internal declara-
tions, since in the elaboration inductive functions over the inductively-defined types can
be defined, but not in the internal declarations. Thus, there would be more terms of
inductively-defined types in the elaboration than constructible by the constructors in
I violating the construction idea of inductively-defined types being elaborated to the
well-typed expressions over the constructors.

An example is the inductive type obtained by adding addition as additional constructor
to the definition of natural numbers.

In fact this is a well-known problem and and leads to the restriction to strictly-positive
constructors of inductive types for formal systems. In order to elaborate also constructors
with high-order arguments of inductively-defined types, we will therefore need a different
approach to design the elaboration function.

4.5 Dependently-typed induction

Inspecting our definition, we notice that the inductively-defined functions a user can
define are always simply-typed in the inductive arguments. The most practically
harmful incarnation of this limitation are inductive proofs. For instance we cannot
define the proof that addition of natural numbers is commutative without referring to the
previous case in the inductive step, which is not possible using the induct declarations
and the inductive definition feature outlined in section 5.1. When we inspect the
requirements for claims to be proven using inductive proofs, we realize that they are
exactly the strict logical relations on the internal declarations viewed as a theory.[RS13]

In order to resolve this issue we extended our elaboration with additional declarations
allowing also the definitions of inductive proofs dependent on the inductive arguments.
This is described in more detail in section 5.

This feature supports only very limited dependent-typed declarations, in particular
shallow-polymorphism. The reason is that dependent-typed declarations cannot be sup-
ported in full generality, as it would lift equality judgements to the type-level and make
the type-system undecidable. This problem is known as the interplay of dependent
types and equality in higher-order type theory (HoTT). Nevertheless, certain classes
of dependent-typed declarations can be allowed, like for instance shallow-polymorphic
types. As these already cover the most important cases of dependent-typed constructors
we decided to only support shallow-polymorphic typed constructors.

4.6 Arbitrary recursion

The aim of this feature is to support inductive types but not arbitrary recursion, in
particular inductively-defined functions will always terminate. Therefore, inductive def-
initions are not Turing complete and thus strictly weaker than arbitrary recursion (for

Page 18 of 25

4.7 Quotients of inductive types Colin Rothgang

instance we cannot define the Ackermann function via induction). However, as will be
seen later, the current feature already allows to conveniently specify primitive recur-
sive definitions, which include most practically useful recursive definitions. This will be
shown in subsection 5.2.

4.7 Quotients of inductive types

One interesting generalization of this feature is considering quotients of inductive types.
This is a delicate special case of inductive types with extra conditions, since just adding
the axiom that terms identified by the quotient map are equal as an outgoing constructor
leads to a contradiction with the no-confusion declarations.

In order to support quotients of inductive types we therefore have to weaken the no-
confusion declarations as required by the quotient map. For this reason, we currently
don’t support directly defining quotients of inductive types.

5 Inductive definitions

5.1 Inductively-defined functions

The idea of structural features has already been illustrated by the example of natural
numbers. Once they are defined, functions for instance addition or multiplication of
natural numbers can be defined by induction. For example we can define addition and
multiplication of natural numbers as below.

plus : n→ n→ n

= [m,n] ((induct/n (n→ n) ([x] x) [u] ([x] s (u x))) m)n

times : n→ n→ n

= [m,n] ((induct/n (n→ n) ([x] z) [u] ([x] plus (u x) x)) m)n

In order to make definitions of inductive-types as convenient as possible, we implemented
a utility feature for inductive definitions. Using this utility feature the definition of plus
becomes:

inductive definition plus() : nat() =

n = (n → n)

z = ([x] x)

s = ([u, x] s (u x))

Here nat() denotes the type of the derived declaration, it consists of the name of the
corresponding inductively-defined type applied to concrete values for the arguments of

Page 19 of 25

5.2 Primitive recursion Colin Rothgang

the outer context of this inductively-defined type (they can however be references to new
variables declared in this derived declaration). In particular, the body of the derived
declaration should typecheck itself. This can be checked conveniently, when writing
inductive definitions in an IDE.

Furthermore, we add some further declarations to the elaboration, allowing for limited
pattern-matching over terms of an inductively defined type.1 To conveniently allow
for pattern matching we implemented another convenience feature for pattern matching.
The syntax look like the syntax for inductive definitions, but there need not be a definien
for each constructor case. Consequently, a pattern match will return an option type.
We also implemented a convenience feature allowing to check, whether a term of an
inductively-defined type was constructed by a given constructor of that type.

