
Mathematical Knowledge Management
Across Formal Libraries

Mathematisches Wissensmanagement
Über Formale Bibliotheksgrenzen

Hinaus

Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur
Erlangung des Doktorgrades
Doktor-Ingenieur

vorgelegt von

Dennis Müller
aus

Garmisch-Partenkirchen

Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität
Erlangen-Nürnberg

Tag der mündlichen Prüfung: _

Vorsitzender der Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch
Gutachter: Prof. Dr. Michael Kohlhase

assoz. Prof. Dr. Claudio Sacerdoti Coen

3

Abstract

This dissertation is concerned with the problem of integrating formal libraries: There is a
plurality of theorem prover systems and related software with different strengths and weaknesses,
that are fundamentally incompatible. This is due to different input languages, IDEs, library
management facilities etc., but also due to fundamental theoretical aspects; primarily the
reliance on different logical foundations, such as set theories, type theories, and additional
primitive features (e.g. subtyping, specific module systems,...).

This thesis describes the approach towards solving this problem pursued at our research
group. Specifically, it is divided into three main parts:

1. I demonstrate how we can develop modular logical frameworks within the Mmt system
– a foundation-agnostic framework for formal knowledge management based on the
OMDoc/Mmt language. This allows for specifying almost arbitrarily complicated logics,
type theories and related systems. An important aspect of such a framework is the
ability to include potentially complex and computationally expensive features (such as
subtyping mechanisms or record types) on demand only.

2. We can use this framework to formalize the logical foundation – or, if nonexistent, at least
the foundational ontology – of a formal system, which we can use in turn to translate
the associated libraries to OMDoc/Mmt. I demonstrate this exemplary on the theorem
prover PVS, the computer algebra systems Sage and GAP, and the LMFDB database.

3. This enables accessing the core concepts and libraries of various systems from within the
Mmt system, and hence implement knowledge management services generically, acting
on multiple libraries at once. I present a few such services:

(a) Curating alignments (roughly: two symbols S,T are called aligned if they represent
the same platonic mathematical concept,

(b) a generic method for translating formal expressions between systems and libraries;
using known alignments, theory morphisms and (if necessary) programmatic tactics,

(c) an algorithm for automatically finding morphisms between theories (modulo align-
ments, if between theories from different libraries) and

(d) Theory Intersections as a method to refactor given theories using theory morphisms.

4

Zusammenfassung

Diese Doktorarbeit widmet sich dem Integrationsproblem formaler Bibliotheken: Es gibt eine
Vielzahl an Theorembeweisern und verwandter formaler Software mit unterschiedlichen Stärken
und Schwächen, die grundlegend inkompatibel sind. Dies liegt sowohl an unterschiedlichen
Eingabesprachen, IDEs, Bibliotheksmanagement etc., als auch grundlegenden theoretischen
Aspekten; primär die Verwendung unterschiedlicher logischer Fundamente, wie Mengentheorien,
Typentheorien, und zusätzlichen primitiven Features (z.B. Subtyping, spezifische Modulsys-
teme,...).

Die Arbeit beschreibt den von unserer Forschungsgruppe verfolgten Ansatz, dieses Problem
anzugehen. Konkret ist sie in drei zentrale Abschnitte geteilt:

1. Ich zeige, wie wir innerhalb des Mmt Systems – einem fundament-agnostischen Frame-
work für formales Wissensmanagement mit zugrundeliegender Sprache OMDoc/Mmt
– logische Frameworks modular entwickeln können, was es uns erlaubt nahezu beliebig
komplexe Logiken, Typentheorien und ähnliche fundamentale Systeme darin zu spezi-
fizieren. Wichtig ist hierbei, dass die potentiell komplexen Features die wir dafür auf
Ebene des logischen Frameworks brauchen (wie Subtyping-Mechanismen oder record
types) auch nur dort aktiv sind, wo wir sie explizit brauchen.

2. Dieses Framework können wir nun nutzen um die logischen Fundamente – oder, falls
nicht vorhanden, zumindest die zugrundeliegende Ontologie – eines formalen Systems zu
formalisieren, und auf Basis dessen die zugehörigen Bibliotheken nach OMDoc/Mmt zu
übersetzen, was ich am Beispiel des Beweissystems PVS, den Computeralgebrasystemen
Sage und GAP, und der LMFDB Datenbank demonstriere.

3. Dies innerlaubt es uns, innerhalb des Mmt Systems auf die zugrundeliegenden Konzepte
verschiedener Systeme und deren Bibliotheken zuzugreifen, und entsprechende Services
zu implementieren die auf mehreren verschiedenen Bibliotheken agieren. Entsprechend
stelle ich einige solcher Features vor:

(a) Das kuratieren von Alignments (Grob: zwei symbole S,T heißen aligned, wenn sie
das selbe abstrakte/platonische mathematische Konzept repräsentieren),

(b) eine generische Methode, formale Ausdrücke zwischen Systemen und Bibliotheken
zu übersetzen; unter Verwendung bekannter Alignments, Theoriemorphismen und
(notfalls) programmatischen Methoden,

(c) einen Algorithmus, der Morphismen zwischen Theorien findet (modulo Alignments,
falls zwischen unterschiedlichen Bibliotheken) und

(d) Theory Intersections als eine Methode, gefundene Theoriemorphismen auszunutzen
um gegebene Theorien zu refaktorisieren.

I am deeply indebted to the following people, who all contributed in some way
to my success in – and/or well-being during – the writing of this thesis:

First and foremost my parents, for their unconditional support in all my endeavours, no
matter how seemingly misguided.

My wonderful girlfriend Tina, for her unrestrained love and affection, and for happily playing
Tropico next to me when I need to get work done while being with her.

My band mates in Vroudenspil, for providing me with a desperately needed outlet outside of
my profession, besides being genuinely lovely friends to have. # ShamelessPlug

Many researchers I had the pleasure to meet, and who ⟨ any x ∈ P({inspired, taught, advised,
humoured, supported, entertained, just generally have been extremely nice to})/{∅} ⟩ me in
various ways; including but not limited to: Jacques Carette, Merlin Carl, Claudio Sacerdoti

Coen, Paul-Olivier Dehaye, Bill Farmer, Michael Junk, Cezary Kaliszyk, Peter Koepke,
Andrea Kohlhase, Thomas Koprucki, Markus Pfeiffer, Natarajan Shankar, Nicolas Thiéry,

Makarius Wenzel, ...

My colleagues at KWARC, for contributing to establishing a productive, and yet unusually
comfortable and fun work environment: Katja Berčič, Jonas Betzendahl, Deyan Ginev, Mihnea
Iancu, Constantin Jucovschi, Theresa Pollinger, Max Rapp, Frederik Schaefer, Tom Wiesing.
In particular Florian Rabe, who acted as a second advisor, especially in technical matters, and

helped me literally every step of the way.

And last but not least Michael Kohlhase, for being an exceptionally passionate, caring and
inspiring advisor, and for avoiding without exception all negative tropes about PhD advisors
that make up the central plots of countless horror stories that traumatized post grads tell each
other huddled around bonfires made from nth revisions of (ultimately failed) thesis drafts.

“You don’t have to have a dream. Americans on talent shows always talk about
their dreams. Fine, if you have something you’ve always wanted to do, dreamed of, like, in
your heart, go for it. After all, it’s something to do with your time, chasing a dream. And
if it’s a big enough one, it’ll take you most of your life to achieve, so by the time you get
to it and are staring into the abyss of the meaninglessness of your achievement you’ll be

almost dead, so it won’t matter.
I never really had one of these dreams, and so I advocate passionate dedication to the
pursuit of short-term goals. Be micro-ambitious. Put your head down and work with
pride on whatever is in front of you. You never know where you might end up. Just be
aware, the next worthy pursuit will probably appear in your periphery, which is why you
should be careful of long-term dreams. If you focus too far in front of you, you won’t see

the shiny thing out the corner of your eye.”

“Don’t seek happiness. Happiness is like an orgasm: If you think about it too much it
goes away. Keep busy and aim to make someone else happy, and you might find you get

some as a side effect.”

“Be hard on your opinions. A famous bon mot asserts that opinions are like
arseholes in that everyone has one. There is great wisdom in this, but I would add that

opinions differ significantly from arseholes in that yours should be constantly and
thoroughly examined.”

“Remember it’s all luck. You are lucky to be here. You are incalculably lucky to be
born, and incredibly lucky to be brought up by a nice family that helped you get educated

and encouraged you to go to uni.
Or, if you were born into a horrible family, that’s unlucky and you have my sympathy, but
you are still lucky. Lucky that you happen to be made of the sort of DNA that went on to
make the sort of brain which, when placed in a horrible childhood environment, would
make decisions that meant you ended up eventually graduating uni. Well done, you, for
dragging yourself up by your shoelaces. But you were lucky. You didn’t create the bit of

you that dragged you up. They’re not even your shoelaces.
I suppose I worked hard to achieve whatever dubious achievements I’ve achieved, but I
didn’t make the bit of me that works hard, any more than I made the bit of me that ate

too many burgers instead of attending lectures when I was [at uni].
Understanding that you can’t truly take credit for your successes, nor truly blame others

for their failures, will humble you and make you more compassionate.
Empathy is intuitive, but it is also something you can work on intellectually.”

- Tim Minchin, Graduation Speech, University of Western Australia, 20131

1http://www.news.uwa.edu.au/201309176069/alumni/tim-minchin-stars-uwa-graduation-ceremony

http://www.news.uwa.edu.au/201309176069/alumni/tim-minchin-stars-uwa-graduation-ceremony

Contents

I Introduction 13

1 Motivation 15

2 State of the Art 19
2.1 Foundations . 19
2.2 Formal Libraries . 21
2.3 Logical Frameworks . 24

3 Context and Contribution 25
3.1 LATIN . 25
3.2 The OAF Project . 26
3.3 OpenDreamKit . 27
3.4 The Math-in-the-Middle Approach and Library 28

3.4.1 A Common Meaning Space for Interoperability 29
3.5 Objectives . 30
3.6 Contribution and Overview . 31

4 Preliminaries 33
4.1 OMDoc/Mmt . 33

4.1.1 Mmt Syntax . 35
4.1.2 MathHub . 38

4.2 The Mmt API . 38
4.2.1 Judgments . 39

4.3 Typing Rules and LF . 41
4.3.1 Judgments-as-Types . 45
4.3.2 Higher-Order Abstract Syntax . 46

4.4 Mmt/LF Surface Syntax . 47

II Modular Design of Logical Frameworks 49

5 Implementing Rules in Mmt (e.g. ∑-Types) 55
5.1 The Rules for ∑-Types . 55
5.2 Implementing Rule Systems in Mmt . 58

5.2.1 Mmt Symbols in Scala . 58
5.2.2 Solver Judgments . 59
5.2.3 Inference Rules . 60
5.2.4 Checking Rules . 62

7

8 CONTENTS

5.2.5 Equality Rules . 63
5.2.6 Computation Rules . 64
5.2.7 Subtyping Rules . 66

5.3 Using ∑-Types . 67

6 LFX 69
6.1 Coproducts . 69

6.1.1 Subtyping Behavior of Coproducts . 71
6.1.2 Implementation . 72

6.2 Finite Types . 72
6.2.1 Generic Literals in Mmt . 76
6.2.2 Implementation and Irrelevance Rules . 77

6.3 W-Types . 80
6.3.1 Implementation . 85
6.3.2 Structural Features . 86

6.4 Cumulative Universe Hierarchies . 88
6.4.1 Implementation and Universe Rules . 89

6.5 A Logical Framework Based on Homotopy Type Theory 91
6.5.1 Identity Types . 92
6.5.2 Equivalences and Univalence . 93
6.5.3 Implementation . 96

7 Subtyping 99
7.1 Issues with Subtyping in Mmt . 99
7.2 Declared Subtypes and Rule Generators . 101
7.3 Intersection Types . 103
7.4 Predicate Subtypes . 105

8 Record Types and Models 107
8.1 Groupings in Formal Languages . 109

8.1.1 Analysis . 109
8.2 Record Types with Defined Fields . 110
8.3 Internalizing Theories . 117
8.4 Implementation . 120

9 Conclusion and Additional Features 123

III Translating Mathematical Libraries into a Universal Format 125

10 Integrating Theorem Prover Libraries - PVS 129
10.1 Introduction and Preliminaries . 129
10.2 Formalizing Foundations . 130
10.3 Importing Libraries . 132

11 Integrating External Databases (LMFDB) 135
11.1 LMFDB Knowledge and Interoperability . 136

11.1.1 Introduction . 136

CONTENTS 9

11.2 Integrating the LMFDB with Math-in-the-Middle 136

12 Integrating Generic Ontologies 139
12.1 Distributed Collaboration with GAP/Sage . 139
12.2 Representing the GAP Ontology in OMDoc/Mmt 143
12.3 Representing the Sage Ontology in OMDoc/Mmt 145

13 Conclusion 147
13.1 Enabled Applications . 147

13.1.1 Browsing and Interaction . 148
13.1.2 Graph Viewer . 149
13.1.3 Search . 149
13.1.4 Querying Across Libraries . 151

IV Cross-Library Knowledge Management 153

14 Alignments 157
14.1 Types of Alignments . 160
14.2 Examples of Alignments . 164
14.3 A Standard Syntax for Alignments . 166
14.4 Implementation . 167
14.5 Manually Curated Alignments . 168

15 Alignment-based Translations Using Interface Theories 171
15.1 Interface Theories . 173

15.1.1 Example: Natural Numbers . 173
15.1.2 Additional Interface Theories . 175

15.2 Implementation . 177
15.3 Example . 180

16 Viewfinding 183
16.1 The Viewfinder Algorithm . 184

16.1.1 Preprocessing . 185
16.1.2 Search . 187
16.1.3 Optimizations . 188

16.2 Implementation . 189
16.3 Cross-Library Viewfinding . 191
16.4 Applications for Viewfinding . 193

17 Refactoring and Theory Discovery via Theory Intersections 195
17.1 Theory Intersection by Example . 196
17.2 Reducing Partial Morphisms to Renamings . 197
17.3 Implementation . 198

10 CONTENTS

V Conclusion and Future Work 199

18 Bibliography 205
Online Source References . 205
Publications by the Author . 205
References for Systems, Languages and Libraries . 207
Other References . 210

Disclaimer:

PhD students are in many universities – among them Jacobs University Bremen, where
I started my PhD – given a choice between submitting a cumulative dissertation or a
monography. The former simply consists of previous publications by the student and a
summary, whereas the latter is a self-contained document.