Examples for these features can be found in section A of the appendix.

5.2 Primitive recursion

In this subsection, we will briefly outline how arbitrary primitive recursive functions can
be defined using the features outlined above.

For this we will use an additional structural feature records for record types (n-tuples
with named fields) developed in parallel to inductive. The primitive recursive function
are natural number valued function defined by the following 5 axioms:

1. The 0-ary constant function z is primitive recursive

2. The 1-ary sucessor function s in the definitin of natural numbers is primitive
recursive

Both can be defined trivially using the inductive feature as a side-product of the inductive
definition of natural numbers already discussed.

3. For every n ≥ 1 and each 1 ≤ i ≤ n, the n-ary projection function Pn
i , which

returns its i-th argument, is primitive recursive.

This is possible, as the projection functions are defined by the records feature which can
be used to define n-ary inductively-defined functions.

Additionally, we can define further primitive recursive functions using the next 2 axioms:

4. Given a k-ary primitive recursive function f , and k many m-ary primitive re-
cursive functions g1, . . . , gk, the composition of f with the gi, i.e. the function
h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm)), is primitive recursive.

1In Coq and Agda, arbitrary recursion is allowed and soundness is ensured by a termination checker
(so they are not complete either), if the termination checker is turned off, the languages become complete
but unsound.

Page 20 of 25

Colin Rothgang

5. Given a k-ary primitive recursive function f , and a (k+ 2)-ary primitive recursive
function g, the (k+ 1)-ary function h defined as follows is also primitive recursive:

h(z , x1, . . . , xk) = f(x1, . . . , xk)

h(s (y), x1, . . . , xk) = g(y, h(y, x1, . . . , xk), x1, . . . , xk).

Functions defined using 4. can be defined directly (using lambda functions). Functions
using 5. can be defined using induction over natural numbers and direct definitions using
lambda functions.

Therefore, the inductive feature allows to define all primitive recursive functions.

6 Advanced features

6.1 Theories as inductive types

The idea of this feature is to use the body of a theory as internal declarations. The
elaboration will intuitively formalize the types of constructible terms over the theory
and inductively-defined functions on them, i.e. all well-formed expressions over the
declarations defined by the theory.

This is important, for the following reasons:

1. Because often inductive types are already formalized in some theory.

2. To allow for meta-reasoning: The reflection allows to push down from module level
to object level. One example could be reasoning about logics, e.g. proving (or at
least stating) completeness of FOL.

This feature becomes especially powerful once higher-order constructors are allowed, as
meta-reasoning usually involves inductive definitions over higher-order constructor.

This feature and the structural feature records for record types (see section 5.2) are
similar to the Mmt extension described in [MRK18] interpreting theories as record
types. The main difference in our approach is that they realize the language extension
as a foundational language feature (extending the foundation of the Mmt language),
whereas we elaborate derived declarations into elaborations in the basic Mmt language
which can be parsed without extending the foundation. On the other hand designing a
feature as a primitive language feature allows to define it in higher generality.

It might therefore be interesting for future work to also design a feature for inductive
types as a foundational language feature in Mmt.

6.2 Inductive Proofs

Once types and functions can be defined inductively, it it important to also be able to
reason about these using inductive proofs. For this purpose we we generate additional

Page 21 of 25

Colin Rothgang

external declarations similar (but slightly more powerful) to the no-confusion declara-
tions, which can be used for inductive proofs.

To proof a statement by induction about one (or several mutually) inductively-defined
types we need a proposition Ptp for each statement. Then, for each constructor tml :

{e1 : E1, e2 : E2, . . . , er : Er} B1 → B2 → . . .→ Bs → tp of a type tp , we will gen-

erate a declaration stating that given arguments b1 : B1, . . . , bs : Bs and proofs of
the corresponding propositions for the bi of an inductively-defined type (denoted by

bi1 , . . . , bit), we obtain a proof for Ptp (tml e1 . . . er b1 . . . bs) . We will therefore

generate the following inductive proof declaration for tml :

ind proof/tml : {e1 : E1, e2 : E2, . . . , er : Er, b1 : B1, . . . , bs : Bs

, pi1 : PBi1
, . . . , pit : PBit

} Ptp (tml e1 . . . er b1 . . . bs)

Finally, we implemented a convenience feature for inductive proofs. One example of an
inductive proof using this feature is the following:

z plus n : {m : n} ` ((z +m)
.
= m)

z plus z : ` (z + z)
.
= z

z plus suc : m : n ` (z +m)
.
= m → ` (z + (s m))

.
= (s m)

ind proof z neutral() : nat() =

n = [m] ` (nat/z +m)
.
= m

z = z plus z

s = z plus suc

7 Implementation of the structural feature for inductive
types

Due to the foundation independent nature of Mmt, most of its functionality is imple-
mented in so-called extensions of the Mmt API implementing the basic system. In
particular, there is an extension mmt-lf implementing LF and PLF and an interface for
structural features in the Mmt API. The implementation of the inductive feature uses
this interface to extends mmt-lf with the additional feature inductive.

One interesting aspect of the implementation is the implementation of the induct func-
tion heavily used in section 3 for the case of terms. Firstly, the implementation keeps
track of the types of each term at every stage. The type tp of the argument tm to the

induct function is matched with the types tp(tpl) for each Type-Level tpl and it is

Page 22 of 25

Colin Rothgang

checked for which arguments d1, . . . , dr, a1, . . . , as of tpl (if any) these types agree (in
case of dependent-types). If they don’t, we keep the term. Otherwise, we can construct

the resulting term induct(tm) as follows:

induct(tm) := induct/tpl E1 . . . Ep c
′
1 . . . c′r d1 . . . dr a1 . . . as tm .

Here, the Ei and c′i are passed as arguments to the corresponding induct/tml function

and the di and ai are inferred by matching tp against tp(tpl) . Since induct acts by
identity on the results of outgoing Term-Levels, the implementation of the no-junk dec-
larations for Term-Levels doesn’t need to distinguish between constructors and outgoing
Term-Levels. The elaboration for inductive proofs are generated similarly.

One interesting property of the implementation is its laziness, meaning that the elabo-
ration is only evaluated (computed), once it is actually used. This is useful primarily
for efficiency reasons.

The structural feature inductive as described in this paper is already fully implemented,
in fact the elaboration for free monoids given in the appendix is the output of this
structural feature. The source code for the structural feature can be found in this folder.
This feature is included in the Mmt system since release 13.

See figure 7 for an example of how the outlined features are used in practice. Further
examples can be found in appendix A.

Figure 3: Screenshot of an Mmt IDE with an example inductive type, inductively-defined
function and proof by induction.

Page 23 of 25

https://github.com/UniFormal/MMT/tree/devel/src/mmt-lf/src/info/kwarc/mmt/lf/structuralfeatures

Colin Rothgang

The feature(s) including its implementation is also documented here.

8 Conclusion and outlook

In this paper, we identified inductive definitions as a common basic feature of formal
languages for representation of formal mathematics and presented a method to formal-
ize inductive definitions in a formal system assuming only a minimal foundation using
structural features in Mmt. We implemented this structural feature as an extension
of Mmt and discussed how inductively-defined functions can be declared for inductive
types using this feature. Our design allows for mutual induction, shallow polymorphic
types, parametric polymorphism in constructors and as far as possible even constructors
with higher-order arguments. Additionally, the design allows for outgoing Term-Levels
which allow to conveniently define basic utility functions or additionally required prop-
erties (e.g. further axioms in case of algebraic structures) on an inductive type along
with the definition of the inductive type itself, which no other system allows up to this
point (see table 3.2). An interesting generalization of this is allowing the definition of
quotients of inductive types from outgoing Term-Levels stating the relations to quotient
out by. Since it also makes the elaboration significantly more complex, we leave this for
future work.

Having an structural feature for simple typed inductive types with constructors of only
first-order arguments (of inductively-defined types in negative positions), the next step
is to look at inductive types with constructors of higher-order arguments. Another
further step is trying to give definiens for the external declarations. The main idea to
realize these two goals is to elaborate inductive types to the types of well-typed formal
expressions over the internal declarations.

This could be realized using so-called quotations, interpreting function types of induct-
ively-defined types as function types defined in the theory of internal declarations.

This is a new approach for implementing inductive types and promises to avoid a limi-
tation currently present in every other formal system.

References

[BC04] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

[BW99] Stefan Berghofer and Markus Wenzel. “Inductive Datatypes in HOL — Lessons Learned
in Formal-Logic Engineering”. In: Theorem Proving in Higher Order Logics. Ed. by Yves
Bertot et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 19–36. isbn: 978-3-
540-48256-7.

[Coq15] Coq Development Team. The Coq Proof Assistant: Reference Manual. Tech. rep. INRIA,
2015.