I deliberately decided against the first option, because even though that would
have been a lot less work, I thought it a worthy endeavour to present my research as a
coherent, unifying document that bundles the results, both of existing publications and
previously unpublished research, in the context of an overarching narrative suggestive
of a bigger picture, research goals beyond the individual publications and an implied
direction for future work.

Consequently however, a non-negligible fraction of the writing and many of the
results in this thesis have been adapted, and sometimes taken verbatim, from previously
published papers I coauthored. The reason being that in writing a paper, one is already
forced to think deeply about how to present the subject manner in a coherent and
precise manner. Additionally, these papers have been written in close collaboration
with much more experienced authors than me, so without a contextual reason to adapt
our collaborative writing to the context of this thesis, any attempt of mine to improve
on them would be futile and guaranteed to result in an unnecessarily less well-suited
presentation; primarily to the detriment of the reader.

This applies mainly to selected

• introductory paragraphs,

• state-of-the-art descriptions,

• descriptions of systems not developed at KWARC,

• detailled formal descriptions of algorithms or rule systems that were previously
published, and

• work done by collaborators outside of our work group.

All chapters describing previously published work are prefaced with a disclaimer
such as this one, describing (if possible) which parts have been adapted from which
publications with which coauthors, and explicitly describing my personal contributions
for evaluation.

All of those publications are listed in a separate section of the bibliography (Sec-
tion 18).

Part I

Introduction

13

Chapter 1

Motivation

In the last decades, the formalization of mathematical knowledge (and the verification and
automation of formal proofs) has become of ever increasing interest. Formal methods nowadays
are not just used by computer scientists to verify software and hardware as well as in program
synthesis, but – due to problems such as Kepler’s conjecture [Hal+15a], the classification
theorem for finite simple groups [Sol95], etc. – are also becoming increasingly popular among
mathematicians in general.

By now, there is a vast plurality of formal systems and corresponding libraries to choose
from. However, almost all of these are non-interoperable, because they are based on differing,
mutually incompatible logical foundations (e.g. set theories, higher-order logic, variants of
type theory etc.), library formats, library structures, and much work is spent developing the
respective basic libraries in each system.

Moreover, since a library in one such system is not reusable in another system, developers are
forced to spend an enormous amount of time and energy developing basic library organization
features such as distribution, browsing/search or change management for each library format;
all of which binds resources that could be used to improve core functionality and library
contents instead.

One reason for the incompatibility is the widespread usage of the homogeneous method1,
which fixes some logical foundation with all primitive notions (e.g. types, axioms, inference
rules) and uses conservative extensions of this foundation to allow for modeling some specific
domain knowledge. While homogeneous reasoning is conveniently implementable and verifiable,
it implies that a lot of work is needed just to model the basic domains of discourse necessary
for mathematics, such as real numbers, algebraic theories, etc. Moreover, the resulting
formalizations are actually less valuable to mathematicians, since they are intimately dependent
on (and framed in terms of) the underlying logic, making it virtually impossible to move the
results between different foundations or to abstract from them.

In contrast, mathematical practice favors the heterogeneous method, as exemplified by the
works of Bourbaki [Bou64]. In heterogeneous reasoning, theories are used to introduce new
primitive notions and the truth of some proposition is relative to a theory (as opposed to
absolute with respect to some foundation). This method is closely related to the “little theories”
paradigm [FGT92a] which prefers to state each theorem in the weakest possible theory, thus
optimizing reusability of mathematical results. Even though in theory, all of mathematics can
be reduced to first principles – most prominently first-order logic with (some extension of)

1The terminology homogeneous/heterogeneous is due to Florian Rabe, unpublished.

15

16 CHAPTER 1. MOTIVATION

ZFC – it is usually carried out in a highly abstract setting that hides the foundation, often
rendering it irrelevant and thus allowing it to be ignored.

Correspondingly, there is an inconvenient discrepancy between the currently existing formal
libraries and the way (informal) mathematics is usually done in practice. Furthermore, the
available formal knowledge is distributed among dozens of different mutually incompatible
formal library systems with considerable overlap between them.

Additionally, [Car+19] recently introduced the five aspects of big math systems – aspects of
doing mathematics that can and should be supported by software, collectively referred to as
tetrapod, as in Figure 1.1. These aspects are

1. inference as supported by interactive and automated proof systems,

2. computation as supported e.g. by computer algebra systems,

3. tabulation as e.g. supported by databases of mathematical objects (finite groups, graphs,
etc.) and their properties,

4. narration as supported e.g. by LATEX and other text formating software with strong
support for mathematical expressions, and finally

5. organization of formal knowledge.

Organization

Computation

TabulationInference

Narration

Figure 1.1: Tetrapods: Real and Conceptual

Most software systems focus on one of those tetrapod aspects, few on two, and none strongly
support all of them. That is despite the fact that all five of these aspects are intrinsic and
important parts of doing real-world mathematics, and it is correspondingly vital to support all
of them in an interconnected workflow.

What we should consequently aim for is a universal archiving solution for all formal
knowledge, that

1. does not depend on a specific logical foundation,

2. can import libraries from different formal systems, allowing one to choose which system
to use for generating new content,

3. allows for abstracting from and transferring results between differing foundations and
library structures,

17

4. supports all five aspects of big math systems.

The aim of this thesis is to describe our approach to achieving such an archiving solution
by integrating the libraries of existing software systems, focusing on the inference, computation,
tabulation and organization aspects of the tetrapod, and to demonstrate its feasibility.

Chapter 2

State of the Art

The attempt to systematically formalize both mathematical knowledge and its semantics goes
back at least to the seminal work by Bertrand Russell and Albert North Whitehead [WR13].
In the 1950s and 1960s, computer systems were added to the tool chest for this endeavour,
shifting the focus to designing foundations that combine both machine-friendliness and human
readability. This enabled automated theorem proving, thanks to ideas going back to Allen
Newell, Herbert A. Simon, and Martin Davis. This has been most succesful for first-order logic
and related systems. For more expressive languages, the verification of human-written formal
proofs has been the more successful approach, going back to John McCarthy, Nicolaas Govert
de Bruijn, Robin Milner, and Per Martin-Löf. Modern proof assistants usually combine both
approaches, generally verifying user input interactively and employing automation for routine
proof steps whenever possible.

Since developing sophisticated proof systems requires both a lot of practical work and
a high level of theoretical knowledge, most popular proof assistants have invested a large
amount of time and energy into building their systems. Consequently, formalization within
one such system pays off mostly at large scales, calling for a community effort to extend the
corresponding formal libraries. In practice, however, the availability of many different and
mutually incompatible systems – each with their own advantages and disadvantages – has
instead driven towards ever increasing specialization within the formal mathematics community,
resulting in lots of different libraries with considerable (and from a heterogeneous point of view
unnecessary) overlap of actual content.

A more extensive summary of the state of the art and the scientific context of this work
can be found in [KR16b].

2.1 Foundations

Overview The notion of a foundation goes back to the foundational crisis of mathematics at
the beginning of the 20th century. Resulting from a general confusion regarding the ontological
status of informally defined objects like infinitesimals in real analysis, non-euclidean geometries
and sets as objects of study in their own right, as well as debates over the validity of certain
non-constructive proof techniques of ever growing abstraction and intricacy, the idea developed
to find a formal, logical basis that fixes both an ontology as well as an unambiguous notion of
what constitutes a valid proof.

19

20 CHAPTER 2. STATE OF THE ART

By now, it is generally accepted within the mathematical community, that the answer to
this problem is the combination of first-order logic and some system of set theory, usually
considered as (possibly extensions of) Zermelo-Fraenkel set theory with the axiom of choice
(ZFC). However, already going back to Principia Mathematica by Russell and Whitehead
(which can be seen as an early variant of type theory), alternative foundations have been
around.

There’s an inherent trade-off in every such foundation with respect to their complexity
and expressiveness. Theoretically, a foundation should be simple with very few primitive
notions, to make reasoning about the foundation more convenient and establish trust in its
consistency. On the other hand, since a foundation should ultimately establish a framework
for all of mathematics, it should be as expressive as possible to allow mathematicians to talk
about all of the desired objects and realms in terms of the foundation. This trade-off naturally
lead to a large diversity of different foundations, which nowadays are used in different proof
assistants.

All of these systems fix one specific foundation as a basis for their specification language,
usually variants of either constructive type theory, higher-order logic or (as implicitely used
in mathematics) first-order set theory. The constructive type theories are mostly based on
Martin-Löf type theory [ML74] or the calculus of constructions [CH88] and make use of the
Curry-Howard correspondence [CF58; How80] to treat propositions as types (and proofs as
λ-terms). Systems include Nuprl [Con+86], Agda [Nor05], Coq [Tea03], and Matita [Asp+06a].
The second group of systems go back to Church’s higher-order logic [Chu40] and include HOL4
[HOL4], ProofPower [Art], Isabelle/HOL [NPW02], and HOL Light [Har96].

Since type theories and higher-order logics are more conveniently machine implementable,
systems using set theories are noticably rarer. These are e.g. Mizar [Miz], Isabelle/ZF [PC93],
and Metamath [MeMa].

The foundation of the PVS system (see Section 10.1) includes a variant of higher-order
logic, but has been specifically designed to have a set theoretic semantics. The IMPS system
[FGT93] is based on a variant of higher-order logic with partial functions. The foundation of
ACL2 [KMM00] is an untyped language based on Lisp.

Heterogeneous Reasoning As mentioned in the previous section, even though all of ma-
thematics is assumed to be reducible to some foundation, the way mathematics is usually
practiced is according to the heterogeneous method, in which all foundational aspects are
“hidden” and left implicit, unless necessary in the respective context. One major advantage
of this method, in which theories are used to introduce new primitive notions, is that (in
connection with the little theories approach) it allows for reusing mathematical results and
moving them along theory morphisms (i.e. truth-preserving maps) between theories. This
approach has been applied successfully in software engineering and algebraic specification,
where formal module systems are used to build large theories out of little ones, e.g., in SML
[Mil+97] and ASL [SW83].

To accomodate for this more convenient style of reasoning, most formal systems have
specific features that introduce some form of heterogeneity either explicitely or implicitely.
Explicit features include e.g. “locales” in Isabelle, “parametric theories” in PVS, “modules” in
Coq, or “structures” in Mizar. The IMPS system [FGT93] is somewhat unique in so far, as it
was designed specifically with heterogeneous reasoning in mind.

2.2. FORMAL LIBRARIES 21

To use the heterogeneous method implicitly, the user introduces a new formal construct
(such as real numbers) by defining them in terms of existing ones (e.g. the usual construction via
equivalence classes on Cauchy sequences) and proving the actually relevant (i.e. construction
independent) theorems about them (e.g. field axioms, topological completeness). Finally, the
user can rely on the proven properties alone, without ever needing to expand the concrete
definition originally implemented, which in the process is rendered irrelevant for all practical
purposes.

To enable implicit heterogeneity, the system has to provide corresponding definition
principles. Examples include type definitions in the HOL systems, provably terminating
functions in Coq or Isabelle/HOL, or provably well-defined indirect definitions in Mizar.
However, it should be noted, that such implicit heterogeneous definitions are usually internally
expanded into conservative extensions of the foundation. Alternatively, several data types
provide an additional way to use heterogeneity implicitely. These include (Co)inductive types
and record types e.g, as done by Mizar structures and with Coq records in the Mathematical
Components project [MC]. This has the additional advantage, that it allows for computation
within the foundation.

The Incompatibility Problem The homogeneous method (in combination with implicit
heterogeneity) has an obvious advantage: Since the foundation is fixed and can not be extended
by new axioms, the trusted code base remains fixed as well. Furthermore, is allows integrating
computational methods e.g. to reason about equality, without having to tediously instantiate
and apply the corresponding axioms. However, it has the major disadvantage of making
reuse of formalized knowledge difficult, if not impossible. Since the techniques for implicit
heterogeneity are elaborated on the basis of the foundation, the actual heterogeneous structure
of some fragment of implemented knowledge is difficult to identify. Furthermore, since different
systems offer different techniques to introduce implicit heterogeneity, the construction method
used in one system can often not be easily translated into another system. Their elaborated
implementations themselves are again framed in terms of the foundation (or an intrinsic part
thereof), and are consequently useless for a system based on a differing foundation.

Even though a fixed foundation is therefore reasonable for an individual formal system, if
we envision a universal library of mathematics – a major goal of formal mathematics going
back at least to the QED project and manifesto [Qed] of 1994 – this is the wrong approach.
Furthermore, different areas of mathematics favor different foundations (such as category theory,
specifically in algebra), as do different communities dealing with formalizing mathematics,
whether due to technical reasons or simply familiarity. Thus, formal libraries would profit
from foundational pluralism, i.e., the ability to support multiple foundations in a single
universal library.

2.2 Formal Libraries

Overview Usually, implemented formal systems have some notion of a library, a collection
of formalizations (usually just the corresponding source files) that can be handled in specific
ways – imported and used when creating new content, collectively exported, etc. Most systems
are distributed with some base library providing the most useful and ubiquitous settings of
interest, such as Booleans or number spaces, and often maintain additional, community-created
libraries with more advanced contents.

22 CHAPTER 2. STATE OF THE ART

The Isabelle and the Mizar groups maintain one centralized library each – the “Archive of
Formal Proofs” [AFP] and the “Mizar Mathematical Library” [MizLib], respectively. The Coq
group relies on a package manager on top of distributed Git repositories instead of a central
archive. These libraries contain individual formalizations with relatively few interdependencies.
Other libraries are generated and maintained by communities apart from the developers of
the system, however, these are still often valuable in their own right, such as Tom Hales’s
formalizations in HOL Light for the Kepler conjecture [Hal+15a] and Georges Gonthier’s work in
Coq for the recently proved Feit-Thompson theorem [Gon+13]. John Harrison’s formalizations
in his HOL Light system [Har96] and the NASA PVS library [PVS] have a similar flavor
although they were not motivated by a single theorem but by a specific application domain.
The latter is one of the biggest decentralized libraries, whose maintenance is disconnected from
that of the system.

As mentioned, most of these systems are based on the homogeneous method. However,
there are some libraries that are intrinsically heterogeneous, such as the IMPS library [FGT],
the LATIN logic library [Cod+11] developed at KWARC (see Section 3.1) and the TPTP
library [Sut09] of challenge problems for automated theorem provers. Unfortunately, none
of these enjoy the level of interpretation, deduction, and computation support developed for
individual fixed foundations.

The OpenTheory format [Hur09] offers some support for heterogeneity in order to allow
moving theorems between systems for higher-order logic (specifically HOL Light, HOL4, and
ProofPower). It provides a generic representation format for proofs within higher-order logic
that makes the dependency relation (i.e., the operators and theorems used by a theorem)
explicit. The OpenTheory library comprises several theories that have been obtained by
manually refactoring exports from HOL systems.

Library Integration There are two problems concerning library integration. The first is,
given a single library, refactoring its contents to increase modularity. This results in a “more
heterogeneous” set of theories, thus making it easier to reuse and blowing up the corresponding
theory graph to make shared or inherited theories and results more visible and explicit. An
attempt at giving a formal calculus for theory refactoring has recently been published [AH15].

The second, and for this thesis more relevant, problem is to integrate two or more given
libraries with each other, so that knowledge formalized in one of them can be reused in,
translated to or identified with contents of the others. In the best case, two libraries might
even be merged into a single library with ideally no redundant content.

No strong tool support is available for any of these facets. The state-of-the-art for refactoring
a single library is manual ad hoc work by experts, maybe supported by simple search tools
(often text-based). Also, the widespread use of the homogeneous method makes integrating
and merging libraries in different systems extremely difficult, since usually basic concepts in
one foundation cannot be directly translated to corresponding concepts in the other [KRSC11].

This is despite the large need for more integrated and easily reusable large libraries. For
example, in Tom Hales’s Flyspeck project [Hal+15a], his proof of the Kepler conjecture is
formalized in HOL Light. But it relies on results achieved using Isabelle’s reflection mechanism,
which cannot be easily recreated in HOL Light. And this is an integration problem between
two tools based on the same root logic.

2.2. FORMAL LIBRARIES 23

Library Translations There are two ways to take on library integration. Firstly, one can
try to translate the contents of one formal system directly into another system; I will call
this a library bridge. This requires intimate knowledge of both systems and their respective
foundations used, and is necessarily somewhat ad-hoc. A small number of library bridges have
been realized, typically in special situations. [KW10] translates from HOL Light [Har96] to
Coq [Tea03] and [OS06a] to Isabelle/HOL. Both translations benefit from the well-developed
HOL Light export and the simplicity of the HOL Light foundation. [KS10] translates from
Isabelle/HOL [NPW02] to Isabelle/ZF [PC93]. Here import and export are aided by the
use of a logical framework to represent the logics. The Coq library has been imported
into Matita [Asp+06a] once, aided by the fact that both use very similar foundations. The
OpenTheory format [Hur09] facilitates sharing between HOL-based systems but has not been
used extensively.

The second way is to use a more general logical framework (see Section 2.3) which provides
some way to specify the respective foundations, and integrate the libraries under consideration
directly into that framework. Then the framework can serve as a uniform intermediate data
structure, via which other systems can import the integrated libraries. This approach will be
extensively described in this thesis, using the logical framework LF [HHP93a] and making the
libraries available to knowledge management services. Another example is the Dedukti system
[BCH12], which imports, e.g., Coq and HOL Light into a similar logical framework, namely
LF extended with rewriting.

Dedukti underlies the recent Logipedia project [DT], aiming to build an encyclopedia of
formal proofs in simple type theory (originally developed in Matita), which can be exported to
other systems.

Again, the prevalence of the homogeneous method constitutes a major problem here. Even
with implicit heterogeneity, the fact that e.g. theories such as the real numbers are still
modeled as conservative extensions of a fixed foundation using some intricate construction
principle (cauchy sequences, Dedekind cuts) means, that using different definitions can make it
impossible to align a theory in one library to the corresponding theory in a different library,
even though from a mathematical point of view they are “the same” (i.e. isomorphic). And
even if the same abstract construction principle is used in two libraries, their implementations
in terms of the underlying foundation can be different enough to make it difficult to identify
the two resulting theories.

Very little work exists to address this problem. In [OS06a], some support for library
integration was present: Defined identifiers could be mapped to arbitrary identifiers ignoring
their definition. No semantic analysis was needed because the translated proofs were rechecked
by the importing system anyway. This approach was revisited and improved in [KK13a], which
systematically aligned the concepts of the basic HOL Light library with their Isabelle/HOL
counterparts and proved the equivalence in Isabelle/HOL. The approach was further improved
in [GK14a] by using machine learning to identify large sets of further alignments.

The OpenTheory format [Hur09] provides representational primitives that, while not
explicitly using theories, effectively permit heterogeneous developments in HOL. The bottleneck
here is manually refactoring the existing homogeneous libraries to make use of heterogeneity.

A partial solution aimed at overcoming the integration problem was sketched in [RKS11].

24 CHAPTER 2. STATE OF THE ART

2.3 Logical Frameworks

Over the last 20 years, formal systems have added an additional metal level through the
introduction of logical frameworks. These provide tools to specify logical systems themselves
in a formal way. An overview of the current state of art is given by [Pfe01].

An example for one such framework is LF [HHP93a] (see Section 4.3). Logical frameworks
introduce the possibility to additionally reason about logics, as e.g. in Twelf [PS99], which is the
currently most mature implementation of LF. Twelf has been used as a basis for the LATIN
library (see Section 3.1). Also, since in logical frameworks logics are themselves represented
as theories, they allow for defining logical systems heterogeneously, by building them up in a
modular way.

Dedukti [BCH12] implements LF modulo rewriting. By supplying rewrite rules (whose
confluence Dedukti assumes) in addition to an LF theory, users can give more elegant logic
encodings. Moreover, rewriting can be used to integrate computation into the logical framework.
A number of logic libraries have been exported to Dedukti, which is envisioned as a universal
proof checker. Isabelle [Isa] implements intuitionistic higher-order logic, which (if seen as a pure
type system with propositions-as-types) is rather similar to LF. Despite being logic-independent,
most of the proof support in Isabelle is optimized for individual logics defined in Isabelle, most
importantly Isabelle/HOL and Isabelle/ZF.

λProlog – in its most mature implementation ELPI [Dun+15] – extends the logic pro-
gramming paradigm with higher-order functionalities. As such, it allows higher-order abstract
syntax approaches and can be (and is) used as a logical framework as well.

Unfortunately, logical frameworks are not an efficient alternative to the prevailing homoge-
neous formal systems. State of the art proof assistents rely heavily on the specific peculiarities
of their underlying foundation to provide efficient proof search techniques, which would be
impossible to implement at the high level of generality that logical frameworks provide, at
least without introducing cosiderable overhead and thus reducing efficiency.

Another problem is that specific concepts used by some logic (noticably record types,
subtyping principles, inductive definitions, etc.) may be difficult to realize in a logical framework
in such a way, that type checking can be done effectively, since the necessary information for
doing so can not always easily be lifted to the rather general level on which the type checker
operates (see Part II).

Chapter 3

Context and Contribution

This thesis is part of two ongoing research projects - OAF (Open Archive of Formalizations)1

and ODK (OpenDreamKit)2. The goals of OAF in particular largely coincide with the
objectives of this thesis, specifically regarding applications for theorem prover libraries; ODK
entails work packages extending the same goals to other formal systems, such as computer
algebra systems and mathematical databases. Our approach to realizing these projects largely
make use of the Math-in-the-Middle architecture (MitM).

Before we describe the precise objectives and contribution of this work, we will go over the
above and related projects, as to establish the necessary context.

3.1 LATIN

The LATIN project [Cod+11] was a DFG funded project running from 2009 to 2012 under
the principal investigators Michael Kohlhase, Florian Rabe and Till Mossakowski. Its aim has
been to build a heterogeneous, highly integrated library of formalizations of logics and related
languages as well as translations between them. It uses Mmt (see Section 4.1) as a framework,
with the logical framework LF (see Section 4.3) as a meta-theory for the individual logics.

True to the general Mmt philosophy, all the integrated theories are built up in a modular
way and include propositional, first-order, sorted first-order, common, higher-order, modal,
description, and linear logics. Type theoretical features, which can be freely combined with
logical features, include the λ-cube, product and union types, as well as base types like booleans
or natural numbers. In many cases alternative formalizations are given (and related to each
other), e.g., Curry- and Church-style typing, or Andrews and Prawitz-style higher-order logic.
The logic morphisms include the relativization translations from modal, description, and
sorted first-order logic to unsorted first-order logic, the negative translation from classical to
intuitionistic logic, and the translation from first to sorted first- and higher-order logic.

The left side of Figure 3.1 shows a fragment of the LATIN atlas, focusing on first-order logic
(FOL) being built on top of propositional logic (PL), its translation to HOL and ultimately
resulting in the foundations of Mizar, Isabelle/HOL and ZFC, as well as translations between
them. The formalization of propositional logic includes its syntax as well as its proof and
model theory, as shown on the right of Figure 3.1.

1Funded by DFG grant KO 2428/13-1
2Funded by EU Horizon 2020 grant 676541

25

26 CHAPTER 3. CONTEXT AND CONTRIBUTION

PL

ML FOL DFOL

FOL

CL

DL

HOL

OWL

MizarZFCIsabelle/HOL

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

Figure 3.1: A Fragment of the LATIN Atlas

3.2 The OAF Project

The OAF project [OAF] is a DFG funded project running from 2015 to 2019 under the
principal investigators Michael Kohlhase and Florian Rabe. The goal was to provide an Open
Archive of Formalizations: a universal archiving solution for formal libraries, corresponding
library management services (such as distributing, browsing and searching library contents)
and methods for integrating libraries in different formalisms in a unifying framework – namely
OMDoc/Mmt (see Section 4.1), as in Figure 3.2 – to allow for sharing and translating content
across them. We further want it to be scalable with respect to both the size of the knowledge
base and the diversity of logical foundations.

Theoretically, the main prerequisite has been established in the LATIN project (see
Section 3.1). However, whereas LATIN provides formalizations of basic logics, type theories
and related systems, there still remains the problem of integrating the existing formal libraries
of theorem prover systems. Consequently, there are two major objectives of the OAF project
this thesis touches on:

Making existing libraries accessible to a unifying framework We want to be able to
make available theorem prover libraries accessible to the Mmt system.

Libraries that have been imported into Mmt in the course of this project include HOL
Light [KR14], Mizar [Ian+13], TPTP [Sut09], IMPS [Bet18], Coq [MRS], Isabelle (as-of-yet
unpublished) and (as presented in detail in Chapter 10) PVS.

Refactoring and integrating libraries Once we have several libraries integrated into
Mmt, we can implement generic knowledge management services for the integrated libraries,
such as:

• refactoring the available libraries in such a way, that the heterogeneous part of some
theory can be recognized as such and separated from the foundational aspects of its
library, and

• integrating the libraries with each other, such that equivalent theories can be identi-
fied and contents can be reused and transferred between libraries.

Naturally, both aspects are heavily interrelated, since integrating libraries is easier after some
suitable refactoring, and already aligned libraries can potentially be analyzed more easily and
further refactored.

3.3. OPENDREAMKIT 27

MMT

LF LF+X

Logics . . .HOL Light

HOL Light library
Bool Arith

. . .

PVS

PVS Library
booleans reals

. . .

Figure 3.2: Representing Libraries in Mmt

3.3 OpenDreamKit

Disclaimer:

The following two sections have been previously published as part of [Deh+16] with
coauthors Paul-Olivier Dehaye, Mihnea Iancu, Michael Kohlhase, Alexander Konovalov,
Samuel Lelièvre, Markus Pfeiffer, Florian Rabe, Nicolas M. Thiéry and Tom Wiesing.

Neither the theoretical results nor the majority of the writing can be attributed to
me personally. These chapters should hence not be considered my contribution, and is
mainly included because it is the best description of the OpenDreamKit project and
the Math-in-the-Middle approach, which in turn represents a prime concrete application
for the results of this thesis.

The Math-in-the-Middle ontology for formal mathematics however was largely
developed and curated by me, and can thus be considered my contribution.

As with interactive theorem provers specifically, in the last decades we witnessed the
emergence of a wide ecosystem of open-source tools to support research in pure mathematics
in general. This ranges from specialized to general purpose computational tools such as
GAP [Gro16], PARI/GP, LinBox, MPIR, Sage [Dev16], or Singular [SNG], via online
databases like the LMFDB [LMF] or online services like Wikipedia, arXiv [Arx], to webpages
like MathOverflow. A great opportunity is the rapid emergence of key technologies, in particular
the Jupyter [Jup] (previously IPython) platform for interactive and exploratory computing
which targets all areas of science.

This has proven the viability and power of collaborative open-source development models,
by users and for users, even for delivering general purpose systems targeting large audiences
such as researchers, teachers, engineers, amateurs, and others. Yet some critical long term
investments, in particular on the technical side, are in order to boost the productivity and
lower the entry barrier:

• Streamlining access, distribution, portability on a wide range of platforms, including
High Performance Computers or cloud services.

• Improving user interfaces, in particular in the promising area of collaborative workspaces
as those provided by CoCalc [CC] (previously called SageMathCloud).

• Lowering barriers between research communities and promoting dissemination. For

28 CHAPTER 3. CONTEXT AND CONTRIBUTION

example make it easy for a specialist of scientific computing to use tools from pure
mathematics, and vice versa.

• Bringing together the developer communities to promote tighter collaboration and
symbiosis, accelerate joint development, and share best practices.

• Structure the development to outsource as much of it as possible to larger communities,
and focus manpower on core specialities: the implementation of mathematical algorithms
and databases.

• And last but not least: Promoting collaborations at all scales to further improve the
productivity of researchers in pure mathematics and applications.

OpenDreamKit – “Open Digital Research Environment Toolkit for the Advancement of
Mathematics” [ODK] – is a project funded under the European H2020 Infrastructure call [EI]
on Virtual Research Environments, to work on many of these problems.

In practice, OpenDreamKit’s work plan consists of several work packages: component
architecture (modularity, packaging, distribution, deployment), user interfaces (Jupyter
interactive notebook interfaces, 3D visualization, documentation tools), high performance
mathematical computing (especially on multicore/parallel architectures), a study of social
aspects of collaborative software development, and a package on data/knowledge/software-
bases.

The latter package focuses on the identification and extension of ontologies and standards
to facilitate safe and efficient storage, reuse, interoperation and sharing of rich mathematical
data, whilst taking provenance and citability into account. This package is the most relevant
regarding this thesis.