[Cro+95] Judy Crow et al. “A Tutorial Introduction to PVS”. In: (1995). url: http://www.csl.
sri.com/papers/wift-tutorial/.

Page 24 of 25

https://uniformal.github.io/doc/language/inductive.html
http://www.csl.sri.com/papers/wift-tutorial/
http://www.csl.sri.com/papers/wift-tutorial/

References Colin Rothgang

[Har96] J. Harrison. “HOL Light: A Tutorial Introduction”. In: Proceedings of the First Interna-
tional Conference on Formal Methods in Computer-Aided Design. Springer, 1996, pp. 265–
269.

[Ian17] Mihnea Iancu. “Towards Flexiformal Mathematics”. PhD thesis. Bremen, Germany: Ja-
cobs University, 2017.

[Joh37] Ingebrigt Johansson. “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”.
de. In: Compositio Mathematica 4 (1937), pp. 119–136. url: http://www.numdam.org/
item/CM_1937__4__119_0.

[KR16] Michael Kohlhase and Florian Rabe. “QED Reloaded: Towards a Pluralistic Formal Li-
brary of Mathematical Knowledge”. In: Journal of Formalized Reasoning 9.1 (2016),
pp. 201–234. url: http://jfr.unibo.it/article/download/4570/5733.

[MR19] D. Müller and F. Rabe. “Structuring Theories with Implicit Morphisms”. In: Recent Trends
in Algebraic Development Techniques. Ed. by J. Fiadeiro and I. Tutu. to appear. Springer,
2019.

[MRK18] D. Müller, F. Rabe, and M. Kohlhase. “Theories as Types”. In: Automated Reasoning.
Ed. by D. Galmiche, S. Schulz, and R. Sebastiani. Springer, 2018, pp. 575–590.

[NPW02] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. Springer, 2002.

[Owr+99] Sam Owre et al. “PVS Language Reference”. In: (Oct. 1999).
[Rab14] Florian Rabe. “How to Identify, Translate, and Combine Logics?” In: Journal of Logic and

Computation (2014). doi: 10.1093/logcom/exu079.
[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”. In: Information &

Computation 0.230 (2013), pp. 1–54. url: http://kwarc.info/frabe/Research/mmt.pdf.
[RS13] Florian Rabe and Kristina Sojakova. “Logical Relations for a Logical Framework”. In:

ACM Transactions on Computational Logic (2013). url: http://kwarc.info/frabe/

Research/RS_logrels_12.pdf.
[TB85] A. Trybulec and H. Blair. “Computer Assisted Reasoning with MIZAR”. In: Proceedings of

the 9th International Joint Conference on Artificial Intelligence. Ed. by A. Joshi. Morgan
Kaufmann, 1985, pp. 26–28.

Page 25 of 25

http://www.numdam.org/item/CM_1937__4__119_0
http://www.numdam.org/item/CM_1937__4__119_0
http://jfr.unibo.it/article/download/4570/5733
https://doi.org/10.1093/logcom/exu079
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/RS_logrels_12.pdf
http://kwarc.info/frabe/Research/RS_logrels_12.pdf

Colin Rothgang

Appendix

A Examples of basic inductive types and their elaborations

The following tests (and a few more) are all implemented in Mmt and can be found at
https://gl.mathhub.info/MMT/examples/blob/master/source/inductive.mmt. All
examples typecheck correctly (the elaborations themselves are not typechecked however).

Further definitions for natural numbers
Based on the inductive definition of natural numbers, we can define the following func-
tions by induction:

inductive definition predec() : nat() =

n : type = n

z : n = z

s : n → n = ([u] u)

inductive definition monus() : nat() =

n : type = (n → n)

z : n = ([x] x)

s : n → n = ([u, x] predec/n (ux))

Inductively defined lists

inductive list(a : type) =

list : {a : type} type

nil : {a : type}

cons : {a : type} a→ list a→ list a

is elaborated to:

list : {a : type} type

nil : {a : type} list a

cons : {a : type} a→ list a→ list a

injective cons 1 : {a : type, x00 : a , x1 : list a, x01 : a}

i

https://gl.mathhub.info/MMT/examples/blob/master/source/inductive.mmt

Colin Rothgang

DED x00
.
=6 x01 → cons a x00 x1

.
=6 s a x01 x1

injective cons 2 : {a : type, x00 : a , x1 : list a, x11 : list a}

DED x00
.
=6 x01 → cons a x0 x10

.
=6 s a x0 x11

no conf cons : {a : type, x00 : a, x10 : list a, x01 : a, x11 : list a}

DED cons a x00 x10
.
=6 cons a x01 x11

induct/list : {a : type, l′ : type→ type, nil′ : {a′ : type} list a′,

cons′ : {a′ : type} a′ → list a′ → list a′} List a → list a′

induct/nil : {a : type, l′ : type→ type, nil′ : {a : type} list a,

DED cons′ : {a : type} a→ list a→ list a, x : a}

nil′ a (induct/list a l′ nil′ cons′ x)′
.
= induct/list a l′ nil′ cons′nil a

induct/cons : {a : type, l′ : type→ type, nil′ : {a : type} list a,

cons′ : {a : type} a→ list a→ list a, x0 : a, x1 : list a}

DED cons′ x0 (induct/list a l′ nil′ cons′ a x1)
′

.
= induct/list a l′ nil′ cons′ (cons a x0 x1)

Then, we can use induction to define the functions:

single : {a : type} a→ list a = [a : type, x : a] cons x nil

reverse : {a : type} list a→ list a

= [a, l] induct/list list a ([tp] nil)

[tp, x, xs] concat tp (reverse xs) (single x)

length : {a : type} list a→ nat

= [a, l] induct/list list a ([tp] z)

[tp, x, xs] s (length xs)

Further basic examples
Similarly, we can define the inductively-defined types:

inductive vector(a : type) =

vec : {m : n} type

empty : vec z

add : {m : n} vec m → a → vec (s m)

ii

Colin Rothgang

inductive list2() =

list : type → type

nil : {a : type} list a

cons : {a : type} a → list a → list a

length2 : {a : type} list a → n

length2 nil : {a : type} DED (length2a(nil a)
.
= z)

length2 cons : {a : type, hd : a, tl : list a}

DED length2 a (cons a hd tl)
.
= s (length2 a tl)

inductive list3() =

list : type → type

nil : {a : type} list a

cons : {a : type} a → list a → list a

head : {a : type, l : list a} DED (l
.
=6 nil a) → a

head cons : {a : type, hd : a, tl : list a,

P : DED ((cons a hd tl)
.
=6 nil a)}

DED (head a (cons a hd tl) P)
.
= hd

The first one now allows us to define the inductively defined function zip assuming that
product types are defined:

product type : type → type → type # 1 ∗ 2 = [a, b] pair/type a b

record term pairs(A : type, B : type, x : A, y : B) : pair(A, B) =

a : A = x

b : B = y

pair term : {a : type, b : type} a → b → a ∗ b = [a, b, x, y] pairs/make a b x y

inductive definition zip(a : type, b : type) : vector(a, b) =

vec : {m : n} type = [m] vec b m → vec (a ∗ b) m

empty : vec nat/z = [l] empty (a ∗ b)

iii

Colin Rothgang

add : {m : n} vec m → a → vec (s m) =

[m, xs, x] induct/vec b ([t, p] vec (a ∗ t) p) ([t] empty (a ∗ t)) ([t, p, ys, y]

add (a ∗ t) p ys (pair term a t x y)) (s m)

Free Monoid
Finally, a somewhat more interesting example is:

inductive FM(a : type) =

fm : type

gen : a → fm

unit : fm

comp : fm → fm → fm

assoc : {x : fm, y : fm, z : fm}

DED comp (comp x y) z
.
= comp x (comp y z)

unit r : {x : fm} DED comp x unit
.
= x

unit l : {x : fm} DED comp unit x
.
= x

its elaboration is given in figure 4.

Figure 4: The elaboration of the inductively defined free monoid.

Further examples (both directly using the external declarations and using the utility
features) can be found in this repository.

iv

https://gl.mathhub.info/MMT/examples/blob/master/source/inductive.mmt

	Introduction and Related Work
	Preliminaries
	Theories and theory morphisms in Mmt
	Structural features

	Theoretical design
	Motivating example
	Supported inductive types
	Logical Framework with shallow-polymorphism (PLF)
	Main design idea
	Concrete construction
	Formal definition of the inductive feature
	Construction of the external declarations

	Soundness

	Generalizations and limitations
	Parametric inductive types
	Polymorphic types
	No-confusion axioms for dependently-typed constructors
	Constructors with higher-order arguments
	Dependently-typed induction
	Arbitrary recursion
	Quotients of inductive types

	Inductive definitions
	Inductively-defined functions
	Primitive recursion

	Advanced features
	Theories as inductive types
	Inductive Proofs

	Implementation
	Conclusion and outlook
	Appendix Basic inductively defined types