Its outcome will be a component architecture for semantically sound data archival and
sharing, and integrate computational software and databases. The aim is to enable researchers
to seamlessly manipulate mathematical objects across computational engines (e.g. switch
algorithm implementations from one computer algebra system to another), front end interaction
modes (database queries, notebooks, web, etc) and even backends (e.g. distributed vs. local).

3.4 The Math-in-the-Middle Approach and Library

The Math-in-the-Middle architecture is used heavily in the OpenDreamKit project. It centers
around the Math-in-the-Middle ontology, an Mmt archive of formalized math3 using all of the
features introduced in Part II. In particular, this archive provides useful real-world examples
for these features. The ontology serves as a mediator between individual systems involved in
the OpenDreamKit project to facilitate knowledge exchange and remote procedure calls.

Additionally, the Math-in-the-Middle architecture can be used in other contexts. In
particular, it facilitates across-library knowledge management services for formal libraries,
as described in Part IV. From this perspective, while this section focuses on the role of the
architecture in the OpenDreamKit project, the general ideas underlying this section can be
generalized beyond the systems involved in OpenDreamKit.

Since we aim to make our components interoperable at a mathematical level, we have to
establish a common meaning space that will allow us to share computation, visualization of the
mathematical concepts, objects, and models between the respective systems. This mediation
problem is well understood in information systems [Wie92], and has for instance been applied

3Available at https://gl.mathhub.info/MitM/smglom and https://gl.mathhub.info/MitM/Foundation

https://gl.mathhub.info/MitM/smglom
https://gl.mathhub.info/MitM/Foundation

3.4. THE MATH-IN-THE-MIDDLE APPROACH AND LIBRARY 29

to natural language translation via a hub language [KW03]. Here, our hub is mathematics
itself, and the vocabulary (or even language) admits further formalization that translates into
direct gains in interoperability. For this reason, neither OpenMath [Bus+04] nor MathML
[Aus+03] have the practical expressivity needed for our intended applications.

3.4.1 A Common Meaning Space for Interoperability

One problem is that the software systems in OpenDreamKit cover different mathematical
concepts, and if there are overlaps, their models for them differ, and the implementing objects
have different functionalities. This starts with simple naming issues (e.g. elliptic curves are
named ec in the LMFDB, and as EllipticCurve in Sage), persists through the underlying data
structures and in differing representations in the various tables of the LMFDB), and becomes
virulent at the level of algorithms, their parameters, and domains of applicability.

To obtain a common meaning space for a VRE, we have the three well-known approaches
in Figure 3.3.

peer to peer open standard industry standard

A B

C

D

EF

G

H

A B

C

D

EF

G

H
S

A B

C

D

EF

G

H

n2/2 translations 2n translations 2n − 2 translations
symmetric symmetric asymmetric

Figure 3.3: Approaches for Many-Systems Interoperability

The first does not scale to a project with about a dozen systems, for the third there is
no obvious contender in the OpenDreamKit ecosystem. Fortunately, we already have a
“standard” for expressing the meaning of mathematical concepts – mathematical vernacular:
the language of mathematical communication, and in fact all the concepts supported in the
OpenDreamKit VRE are documented in mathematical vernacular in journal articles, manuals,
etc. The obvious problem is that mathematical vernacular is too i) ambiguous: we need a
human to understand structure, words, and symbols ii) redundant : every paper introduces
slightly different notions.

Therefore we explore an approach where we flexiformalize (i.e. partially formalize;
see [Koh13a]) mathematical vernacular to obtain a flexiformal ontology of mathematics that
can serve as an open communication vocabulary. We call the approach the Math-in-the-
Middle (MitM) Strategy for integration and the ontology the MitM ontology.

The descriptions in the MitM ontology must simultaneously be system-near to make
interfacing easy for systems, and serve as an interoperability standard – i.e. be general and
stable. If we have an ontology system that allows modular/structured ontologies, we can solve
this apparent dilemma by introducing interface theories [KRSC11], i.e. ontology modules
(the light purple circles in Figure 3.4) that are at the same time system-specific in their
description of mathematical concepts – near the actual representation of the system – and part
of the greater MitM ontology (depicted by the cloud in Figure 3.4) as they are connected to the

30 CHAPTER 3. CONTEXT AND CONTRIBUTION

core MitM ontology (the blue circle) by views we call interface views. The MitM approach
stipulates that interface theories and interface views are maintained and released together with
the respective systems, whereas the core MitM ontology represents the mathematical scope
of the VRE and is maintained with it. In fact in many ways, the core MitM ontology is the
conceptual essence of the mathematical VRE.

A B

C

D

EF

G

H

S

a b
c

d
ef

g

h

Figure 3.4: Interface Theories

Apart from OpenDreamKit, the MitM ontology is furthermore used in the
FrameIT [RKM16] approach for developing serious games for math education, and the
MaMoRed project ([Koh+17c],[Kop+18]) with the goal of building a modular library of
computational models in physics and related STEM fields.

3.5 Objectives

The OAF and OpenDreamKit projects have a common aim, differing only in their domains
of applicability – or aspects of the tetrapod (see Chapter 1): The integration of (libraries
of) formal systems (inference) in the former, and mathematical software and databases
(computation/tabulation) in the latter. The goal of this thesis is to outline an approach to
solve this integration problem and to demonstrate its feasibility. This entails the following
objectives:

O1 Represent the logical foundations, libraries and ontologies of theorem prover
systems, computer algebra systems and other sources of mathematical knowledge desired
for the OpenDreamKit project in a unifying framework.

O2 As lamented in Section 2.3, the logical frameworks currently available are not sufficient
to formalize the foundations and distinct primitive features of real world theorem prover
systems conveniently. Consequently, we need to develop a modular, sufficiently
powerful logical framework in order to both achieve O1, as well as formalize the
mathematical knowledge needed in the Math-in-the-Middle library as conveniently
as possible.

O3 Having the libraries of various systems accessible from within a unifying framework, the
goal is to develop knowledge management service on a generic level in order to
systematically integrate formal libraries, facilitating knowledge and structure transfer
and translate expressions between foundations and systems.

3.6. CONTRIBUTION AND OVERVIEW 31

3.6 Contribution and Overview

In Part II, I present a modular logical framework (O2) that extends LF by various features
and is used in the remainder of this work. In particular, I explain in detail how we can use
Mmt to develop such a framework and extend it by virtually arbitrary additional features via
various means. Where issues arise (e.g. with advanced subtyping principles, see Chapter 7), I
discuss these and suggest solutions.

Notably, unlike other fixed-foundation frameworks, we can do so without needing to express
our principles in terms of a more primitive logic. Instead, we can use the conveniences of
an extensive API providing all of the necessary and most common abstractions in a modern,
production-ready programming language (Scala) and all the infrastructure that comes with it –
such as modern IDEs with static type checking and debugging functionality, extensive library
support, etc.

In Part III I demonstrate the OAF (and partially ODK) approach to integrating libraries
and ontologies into the Mmt system (O1), using the theorem prover system PVS (Chapter 10),
the computer algebra systems GAP and Sage (Chapter 12), and the database LMFDB
(Chapter 11) as representative examples. The formalization of the foundational logic of PVS
in Section 10.2 in particular requires and makes use of the logical framework presented in
Part II. Since that logical framework is easily extendable – and since PVS can be considered
particularly challenging as evidenced by the fact that no earlier representations of the PVS
foundation exist in other frameworks – the approach likely scales to virtually arbitrary systems
and their foundations.

As a result, we have, for the first time, all symbols from both the underlying foundations
and ontologies as well as the associated libraries of formal systems accessible from within the
same framework. In particular, we preserve the original presentation and semantics without
the need to build dedicated (and sometimes impossible or unsound) translations between
foundations.

Finally, Part IV covers knowledge management services (O3) that can now be implemented
generically and foundation-independently, and which are consequently available for any (pair
of) systems integrated into Mmt now or in the future. In particular, I present:

• a specification for alignments and an implementation for managing them in Chapter 14,
as a basis for across-library services,

• a viewfinder for finding theory morphisms, and consequently new alignments, automati-
cally in Chapter 16,

• a method for translating content between systems using alignments and theory morphisms
in Chapter 15,

• and finally theory intersections as a method for library refactoring in Chapter 17.

The last four points particularly achieve the main goals of the OAF project, and ultimately
enable the intended results of (our part of) the OpenDreamKit project. The translation
method in particular allows for transfering virtually arbitrary formal content between libraries
and foundations, thus facilitating e.g. remote procedure calls between systems – in other words,
it allows for flexibly and fully integrating formal systems and their libraries.

32 CHAPTER 3. CONTEXT AND CONTRIBUTION

As such, this thesis demonstrates the feasibility of our approach to library integration
in enabling proper knowledge management beyond individual systems and libraries within a
unifying framework and system, bringing us one step closer to a full tetrapodal system.

Consequently this work covers a broad spectrum, ranging from purely theoretical develop-
ments down to implementation details.

Much of the content of this thesis has been published in previous papers. These are listed
separately in the bibliography (Section 18).

Chapter 4

Preliminaries

Throughout this thesis we will use the Mmt language and system as a meta-logical framework.
Mmt is a highly flexible system and API using the foundation-independent OMDoc language
for its backend. Within Mmt, we can implement almost arbitrary logical frameworks; most
prominently, it comes with an implementation of LF which we extend and use throughout this
thesis.

Disclaimer:

The text of the this chapter has been assembled and adapted from various previously
published papers by (primarily) Florian Rabe, Michael Kohlhase and myself (all of which
are referenced in this thesis), since they have emerged as the most suitable, concise
introductions to the concepts described herein. The exposition has been thoroughly
reworked for a uniform representation, but some text fragments of the original might
remain. Original publications are cited where adequate.

4.1 OMDoc/Mmt

OMDoc [Koh13b] is a representation language developed by Michael Kohlhase, that extends
OpenMath and MathML and allows for providing general definitions of the syntax of
both mathematical objects as well as mathematical documents. They make use of content
dictionaries, which introduce primitive notions and their semantics. In particular, it can
represent exports of formal system libraries and their documentation.

In the last ten years, (chiefly) Florian Rabe redeveloped the fragment of OMDoc pertaining
to formal knowledge resulting in the OMDoc/Mmt language [RK13a; HKR12a; Rab17b].
OMDoc/Mmt greatly extends the expressivity, clarifies the representational primitives, and
formally defines the semantics of this OMDoc fragment. It is designed to be foundation-
independent and introduces several concepts to maximize modularity and to abstract from
and mediate between different foundations, to reuse concepts, tools, and formalizations.

More concretely, the OMDoc/Mmt language integrates successful representational
paradigms

• the logics-as-theories representation from logical frameworks,
• theories and the reuse along theory morphisms from the heterogeneous method,
• the Curry-Howard correspondence from type theoretical foundations,

33

34 CHAPTER 4. PRELIMINARIES

translation
inclusion

meta-theory

LF LF +X

FOL HOL

Monoid cgroup Ring

m

m′

add

mult

Figure 4.1: A Theory Graph with Meta-Theories and Theory Morphisms in Mmt

• URIs as globally unique logical identifiers from OpenMath,
• the standardized XML-based interchange syntax of OMDoc,

and makes them available in a single, coherent representational system for the first time. The
combination of these features is based on a small set of carefully chosen, orthogonal primitives
in order to obtain a simple and extensible language design.

OMDoc/Mmt offers vey few primitives, which have turned out to be sufficient for most
practical settings (a more detailed grammar is given in Section 4.1.1). These are

1. constants with optional types and definitions,

2. types and definitions of constants are objects, which are syntax trees with binding, using
previously defined constants as leaves,

3. theories, which are lists of constant declarations and

4. theory morphisms, that map declarations in a domain theory to expressions built up
from declarations in a target theory.

Using these primitives, logical frameworks, logics and theories within some logic are all uniformly
represented as Mmt theories, rendering all of those equally accessible, reusable and extendable.
Constants, functions, symbols, theorems, axioms, proof rules etc. are all represented as constant
declarations, and all terms which are built up from those are represented as objects.

Theory morphisms represent truth-preserving maps between theories. Examples include
theory inclusions, translations/isomorphisms between (sub)theories and models/instantiations
(by mapping axioms to theorems that hold within a model), as well as a particular theory
inclusion called meta-theory, that relates a theory on some meta level to a theory on a higher
level on which it depends. This includes the relation between some low level theory (such as
the theory of groups) to its underlying foundation (such as first-order logic), and the latter’s
relation to the logical framework used to define it (e.g. LF).

All of this naturally gives us the notion of a theory graph, which relates theories (represented
as nodes) via vertices representing theory morphisms (as in Figure 4.1), being right at the
design core of the OMDoc/Mmt language.

Given this modular approach of OMDoc/Mmt, heterogeneity is made explicit in the
sense, that even though foundations are present via meta-theories, only those aspects of the
foundation that are used in the definition of a theory T are present in the theory itself, making
it easy to abstract from the foundation and reuse the theory.

4.1. OMDOC/MMT 35

The OMDoc/Mmt language is used by the Mmt system [RK13a], which provides a
powerful API to work with documents and libraries in the OMDoc/Mmt language, including
a terminal to execute Mmt specific commands, a web server to display information about Mmt
libraries (such as their theory graphs) and plugins for the text editors/IDEs jEdit and IntelliJ
IDEA, that can be used to create, type check and compile documents into the OMDoc/Mmt
language. The API is heavily customizable via plugins to e.g. add foundation specific type
checking rules and import and translate documents from different formal systems.

All of this puts Mmt on a new meta level, which can be seen as the next step in a
progression towards more abstract formalisms as indicated in the table below. In
conventional mathematics (first column), domain knowledge is expressed directly in ad hoc
notation. Logic (second column) provided a formal syntax and semantics for this notation.
Logical frameworks (third column) provided a formal meta-logic in which to define this syntax
and semantics. Now Mmt (fourth column) adds a meta-meta-level, at which we can design
even the logical frameworks flexibly. (This meta-meta-level gives rise to the name Mmt with
the last letter representing both the underlying theory and the practical tool.) That makes
Mmt very robust against future language developments: We can, e.g., develop LF +X without
any change to the Mmt infrastructure and can easily migrate all results obtained within LF.

Mathematics Logic Meta-Logic Foundation-
Independence
Mmt

logical framework logical framework
logic logic logic

domain knowledge domain knowledge domain knowledge domain knowledge

4.1.1 Mmt Syntax

Intuitively, OMDoc/Mmt is a declarative language for theories and views over an arbitrary
object language. For the purposes of this thesis, we will work with the (only slightly simplified)
grammar given in Figure 4.2.

Thy ∶∶= T [∶ T] = {(Inc)∗ (Const)∗} Theory Modules
View ∶∶= T ∶ T→T = {(Ass)∗} View

Const ∶∶= C[∶ t][= t] Constant Declarations
DeclarationsInc ∶∶= include T Includes

Ass ∶∶= C ↦ t Assignments
Γ ∶∶= (x[∶ t][∶= t])∗ Variable Contexts Objects
t ∶∶= x ∣ C ∣ t [Γ] (t) Terms

T represents a module name, C a constant name and x a variable name

Figure 4.2: The MMT Grammar

Modules and Declarations

In the simplest case, theories T are lists of constant declarations c ∶ E, where E is an
expression that may use the previously declared constants. Naturally, E must be subject to

36 CHAPTER 4. PRELIMINARIES

some type system (which MMT is also parametric in), for the purposes of this thesis primarily
the logical framework LF (see Section 4.3) and extensions thereof.

Mmt achieves language-independence through the use of meta-theories: every Mmt-
theory may designate a previously defined theory as its meta-theory. For example, when we
represent the HOL Light library in MMT, we first write a theory L for the logical primitives of
HOL Light. Then each theory in the HOL Light library is represented as a theory with L as
its meta-theory. In fact, we usually go one step further: L itself is a theory, whose meta-theory
is a logical framework such as LF. That allows L to concisely define the syntax and inference
system of HOL Light.

Correspondingly, a view V ∶ T→T ′ is a list of assignments c↦ e′ of T ′-expressions e′ to
T -constants c. To be well-typed, V must preserve typing, i.e., we must have ⊢T ′ e′ ∶ V (E).
Here V is the homomorphic extension of V , i.e., the map of T -expressions to T ′-expressions
that substitutes every occurrence of a T -constant with the T ′-expression assigned by V .

We call V simple if the expressions e′ are always T ′-constants rather than complex
expressions. The type-preservation condition for an assignment c↦ c′ reduces to V (E)↦ E′

where E and E′ are the types of c and c′. We call V partial if it does not contain an assignment
for every T -constant and total otherwise.

Importantly, we can then show generally at the Mmt-level that if V is well-typed, then V
preserves all typing and equality judgments over T . In particular, if we represent proofs as
typed terms (see Section 4.3), views preserve the theoremhood of propositions. This property
makes views so valuable for structuring, refactoring, and integrating large corpora.

Syntactically:

• Theories T ∶ T ′ = {include T1 . . .include Tn C1 . . .Cm} have a module name T , an
optional meta-theory T ′ and a body consisting of includes of other theories T1 . . . Tn and
a list of constant declarations C1 . . .Cn. A well-formed expression (see below) over T is
allowed to only reference constants that are declared in T , T ′ or in one of the Ti included.

• Constant declarations C[∶ t][= d] have a name C and two optional term components; a
type ([∶ t]), and a definition ([= d]).

• Views V ∶ T1→T2 = {. . .} have a module name V , a domain theory T1, a codomain theory
T2 and a body consisting of assignments C ↦ t.

Remark 4.1:
The module system is conservative: every theory can be elaborated (flattened) into one
that only declares constants, by recursively replacing every include ⋅ statement by the list
of constants declared in the included theory. We will occasionally reference the result of
flattening a theory T as T ♭.

Similarly, we can eliminate defined constants C = d by replacing every occurence of the
constant symbol C by its definition d (definition expansion).

We allow definitions in variable contexts for purely technical reasons, most notably in the
context of record types (see Section 8.2). As a result, there is a notable similarity between
variable contexts Γ and theories; in fact, we can think of flattened theories as named variable
contexts.

4.1. OMDOC/MMT 37

Expressions

It remains to define the exact syntax of expressions. In the grammar in Figure 4.2, C refers to
constants and x refers to bound variables.

Simple expressions are either references C to constants (of the meta-theory, an included
theory or previously declared in the current theory) or to bound variables x. Complex
expressions are of the form o [x1 ∶ t1, . . . , xm ∶ tm] (a1, . . . , an), where

• o is the operator that forms the complex expression,
• xi ∶ ti declares a variable of type ti that is bound by o in subsequent variable declarations

and in the arguments,
• ai is an argument of o

The bound variable context may be empty, and we write o (a⃗) instead of o [⋅] (a⃗). For example,
the axiom ∀x ∶ set, y ∶ set. finite(x) ∧ y ⊆ x⇒ finite(y) would instead be written as

∀ [x ∶ set,y ∶ set] (⇒ (∧ (finite (x) ,⊆ (y,x)) ,finite (y)))

URIs

To refer to constants (and modules), OMDoc/Mmt employs globally unique URIs, which are
composed of a namespace, the name of the (containing) module and the name of a constant,
separated by question marks.

Hence, Mmt URIs are triples of the form

NAMESPACE ? MODULE ? SYMBOL

The namespace part is a URI that serves as a globally unique root identifier of a corpus, e.g.
http://mathhub.info/MyLogic/MyLibrary. It is not necessary (although often useful) for
namespaces to also be URLs, i.e., a reference to a physical location. But even if they are URLs,
we do not specify what resource dereferencing should return. Note that because Mmt URIs
use ? as a separator, MODULE ? SYMBOL is the query part of the URI, which makes it easy to
implement dereferencing in practice.1

The module and symbol parts of an Mmt URI are logically meaningful names defined in
the corpus: The module is the container (i.e. a theory, view or advanced structural feature)
and the symbol is a name inside the module (of a constant, include or more advanced feature).
Both module and symbol name may consist of multiple /-separated segments to allow for
nested modules and qualified symbol names.

Mmt URIs allow arbitrary Unicode characters. However, ? and /, which are used as
delimiters, as well as any character not legal in URIs must be escaped using the %-encoding
(RFC 3986/7 standard).

By using URIs, namespaces have the great advantage of being guaranteed to be globally
unique. This comes at the prize of being rather long. However, the CURIE standard can be
used to introduce short prefixes.

Structures

Mmt offers an additional theory morphism that we will occasionally but rarely use in this
thesis. A structure S ∶ T1→T2 is a theory morphism that behaves like an include in that it

1For simplicity in the remaining part of the paper we will rarely use complete HTTP links, but rather use
single keyword abbreviations.

http://mathhub.info/MyLogic/MyLibrary

38 CHAPTER 4. PRELIMINARIES

makes all constants in T1 accessible to T2. Unlike includes, however, structures

1. can modify constants in the domain theory, e.g. by augmenting constants with new
definientia, aliases and notations – provided, the typing preservation condition for theory
morphisms is maintained, and

2. the symbols included via a structure are systematically renamed to be unique – a constant
c in T1 will be visible in T2 as S/c. Consequently, unlike includes, structures are not
idempotent.

Example 4.1:
Assume we have a theory Monoid (declaring a binary operation ○ and a unit e), which is
extended by a theory Group. We can specify a theory Ring by including two structures
plus ∶ Group→Ring and times ∶ Monoid→Ring. Unlike with theory includes, the two resulting
morphisms from Monoid to Ring (one directly, and one via Group) are not identified, giving
us two distinct operations. Furthermore, plus and times can rename the operations to + and
⋅ respectively, and rename the units to 0 and 1.

4.1.2 MathHub

MMT is used as a backend for the MathHub system [Ian+14; MH] – an online portal for
mathematical documents. It is available on mathhub.info and hosts various Mmt repositories,
interfaces for browsing and semantic search [KŞ06], as well as several additional applications,
such as the semantic glossary for mathematics (SMGLoM) [Gin+16].

Most of the specific OMDoc/Mmt formalizations in this thesis are hosted on MathHub’s
GitLab instance (gl.mathhub.info) and linked accordingly.

4.2 The Mmt API

The Mmt system works on content represented in a fragment of OMDoc, a fact that is
reflected by the internal datastructures corresponding to the syntax stated in Figure 4.2. All
expression-level syntactic constructs are implemented as Scala case classes extending the class
Term, and are named after the corresponding XML nodes of the underlying OMDoc.

Mmt URIs (see Section 4.1.1) are implemented as objects of the class Path, which are
assembled from individual path components of type LocalName. The relevant subtypes are DPath
for namespaces, MPath for module URIs of the form (d : DPath) ? (ln : LocalName), and GlobalName
for declaration URIs of the form (m : MPath) ? (ln : GlobalName).

Figure 4.3 gives a translation of the abstract syntax for expressions described above into the
internal datastructures.

For a detailled and up-to-date description of the classes provided by the Mmt API, I refer
to the Mmt documentation2.

2https://uniformal.github.io/doc/api/

mathhub.info
gl.mathhub.info
https://uniformal.github.io/doc/api/

4.2. THE MMT API 39

Abstract Syntax Scala Syntax
Symbol References S OMID(S : ContentPath)
Module References M OMMOD(M : MPath) = OMID(M)
Constant References C OMS(C : GlobalName) = OMID(C)
Variable References V OMV(V : LocalName)

Applications f (a1, . . . , an) OMA(f : Term, args : List[Term])
Binding Applications f [con] (arg) OMBIND(f : Term, con : Context, arg: Term)

Context G = {vars} Context(vars : List[VarDecl])
Variable Declaration v[∶ t][∶= d] VarDecl(v : LocalName, t : Option[Term], d : Option[Term])

Figure 4.3: Internal Scala Datastructures for Mmt Syntactical Constructors

4.2.1 Judgments

Mmt has a component called solver, parametrized by rules, that checks judgments and infers
implicit arguments (solving placeholder variables). The solver uses a bidirectional type system,
i.e., we have two separate judgments for type inference and type checking. To check a typing
judgment t ∶ T we have two possibilities:

1. find a type checking rule that is applicable to the judgment t ∶ T . Type checking rules
usually act on the head of the type T and recurse into the expression t, hence this can
be seen as a top-down approach.

2. infer the (principal) type T ′ of t. Type inference rules usually act on the head of the
expression t and require knowing the types of the subterms of t, hence this can be seen as
a bottom-up approach. Afterwards, check whether T ′ is a subtype of T . If all subtyping
rules are exhausted and failed (or none are applicable), check whether T ′ = T .

The Mmt solver starts with a top-down approach and defers to the bottom-up approach if
necessary. Equality checks are used for solving variables and by using additional solution rules.
This approach is described in [Rab17a] in detail and is largely irrelevant for the purposes of
this thesis, hence details are omitted. The details on implementing typing rules in Mmt are
treated by example in Chapter 5.

Similarly to typing, we have two equality judgments: one for checking equality of two given
terms and one for reducing a term to another one (simplification). Our judgments are given in
Figure 4.4.

For each of these rules, the solver assumes certain pre/postconditions to hold, which
critically need to be preserved by the implemented rules. These are:

• Γ⊢U inh and Γ⊢U univ assume that Γ is a well-typed context.

• Γ⊢t⇐T assumes that T is well-typed, and implies that t is well-typed and T is inhabitable.

• Γ⊢t⇒T implies that both t and T are well-typed and that T is inhabitable.

• Γ⊢t1↝t2 implies that t2 is well-typed iff t1 is (which puts additional burden on computa-
tion rules that are called on not-yet-type-checked terms).

• Equality and subtyping are only used for expressions that are assumed to be well-typed,
i.e., Γ⊢t1≡t2 ∶T implies Γ⊢ti⇐T , and Γ⊢T1<∶T2 implies that Ti is a type/kind.

40 CHAPTER 4. PRELIMINARIES

Judgment Intuition
⊢ Γ ctx Γ is a well-formed context
Γ⊢T inh T is inhabitable (may occur on the right side of a typing judgment)
Γ⊢U univ U is a universe (inhabitable, and every T with Γ⊢T⇐U is inhabitable)
Γ⊢t⇐T t checks against inhabitable term T .
Γ⊢t⇒T type/kind of term t is inferred to be T
Γ⊢t1≡t2 ∶T t1 and t2 are equal at type T
Γ⊢t1↝t2 t1 computes to t2
Γ⊢T1<∶T2 T1 is a subtype of T2

Figure 4.4: Judgments

Remark 4.2:
It is sufficient (and desirable) to consider subtyping to be an abbreviation: Γ⊢T1<∶T2 iff for
all t we have Γ⊢t⇐T1 implies Γ⊢t⇐T2. This allows for many subtyping rules to be derivable
(usually) from typing rules.

Remark 4.3: Horizontal Subtyping and Equality
The equality judgment could alternatively be formulated as an untyped equality t≡t′. That
would require some technical changes to the rules presented in this thesis, but would usually
not be a huge difference. In our case, however, the use of typed equality is critical for the
records introduced in Chapter 8; see Remark 8.2.

The rules given in Figure 4.5 capture the intended semantics of the judgments above and
can be assumed to hold for any type system implemented in Mmt.

⊢ ⋅ ctx

⊢ Γ ctx Γ⊢T inh

⊢ Γ, x ∶ T ctx

⊢ Γ ctx Γ⊢t⇐T

⊢ Γ, x ∶ T ∶= t ctx

⊢ Γ ctx Γ⊢t⇐T

⊢ Γ, x ∶= t ctx

⊢ Γ ctx x ∶ T [∶= t] ∈ Γ

Γ⊢x⇒T

⊢ Γ ctx x[∶ T ′] ∶= t ∈ Γ Γ⊢x⇒T

Γ⊢x≡t ∶T

Γ⊢t⇒T ′ Γ⊢T ′<∶T

Γ⊢t⇐T

Γ⊢t1↝t′1 Γ⊢t2↝t′2 Γ⊢t′1≡t
′

2 ∶T

Γ⊢t1≡t2 ∶T

Γ⊢U univ

Γ⊢U inh

Γ⊢T⇒U Γ⊢U univ

Γ⊢T inh

Figure 4.5: General Rules for Mmt Judgments

The upper row contains the rules for contexts. Note that even though we allow the type T
of a variable to be omitted (which will be helpful for records later), that is only allowed if a
definiens t is present. (T must be inferable from t or otherwise known from the environment.)

The second row contains the rules for looking up the type and definition of variable.
The third row contains the bidirectionality rules, which algorithmically are the default

rules that are applied when no type (resp. equality) checking rules are available: switch to

4.3. TYPING RULES AND LF 41

type inference (resp. computation) and compare inferred and expected type (resp. the results).
The last row deals with universes and inhabitability.

Remark 4.4:
The inference rules as presented in this thesis always carry an algorithmic reading. To be
precise, a rule of the form

P1 . . . Pn

C
can be implemented thusly:

To prove that the judgment C holds, check each of the premises P1 . . . Pn in order.
Consequently, a premise should only contain variables or non-primitive symbols that 1) occur
in the conclusion or 2) are introduced (either by type inference or simplification) in a previous
premise. For example, the last rule in Figure 4.5 would still be adequate if we were to replace
the premise Γ⊢T⇒U by the more general (and hence weaker) premise Γ⊢T⇐U , making
the inference rule itself stronger; however, it would be unclear how to implement such a
rule efficiently, since there are potentially infinitely many candidates for U . The inference
judgment Γ⊢T⇒U on the other hand unambiguously determines U as the principal type
of T for the subsequent premise Γ⊢U univ. Both judgments are needed to solve unknown
variables variables, however.

An equality premise (such as T≡∏x∶AB) with as-of-yet unknown symbols (x,A,B) can
algorithmically be interpreted as a pattern match; i.e. the premise that T can be simplified
to have the specific syntactic form on the right hand side of the equation. This is often
necessary for the inferred type of a term, as e.g. in the elimination rule for ∏ (Figure 4.8).
Consequently, we introduce the notation t⇒≡E(⋅) as abbreviation for the two consecutive
premises t⇒T ; T≡E(⋅).

4.3 Typing Rules and LF

LF [HHP93a] is a logical framework based on the dependently-typed lambda calculus λΠ. The
grammar is given in Figure 4.6. The only deviation here is that we allow optional definitions
in contexts, to make them syntactically equivalent to Mmt contexts (see Remark 4.1). LF
specifically as implemented in Mmt is covered in more detail in [Rab17a]; the specific rules
presented here are adapted from there.

Γ ∶∶= ⋅ ∣ Γ, x[∶ T][∶= T] contexts
T ∶∶= x ∣ type ∣ kind variables and universes

∣ ∏x∶T ′ T ∣ T → T ′ ∣ λx∶T ′ . T ∣ T1T2 dependent function types

Figure 4.6: Grammar for Contexts and Expressions

The grammar in Figure 4.6 as well as the various grammars presented in Part II represent
object-level languages independent of the Mmt language. If implemented within Mmt, it
should not be seen as extending the Mmt grammar from Section 4.1.1 rather than being
embedded within it; for example, the well-formed expression λx∶A. t according to the LF
grammar would be represented in OMDoc/Mmt as the well-formed expression λ [x ∶ a] (t)
according to the Mmt grammar.

Note that the grammar for contexts aligns perfectly with the grammar for Mmt contexts;
hence we do not need to distinguish between the two apart from the well-formedness of the

42 CHAPTER 4. PRELIMINARIES

term components of the variables therein.

The universe rules of the framework are given in Figure 4.7 and are to be read in conjunction
with the general rules in Figure 4.5.

⊢ Γ ctx

Γ⊢type univ

⊢ Γ ctx

Γ⊢kind univ

⊢ Γ ctx

Γ⊢type⇒kind

Figure 4.7: General Rules

Remark 4.5:
Usually, a new typing feature entails a type constructor C (in this case ∏), one or several
term constructors t (in this case λ) and one or several elimination constructors e (in this
case function application), and the rules governing these operators usually follow a specific
pattern consisting of:

• A formation rule that specifies when C(⋅) is well-formed and what universe it belongs
to.

• An introduction rule that allows to infer the C-type of an introductory form t(⋅).

• An elimination rule that allows to infer the type of an elimination form e(⋅).

• A type checking rule that tells us when a term checks against C(⋅). If every term
is uniquely typed this rule is redundant (by virtue of the introduction rule), but it
enables bidirectional type checking in an implementation.

• An equality rule that specifies when two introductory forms are equal.

• computation rules that (often) allow us to simplify nested elimination and intro-
ductory forms – i.e. terms of the form e(t(⋅)) or t(e(⋅)).

• A subtyping rule, usual either covariance (i.e. C(A′)<∶C(A) iff A′<∶A) or contravari-
ance (i.e. C(A′)<∶C(A) iff A<∶A′). Since we consider subtyping an abbreviation (see
Remark 4.2), this rule is usually derivable from the typing rule.

An additional rule – usually called the η-rule – that declares the introductory form to be
surjective is often used in formal presentations. It could reasonably be called representation
rule, since it tells us that e.g. every function can be represented as a λ-term. However, it
often is a corollary of the equality and computation rules and hence does not need to be
implemented as a separate rule.

In an implementation, it makes sense to add additional derivable inference, type checking,
equality or computation rules, simply to speed up the type checking process or help with
solving implicit arguments. For the latter, the Mmt API offers an abstract class for
SolutionRules, but we will largely ignore them in this thesis.

Unless otherwise specified, we assume the type constructor itself to be injective modulo
α-renaming, i.e. two types C(a),C(b) are equal iff a = b and variables bound by C in C(a)
and C(b) can be suitably renamed.

4.3. TYPING RULES AND LF 43

The specific rules for the dependent function types in LF are given in Figure 4.8. Note,
that even though LF has precisely two universes type and kind, we still formulate the rules
parametric in a generic universe U , to allow for flexible extending the number of universes
later (see Chapter 6, particularly Section 6.4).

Definition 4.1:

For convenience, we introduce a notation for the larger of two inhabitable terms, which
we will extend as needed. We start with the cases relevant to LF:

• For A,B ∶ type or A,B ∶ kind, we let

max{A,B } ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

A if B<∶A,
B if A<∶B,
undefined otherwise.

• For A ∶ type, we let max{A,type} ∶= type.

• max{type,kind} ∶= kind.

• In all other cases, we consider max{ ⋅ } to be undefined.

We consider T → T ′ an abbreviation for ∏_∶T T
′. We also write T [x/T ′] for the usual

capture-avoiding substitution of T ′ for x in T .

We can now show that the usual variance rule for function types and the η-rule are derivable.
Even though plain LF has no notion of subtyping (in fact, every term has a unique type),
extensions of LF may introduce subtyping principles, in which case this rule becomes important:

Theorem 4.1:

1. The following subtyping rule is derivable:

Γ⊢A<∶A′ Γ, x ∶ A⊢B′
<∶B

Γ⊢∏
x∶A′

B′
<∶∏
x∶A

B

2. The η-rule holds: For any f,A we have λx∶A. f(x) = f .

Proof. 1. Assume Γ⊢A<∶A′, Γ⊢B′<∶B. It suffices to show Γ, f ∶∏x∶A′ B
′⊢f⇐∏x∶AB.

By Figure 4.8 we can conclude this from Γ, f ∶∏x∶A′ B
′, x ∶ A⊢fx⇐B. Since Γ⊢A<∶A′

we have Γ, x ∶ A⊢x⇐A′ and consequently Γ, f ∶ ∏x∶A′ B
′, x ∶ A⊢fx⇐B′, so the claim

follows by Γ⊢B′<∶B.

2. By the equality rule, we can show that given f ∶ ∏x∶AB we have Γ, x ∶

A⊢(λx∶A. f(x))(x)≡f(x) ∶∏x∶AB, which is precisely the conclusion of the computation
rule.

44 CHAPTER 4. PRELIMINARIES

For any U with Γ⊢U univ:

Formation:
Γ⊢A⇐type Γ, x ∶ A⊢B⇒U
Γ⊢∏

x∶A

B⇒max{type, U }

Introduction:
Γ, x ∶ A⊢N⇒B

Γ⊢λx∶A. N⇒∏
x∶A

B

Elimination:
Γ⊢F⇒≡ ∏

x∶A

B Γ⊢t⇐A

Γ⊢Ft⇒B[x/t]

Type Checking:
Γ, x ∶ A⊢fx⇐B

Γ⊢f⇐∏
x∶A

B

Equality:
Γ, x ∶ A⊢fx≡gx ∶B

Γ⊢f≡g ∶∏
x∶A

B

Computation:
Γ⊢a⇐A

Γ⊢(λx∶A. t)a↝t[x/a]

Figure 4.8: Rules for Dependent Function Types

Moreover, we can show that every well-typed term t has a principal type T in the sense
that (i) Γ⊢t⇐T and (ii) whenever Γ⊢t⇐T ′, then also Γ⊢T<∶T ′. The principal type is exactly
the one inferred by our rules (see Theorem 8.1). This is easily proven by induction on the
grammar; however, as a result this property does not necessarily hold in the presence of other
rules.

Remark 4.6: PLF
We can conveniently extend LF by shallow polymorphism, the resulting logical framework
we call PLF (see [Rab17a]). It can be specified by a single additional rule:

Γ⊢A⇒U Γ⊢U univ Γ, x ∶ A⊢B inh

Γ⊢∏
x∶A

B inh

This rule elegantly allows for declaring shallow polymorphic functions (with type pa-
rameters only on the outside of the term), but since the polymorphic function types are
merely inhabitable and not typed, they can only occur in well-typed expressions if the type
arguments are instantiated via function application (the only ∏-rule that requires a function
type to be typed by a universe is the formation rule, see Figure 4.8, hence type inference of
polymorphic function types will fail, but of their applications will not).

For example, consider a type of groups over a fixed given type G. Using the above rule, we
can specify this as a polymorphic operator group ∶ ∏G∶type type In this case, expressions such

4.3. TYPING RULES AND LF 45

as G ∶ group(S) are perfectly valid, since group is well-typed. The type of group however is
not well-typed; hence we can not e.g. quantify over all operators of type ∏G∶type type.

4.3.1 Judgments-as-Types

The lambda calculus described above makes LF a functioning logical framework, i.e. a language
to specify the syntax and proof theory of various logics, type theories and related systems.
This is achieved by using the Judgments-as-Types methodology, in which (as the name
suggests) we assign types to the judgments of a given logic. We can interpret these types as
the types of proofs that the judgment holds.

Example 4.2:
Consider classical propositional logic. We can formalize the syntax by introducing a new type
prop ∶ type in LF, and declaring the logical connectives as constants with function types;
e.g. and ∶ prop → prop → prop. Given A,B of type prop, and(A,B) is now a sytactically
well-formed expression of type prop.

The only judgment in propositional logic is that some proposition is true, hence we
introduce an operator DED ∶ prop→ type assigning a type to each proposition. As mentioned,
given some formula ϕ we can think of the type DED ϕ as the type of proofs of ϕ. By
declaring a new constant of type DED ϕ we can axiomatically declare ϕ to be true, whereas
to prove ϕ we need to construct a term of that type.

We can allow for the latter by formalizing the rules of any proof calculus as functions on
DED -types. Consider as an example the conjunction introduction rule:

ϕ ψ

ϕ ∧ ψ

Using DED , we can now declare this rule by introducing a function:

andI ∶ ∏
A∶prop

∏
B∶prop

DED A→ DED B → DED and(A,B)

It takes two propositions A,B as arguments, as well as (what we can think of as) proofs for
both, and returns (what we can think of as) a proof for A ∧B.

Remark 4.7:
The andI-rule in the last example suggests reading dependent function types in a different
way: while we can think of the type as a function type, we can also read the expression as “For
all A ∶ prop and for all B ∶ prop...”. This reading is formally justified by the Curry-Howard
correspondence between a type ∏x∶AB and the universal quantifier ∀x ∶ A. B.

Analogously, a simple function type A→ B corresponds to the implication A⇒ B.
Under the Curry-Howard correspondence, the introduction and elimination rules of a

typing feature often mirror the respective inference rules in a natural deduction calculus.

46 CHAPTER 4. PRELIMINARIES

4.3.2 Higher-Order Abstract Syntax

In this thesis we use the same notation for application of LF functions f to arguments a as for
the Mmt primitive application of a term f to a list of terms a. This is to avoid cumbersome
notations for LF-applications like f@a. However, it should be noted that technically (and
internally) an application f(a) of a function f on the level of LF-expressions is internally
represented as apply (f, a) - the symbol apply provided by the LF-theory is applied (in the
sense of an OMDoc/Mmt-application) to the arguments f and a. In a naive implementation,
this means that the head of the term f(a) is not in fact the symbol f , but instead the symbol
apply.

Furthermore, if we use LF to formalize another λ-calculus C, we will need to provide
constants for the λ- and apply-operators of C. This naively means, that we need to reimplement
many mechanisms which are already present in LF. Fortunately, we can use higher-order
abstract syntax to have our new symbols inherit their core behaviors from the corresponding
symbols in LF.

Example 4.3: λ-Calculus
We can formalize C by introducing constants

C_type ∶ type C_expr ∶ C_type→ type funtype ∶ C_type→ C_type→ C_type

representing the types of C, the expressions of type A in C and (simple) function types.
We can then formalize a λ-operator as an LF-function that “abuses” the LF-lambda as a

binder for the variable of a λ-term; hence taking a function as argument. The C-expression
λx ∶ A.t(x) can then be represented as C_lambda(λx∶C_expr(A). t(x)), and the application
f(a) as C_apply(f, a), which internally gets added a second layer, i.e.

apply(apply(C_apply, f), a)

All of this makes it quite convenient to formalize type systems in LF. Internally, however, it
is rather inconvenient to handle even simple function applications in C, because of the nesting
of apply-symbols on the various meta-levels involved.

For that reason, Mmt offers functionality that allows to signify symbols belonging to a
higher-order abstract syntax, and abstract them away in settings where we would rather have
the term look like f(a) than apply(apply(C_apply, f), a) – for example when implementing
rules.

Example 4.4:
Let us focus on the higher-order abstract syntax rules for LF. The relevant symbols that the
system needs to know about are LF’s lambda and apply operations. Applications of apply
to terms f and a are then internally simplied to applications of f to a directly, and terms
of the form f(λx∶A. t) are simplified to binding applications f [x ∶ A] (t). The symbols are
bundled in a simple case class HOAS, which is passed on to a class extending HOASNotation
that takes care of the computational aspects. The case for LF hence looks like this:
object LFHOAS extends HOASNotation(HOAS(Apply.path, Lambda.path, OfType.path))

4.4. MMT/LF SURFACE SYNTAX 47

4.4 Mmt/LF Surface Syntax

By and large, I will show relevant examples in Mmt surface syntax directly whenever it is
informative to do so. In this section I will consequently briefly introduce the structural syntax
for Mmt and the relevant notations for symbols provided by LF. An in-depth tutorial on using
the Mmt surface language to formalize mathematical content is available online.3

Especially noteworthy is Mmt’s usage of highly non-standard delimiters, namely higher
unicode symbols. This is in order to allow for all standard delimiters used by other systems to
be used in notations when implementing the foundations of these. A structural environment
is delimited according to the level on which it is implemented (see Figure 4.2): Modules are
delimited with the symbol ∣∣∣∣∣∣∣∣, declarations with ∣∣∣∣ and objects with ∣∣. The colors correspond to
the ones used in the available Mmt IDEs (jEdit and IntelliJ IDEA).

A theory named T with meta-theory M is given with the syntax theory T : M = < content >∣∣∣∣∣∣∣∣.
If no namespace is provided, Mmt will either take one provided by the meta information of the
containing archive, or use a default namespace. A local namespace can be provided beforehand
using the namespace command. Using the latter, the following will establish an empty theory
with full URI http ∶ //mathhub.info/example?T:
namespace http://mathhub.info/example ∣∣∣∣∣∣∣∣
theory T = ∣∣∣∣∣∣∣∣

The theory providing LF has URI http ∶ //cds.omdoc.org/urtheories?LF; however, Mmt
provides the default CURIE abbreviation ur for its namespace - hence to create a new theory
with LF as meta-theory, we can write theory T : ur:?LF = ∣∣∣∣∣∣∣∣.

A constant is declared by giving its name, followed by its components separated by the
object delimiter ∣∣ in arbitrary order. A component is either a type (starting with ∶), a definiens
(starting with =) or a notation (starting with #), and is delimited with the declaration delimiter
∣∣∣∣ – e.g. a constant c with type T and definiens t can be given either as c : T ∣∣= t ∣∣∣∣ or c = t ∣∣: T ∣∣∣∣.
Includes are given with include ?T ∣∣∣∣

A notation is provided as a sequence of tokens and argument markers followed by a
precedence. Argument markers are either a number literal n (denoting the nth argument of
the constant), or V1 denoting a variable to be bound by the constant. If V 1 is followed by
a T, the system expects the variables provided in an application to be typed, infering their
types if none are provided by a user. If an argument marker is followed by a token s followed
by ellipses . . ., the system recognizes that a sequence of arguments is expected, the elements
of which are delimited by s. Precedences are given as prec n for some (positive or negative)
integer n – the higher the precedence, the stronger the notation binds. We will examine the
notations provided by LF as an example:

Dependent function type ∏x∶A,y∶B C are written as {x:A,y:B}C – a notational practice inspired
by the Twelf system. Consequently, the notation for the symbol Pi representing dependent
function types has two argument markers: The first one being a comma-separated list of typed
variables (represented as V1T,. . .) and the second one being a regular argument. Consequently,
the theory ?LF declares Pi as Pi # { V1T,. . . } 2 prec −10000∣∣∣∣. It is given a deliberately extremely
low precedence, since dependent function types most commonly occur on the outside of a term.
Analogously, lambda is given the notation [V1T,. . .] 2 prec −10000.

3https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.
pdf

https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf
https://gl.mathhub.info/Tutorials/Mathematicians/blob/master/tutorial/mmt-math-tutorial.pdf

48 CHAPTER 4. PRELIMINARIES

Simple function types have the notation # 1→ . . . prec −9990. Finally, as usual in lambda
calculi, function application has the notation # 1%w. . . prec −10, where %w represents arbitrary
whitespace.

The syntax for views is rather analogous to theories. As a module, it is delimited with
the module delimiter ∣∣∣∣∣∣∣∣. A view named v with domain T1 and codomain T2 is given via
view v : ?T1 −> ?T2 = < content >∣∣∣∣∣∣∣∣. Assignments are considered declarations and use = as its
symbol; i.e. an assignment c↦ t is given as c=t.

Part II

Modular Design of Logical
Frameworks

49

51

One crucial aspect of connecting libraries of mathematical knowledge to a universal
framework – whether they come from theorem provers, computer algebra systems, databases
or other systems – is to specify the ontological primitives of the system within the framework.
Correspondingly, sufficiently expressive logical frameworks are needed to specify all the features
such a system might offer.

A logical framework like LF [HHP93b], Dedukti [BCH12], or λ-Prolog [MN86] tends to
admit very elegant definitions for a certain class of logics (such as first-order or higher-order
logic, modal logics or classical type theories), but definitions can get awkward quickly if logics
fall outside that fragment.

This often boils down to the question of shallow vs. deep encodings. The former represents
a logic feature (e.g., subtyping) in terms of a corresponding framework feature, whereas the
latter applies a logic encoding to remove the feature (e.g., encode subtyping in a logical
framework without subtyping by using a subtyping predicate and coercion functions). Deep
encodings have two disadvantages:

1. They destroy structure of the original formalization, often in a way that is not easily
invertible and blow up the complexity of library translations.

2. They require the library translation to apply non-trivial and error-prone steps that
become part of the trusted code base. In fact, many logical frameworks were specifically
designed to allow for more logics to be defined elegantly, for example Dedukti.

Even if we ignore the proof theory (and thus the use of decision procedures) entirely, PVS
(which we discuss more in-depth and integrate in Chapter 10) is particularly challenging in
this regard, and hence serves as a good example for the challenges involved:

• The PVS typing relation is undecidable due to predicate subtyping: selecting a subtype
of α by giving a predicate p as in {x ∈ α ∣ p(x)}. Thus, a shallow encoding is impossible
in any framework with a decidable typing relation. Practical experience (discussed below)
shows, that the most adequate solution is to design a new framework that allows for
undecidable typing and then use a shallow encoding.

• PVS uses anonymous record types (like in SML) as a primitive feature. This includes
record subtyping and a complex variant of record/product/function updates. A deep
encoding of anonymous record types is extremely awkward: the simplest encoding would
be to introduce a new named product type for every occurrence of a record type in
the library. Even then it is virtually impossible to formalize an axiom like “two records
are equal if they agree up to reordering of fields” elegantly in a declarative logical
framework. Therefore, the most feasible option again is to design a new framework that
has anonymous record types as a primitive.

• PVS uses several types of built-in literals, namely arbitrary-precision integers, rational
numbers, and strings. Not every logical framework provides exactly the same set of
built-in types and operations on them.

• PVS allows for (co)inductive types. While these are relatively well-understood by now,
most logical frameworks do not support them. And even if they do, they are unlikely to
match the idiosyncrasies of PVS such as automatically declaring a predicate subtype for
every constructor. Again it is ultimately more promising to mimic PVS’s idiosyncrasies
in the logical framework so that we can use a shallow encoding.

52

• PVS uses a module system that, while not terribly complex, does not align perfectly
with the modularity primitives of existing logical frameworks. Concretely, theories are
parametric, and a theory may import the same theory multiple times with different
parameters, in which case any occurrence of an imported symbol is ambiguous. Simple
deep encodings can duplicate the multiply-imported symbols or treat them as functions
that are applied to the parameters. Both options seem feasible at first but ultimately do
not scale well – already the PVS Prelude (the small library of PVS built-ins) causes
difficulties. In Chapter 10, we will mimic PVS-style parametric imports in the logical
framework as well to allow for a shallow encoding.

Florian Rabe has extensively investigated definitions of PVS in logical frameworks, going
back more than 10 years when a first (unpublished) attempt to define PVS in LF was made by
Schürmann as part of the Logosphere project [Pfe+03]. In the end, all of the above-mentioned
difficulties pointed in the same direction: the logical framework must adapt to the complexity of
PVS– any attempt to adapt PVS to an existing logical framework (by designing an appropriate
deep encoding) is likely to be doomed. This negative result is in itself a notable contribution
of [Koh+17b], where the PVS import described in Chapter 10 was first published. Since
publication, we have found this to also hold for similarly complex object logics such as Coq.

Hence we need logical frameworks with advanced features. However, not all additional
features should be active and available simultaneously all the time – the additional inference
rules, even if in conjunction logically sound, can cause problems such as slowing down type
checking4, reserving notations, making the type system unnecessarily complex and potentially
destroying adequacy of a library translation. Especially the first can happen easily in the
presence of a critical pair of typing rules – two rules concluding the same judgement, but from
different (and potentially expensive to check) premises. An example for such a critical pair on
the meta-level is the two fundamental strategies in a bidirectional type checking algorithm
(see Section 4.2.1).

What we actually need in practice is therefore a modular meta logical framework with a
library of optional features that can be included on demand.

This library can be seen as an analog for LATIN (see Section 3.1) for logical frameworks.
Where LATIN resulted in a modular library for logics using a fixed logical framework (namely
LF), what we need to go beyond the “simple” logics in LATIN is a similarly modular library
of logical frameworks, written in an appropriate meta-framework.

This is more difficult than it seems in that the rules for each feature must be implemented
in such a way that they are orthogonal – they should be compatible (if possible) with each other
and be minimally dependent on other features. A natural starting point of such a framework is
the set of orthogonal features of Martin-Löf type theory [ML94], which are covered in Chapters
5 and 6. One of these – dependent function types – is already implemented by LF and described
in Section 4.3.

Various extensions of LF have been proposed and designed before; [Pfe93] presents an
extension of LF with refinement types (and intersection types, which we will cover in Section 7.3),
[Sto+17] adds additional union types (essentially equivalent to coproducts, see Section 6.1).
The grammatical framework GF [Ran04] is based on an extension of LF by record types.

4An example for such a feature is the naive implementation of declared subtyping in Section 7.2. In general,
we try to avoid such implementations in this thesis.

53

Apart from the latter, all the mentioned extensions lack an implementation, and all of
them have been designed with the additional feature as a primitive – in other words, the rules
are intrinsically non-compositional and consequently not suited for a modular approach. The
advantage of the primitive approach is that it allows for tightly controlling the interactions of
different primitive typing features. This makes it relatively easy to ensure some desirable aspects
of the typing system in the presence of several features at once, such as good performance or
decidability. In fact, [Pfe93] makes decidability one of its central results. Our modular approach
on the other hand makes it considerably more difficult to verify these kinds of properties.
However, adding e.g. predicate subtyping to a logical framework – as is necessary for formalizing
PVS for example (see Chapter 10) – renders the type system immediately undecidable anyway.
This also holds for many other features that increase the expressivity of a logical framework,
such as the model types presented in Chapter 8. Since expressivity is our primary concern,
we consider losing decidability less of a problem in the context of this thesis. Similarly, in a
tradeoff between modularity/expressivity and performance, we prioritize the former.

Conveniently, the modular implementation of the type checking component of Mmt, and
the abstractions provided in the Mmt API, result in a very small difference between the
theoretical design of a logical framework and its implementation in Mmt. In fact, the set of
formal rules as developed on paper corresponds closely to the set of implemented classes in
Scala.

In this part, I will present various extensions of LF. In doing so, I will explain in detail how
to implement new language features in Mmt. For that reason, we will start with a relatively
simple feature – namely ∑-types in Chapter 5 – as an introduction to the relevant classes of the
Mmt API. Chapter 6 covers additional simple typing features (primarily those of Martin-Löf
type theory), culminating in a logical framework based on homotopy type theory [Uni13] as a
case study in Section 6.5. Our approach to implementing logical frameworks in Mmt is briefly
described in [MR19], but essentially previously undocumented and hence covered in greater
detail.

Continuing with more complicated features, Chapter 7 covers subtyping mechanisms in
Mmt, and Chapter 8 covers our implementation of record and model types in detail.

All the rule systems presented in this part follow a general pattern for typing rules
presented in Remark 4.5. Also, note Remark 4.4 on how to read our rules algorithmically.
The Mmt API provides a dedicated class interface for each kind of rule – Figure 4.9 gives an
overview of those covered in this part.

Most inference rules in Chapters 5 and 6 are taken from [Uni13] with minor adaptations to
minimize dependencies on other typing features and be consistent in their presentation with
the rest of this thesis. Where multiple design options exist, these are discussed explicitly –
notably, in that case we do not decide on a specific rule system, but rather implement all of
them as separate theories extending the same core rules, allowing to pick the most adequate
implementation for a given logic formalization while reusing the same symbols across logics for
the required features.

54

General Aspects
Mmt Judgments Section 4.2.1
Symbol References Section 5.2.1
Solver Judgments and Continuations Section 5.2.2
Typing Rules
Type Inference Rules Section 5.2.3
Type Checking Rules Section 5.2.4
Subtyping Rules Section 5.2.7
Universe Rules Section 6.4.1
Equality Rules
Type Based Equality Rules Section 5.2.5
Term Head Based Equality Rules Section 6.1.2
Irrelevance Rules Section 6.2.2
Computation Rules Section 5.2.6
Other Features
Generic Literals Section 6.2.1
Structural Features Section 6.3.2
Rule Generators / Change Listeners Section 7.2

Figure 4.9: Table of Mmt API Classes for Solver Rules

Chapter 5

Implementing Rules in Mmt (e.g.
∑-Types)

In this chapter we will go over the implementation of ∑-types in Mmt in detail, as a relatively
simple example on how to extend the Mmt solver with rules in a modular fashion. The main
contribution of this chapter is the adaption of the typing rules governing ∑-types into the Mmt
framework and their implementation, as well as a detailed explanation of our methodology for
constructiong a modular meta logical framework.

5.1 The Rules for ∑-Types
∑-types are the dependent variant of cartesian products A×B. The type∑x∶A B(x) is populated
by pairs ⟨a , b⟩ with a ∶ A and b ∶ B(a), hence we can consider A×B as an abbreviation for
∑_∶A B, where _ does not occur in B. The elimination forms are the two projections π` (⋅)
and πr (⋅). ∑-types are conveniently simple, since they fall nicely into the pattern from
Remark 4.5 and do not interact with ∏-types in any significant way.

Since ∑-types arise naturally as the dependent variant of Cartesian products, their history
is difficult to reconstruct. To the best of my knowledge, they, along with most of the features
in the subsequent chapter, were originally introduced as a consequence of the Curry-Howard
correspondence (as e.g. in [ML94]), where the simple products A×B correspond to conjunctions
A∧B and dependent ∑-types ∑x∶A B(x) correspond to the existential quantifier ∃x ∶ A. B(x).

The grammar for ∑-types is given in Figure 5.1.

Γ ∶∶= ⋅ ∣ Γ, x[∶ T][∶= T] contexts
T ∶∶= x ∣ type ∣ kind variables and universes

∣ ∑x∶T T ∣ ⟨T , T ⟩ ∣ π` (T) ∣ πr (T) ∑-types

Figure 5.1: Grammar for ∑-Types

Remark 5.1:
∑-types are often used in a manner similar to predicate subtypes, most notably in

Coq [Coq15]: When using judgments-as-types (see Section 4.3.1), the type ∑x∶A DED P (x)
is populated by pairs ⟨a , p⟩, where p is a proof that P (a) holds. If a system allows implicit

55

56 CHAPTER 5. IMPLEMENTING RULES IN MMT (E.G. ∑-TYPES)

conversions, this means that we can convert an a ∶ A to have type ∑x∶A DED P (x) if and only
if P (a) holds (thus introducing a proof obligation), and trivially any pair p ∶ ∑x∶A DED P (x)
can be converted to type A by using π`.

The rules are correspondingly intuitive and given in Figure 5.2 (adapted from [Uni13]).

For any U with Γ⊢U univ:

Formation:
Γ⊢A⇒U Γ, x ∶ A⊢B⇒U ′

Γ⊢∑
x∶A

B⇒max{U,U ′ }

Introduction:
Γ⊢a⇒A Γ⊢b⇒B
Γ⊢⟨a , b ⟩⇒ ∑

_∶A
B

Elimination:
Γ⊢p⇒≡ ∑

x∶A

B

Γ⊢π` (p)⇒A

Γ⊢p⇒≡ ∑
x∶A

B

Γ⊢πr (p)⇒B[x/π`(p)
]

Type Checking:
Γ⊢π` (p)⇐A Γ⊢πr (p)⇐B[x/π`(p)

]
Γ⊢p⇐∑

x∶A

B

Equality:
Γ⊢π` (p)≡π` (q) ∶A Γ⊢πr (p)≡πr (q) ∶B[x/π`(p)

]
Γ⊢p≡q ∶∑

x∶A

B

Computation:
Γ⊢b⇒B

Γ⊢π` (⟨a , b ⟩)↝a

Γ⊢a⇒A

Γ⊢πr (⟨a , b ⟩)↝b

Figure 5.2: Rules for ∑-Types

Again, we can easily show the corresponding subtyping and η-rules:

Theorem 5.1:

The following subtyping rule is derivable:

Γ⊢A′
<∶A Γ, x ∶ A′

⊢B′
<∶B

Γ⊢ ∑
x∶A′

B′
<∶∑
x∶A

B

Furthermore, the η-rule (i.e. for any p ∶ ∑x∶A B we have ⟨π` (p) , πr (p)⟩ = p) holds.

Proof. Analogous to Theorem 4.1

5.1. THE RULES FOR ∑-TYPES 57

Remark 5.2:
∑-Types can be naturally defined inductively, given a sufficiently strong induction principle
that allows for defining polymorphic operators. In fact, this is how they are implemented in
Coq.

Alternatively, they can be almost defined using ∏-types in PLF (see Remark 4.6) given
a corresponding polymorphic equality ≐; however,the computation rule for πr (⋅) causes
problems. Its formalization would be

elim_r ∶ ∏
A∶type

∏
B∶A→ type

∏
a∶A
∏

b∶B(a)
πr (⟨a , b⟩) ≐ b

If ≐ is a polymorphic equlity with implicit type argument, this is only well-typed if both sides
of the equation (i.e. πr (⟨a , b⟩) anf b) have the same type; however, b has type B(a) whereas
πr (⟨a , b⟩) has by the elimination rule type B(π` (⟨a , b⟩)). To equate these two types,
the system needs to be able to exploit the elimination rule for π` (⋅) to rewrite π` (⟨a , b⟩)
as a, which needs a mechanism for generating computation rules from object-level equations.
Such as mechanism has been implemented in Mmt, but consequently already goes beyond
LF as a logical framework.

Before we look at the implementation, a couple of things should be noted:

1. Since we have two elimination forms, we have two elimination rules and two computation
rules.

2. With ∑-types we lose the property that every term has a unique type: any pair ⟨a , b(a)⟩
with b ∶ B(a) has both type A×B(a) and ∑x∶A B(x) (the former being the one that is
inferred by the introduction rule). In general, neither of these two types is a subtype of
the other one, so principality is lost here as well. However, a related property for sigma
types is sometimes also called principality, namely that the inferred type of a term t is
an instance of any other type of t, in the sense that if t⇒A×B (note that the inferred
type of a pair is always non-dependent) and t⇐∑x∶A′ B′, then A×B<∶A′×B′[x/π`(t)].

3. The premises of the computation rules guarantee that the pair is well-typed, to satisfy
the precondition for computation rules – if well-typedness has already been checked, the
premises can be skipped.

Remark 5.3: Currying
In the presence of both ∑-types and function types, it makes sense to consider currying,
i.e. the fact that we can think of a function A×B → C as a function A → B → C – or in
the dependent case, a function ∏p∶∑x∶A B(x)C(p) as a function ∏x∶A∏y∶B(x)C(x, y) (and of
course analogously C ∶ (∑x∶A B(x)) → U as C ∶∏x∶AB(x)→ U).

It is debatable whether currying should be considered a judgment-level equality. If we
want this to be the case, we can add two additional ComputationRules (see Section 5.2.6) that
take care of ∏-types and λ-expressions with ∑-type arguments.

As mentioned in the introduction of this part, for sake of modularity we do not fix a
specific rule set, but would rather implement such a rule in a separate theory to be included
o excluded as appropriate for any specific use case. It should be noted however, that a
currying rule has no notable disadvantages.

58 CHAPTER 5. IMPLEMENTING RULES IN MMT (E.G. ∑-TYPES)

5.2 Implementing Rule Systems in Mmt

5.2.1 Mmt Symbols in Scala

Before implementing the rules themselves, we create an Mmt theory that contains the symbols
we need, so that we can assign them proper notations determining their syntactic usage and
refer to them in the implementations of the rules. In the case of ∑-types, this theory contains
a symbol for the type constructor ∑, the introduction form ⟨ ⋅ , ⋅ ⟩ and the two elimination
forms π` (⋅), πr (⋅). For convenience we add an additional symbol for simple products A×B.
The resulting theory is given in Listing 5.1.

Listing 5.1: The Symbols Theory1

namespace http://gl.mathhub.info/MMT/LFX/Sigma ∣∣∣∣∣∣∣∣

theory Symbols =
Sigma # ∑V1T,. . . . 2 prec −10000 ∣∣∣∣
Product # 1×. . . prec −9990 ∣∣∣∣
Tuple # ⟨ 1, . . . ⟩ prec −10000 ∣∣∣∣
Projl # πl 1 prec −900 ∣∣∣∣
Projr # πr 1 prec −900 ∣∣∣∣

∣∣∣∣∣∣∣∣

Note that we specified the notations of Sigma , Product and Tuple all to be flexary –
hence our rule will have to deconstruct a type ∑x∶A,y∶B C into the actual type ∑x∶a ∑y∶B C,
and analogously a tuple ⟨a, b, c⟩ into the actual term ⟨a , ⟨b , c⟩⟩.

For convenience, we can implement helper objects in Scala, that provide apply and unapply
methods to easily construct – and pattern match against – applications of our symbols. These
can not only take care of the flexary notations, but also take care of Product being an
abbreviation, which makes implementing our rules easier and more uniform.

Remark 5.4:
In Scala, if an object Foo has an apply-method it can be called by the name of the object
directly; i.e. Foo(args) is an abbreviation for Foo.apply(args). An unapply-method on the other
hand can be used to pattern match, i.e. if we write
t match {

case Foo(args) =>
...

}

then upon encountering the case Foo(args) during runtime, the method Foo.unapply will be called
on t and returns an Option[A] (for arbitrary type A). If the result is an instance of Some(ret),
then in the pattern match above the case Foo(args) applies and args will be instantiated with
ret. This makes Scala an extremely convenient language to use when wanting to handle
complex terms of specific syntactic forms, as here.

Example 5.1:
The helper objects for Product and Sigma are given in Listing 5.2.

Listing 5.2: Helper Objects2

class LFSigmaSymbol(name:String) {
val path = SigmaTypes.path ? name

1https://gl.mathhub.info/MMT/LFX/blob/master/source/Sigma.mmt

https://gl.mathhub.info/MMT/LFX/blob/master/source/Sigma.mmt

5.2. IMPLEMENTING RULE SYSTEMS IN MMT 59

val term = OMS(path)
}

object Product extends LFSigmaSymbol("Product") {
def apply(t1 : Term, t2 : Term) = OMA(this.term,List(t1,t2))
def apply(in: List[Term], out: Term) = if (in.isEmpty) out

else OMA(this.term, in ::: List(out))
def unapply(t : Term) : Option[(Term,Term)] = t match {
case OMA(this.term, hd :: tl) if tl.nonEmpty =>

Some((hd, apply(tl.init, tl.last)))
case _ => None

}
}
object Sigma extends LFSigmaSymbol("Sigma") {
def apply(name : LocalName, tp : Term, body : Term) =

OMBIND(this.term, OMV(name) % tp, body)
def apply(con: Context, body : Term) = OMBIND(this.term, con, body)
def unapply(t : Term) : Option[(LocalName,Term,Term)] = t match {
case OMBIND(OMS(this.path),

Context(VarDecl(n,None,Some(a),None,_), rest @ _∗), s) =>
val newScope = if (rest.isEmpty) s
else apply(Context(rest:_∗), s)

Some(n,a,newScope)
case OMA(Product.term,args) if args.length >= 2 =>
val name = OMV.anonymous
if (args.length > 2)
Some((name, args.head, OMA(Product.term, args.tail)))

else
Some((name,args.head,args.tail.head))

case _ => None
}

}

The class LFSigmaSymbol merely provides the full path of the symbol under consideration
(so we only need to provide the name) and the Term-object used to refer to the symbol in
an expression. Note, that the unapply-method of Sigma has a case for Product.term, making
sure that any application of the Product-symbol pattern matches against Sigma as well. This
means that when implementing our rules, we only ever need to check whether a term is
a ∑-type knowing that in doing so we cover the simple products as well. The analogous
objects for pairs and projections are called Tuple and Proj1 and Proj2 respectively.

5.2.2 Solver Judgments

The solver checks a judgment Γ⊢J by collecting all rules included in the context Γ that correspond
to the type of the judgment (an extension of the class Judgment), checking which of them are
applicable and trying them in order of priority. These Judgments are:

• Equality(stack: Stack, tm1: Term, tm2: Term, tp: Option[Term]) checks the judgment
Γ⊢tm1≡tm2 ∶tp (where stack corresponds to the context Γ) or the untyped equal-
ity if tp is empty.

The judgment is checked by iteratively simplifying both terms using ComputationRules (see
Section 5.2.6) until they are syntactically equal or an EqualityRule (see Section 5.2.5) is
applicable.

2https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/Sigma/Names.scala

https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/Sigma/Names.scala

60 CHAPTER 5. IMPLEMENTING RULES IN MMT (E.G. ∑-TYPES)

• Typing(stack: Stack, tm: Term, tp: Term) checks the judgment Γ⊢tm⇐tp by simplifying both
terms until a CheckingRule (see Section 5.2.4) becomes applicable, or otherwise infers the
principal type tp2 of tm using InferenceRules (see Section 5.2.3) and checking Γ⊢tp2<∶tp.

• Subtyping(stack: Stack, tp1: Term, tp2: Term) checks the judgment Γ⊢tp1<∶tp2 by first check-
ing whether the two Terms are syntactically equal, if not simplifying both types un-
til a SubtypingRule (see Section 5.2.7) becomes applicable, and if that fails, checking
Equality(stack, tp1, tp2, None).

• Inhabitable(stack: Stack, wfo: Term) and Universe(stack: Stack, wfo: Term) finally correspond to
the judgments Γ⊢wfo inh and Γ⊢wfo univ, respectively. They are checked using
InhabitableRules and UniverseRules. In the case of inhabitability, if no InhabitableRule is appli-
cable to wfo, its type tp is inferred and Universe(stack,tp) is checked.

To implement our rules, the Mmt API provides the mentioned abstract classes for the
different rule types. All of their extensions need to implement an apply-method with a particular
signature. A Solver is passed on to the rule to allow for recursive checking and inference calls.

The most important methods a Solver provides for a rule are:

• check(j:Judgment) checks that the judgment j holds. This declares j to be a necessary
requirement of the current judgment: if the judgment is disproved, an error is thrown
and presented to the user.

• tryToCheckWithoutDelay(j:Judgment) like check, but does not throw an error if the check fails.
Instead, the state of the solver is rolled back and variables solved during the check are
reverted to their unsolved state.

• inferType(tm:Term) tries to infer the type of tm; returns an Option[Term].

• safeSimplifyUntil[A](tm:Term)(cond: Term => Option[A]) simplifies the term tm until it reaches a
term t such that cond(t) returns Some(a). This is useful for enforcing a specific syntactic
shape of a term (e.g. a λ-expression) and is therefore usually called with some unapply-
method as argument.

• Additional syntactic sugar can be imported from info.kwarc.mmt.api.objects.Conversions._, most
notably the notation x / t that creates a substitution of the variable with name x : LocalName
and the term t : Term, and t ^? s that applies the (usual capture-avoiding) substitution s
to t : Term.

5.2.3 Inference Rules

Formation, introduction and elimination rules are all trivial extensions of the class InferenceRule.
They take as class argument the head symbol of the terms to which they apply (and the typing
symbol used for the typing judgments) and its apply-method has the following signature:
def apply(solver: Solver)(tm: Term, covered: Boolean)

(implicit stack: Stack, history: History): Option[Term]

where tm is the term whose type is to be inferred, and covered is a boolean flag that tells
the rule whether the term tm has already been checked to be well-typed, and hence that the
preconditions (see Section 4.2.1) are satisfied.

5.2. IMPLEMENTING RULE SYSTEMS IN MMT 61

The implicit argument stack contains the context in which the type of tm is to be inferred.
history is an object that holds textual information on the current state of the solver – if a check
fails, the history is presented to the user as feedback.

An inference rule with head h is considered applicable to a term, if the head of the term
is h. Additionally, a rule can override a method alternativeHeads:List[GlobalName] if it should be
applicable to other heads as well, as in our case with Sigma and Product (see Example 5.3).

Example 5.2:
Listing 5.3 shows the Scala code for the introduction rule:

Γ⊢a⇒A Γ⊢b⇒B

Γ⊢⟨a , b⟩⇒∑
_∶A

B

The rule itself has as parameters the Mmt URI for the Tuple -symbol and the symbol for
the typing operator (ultimately provided by LF). The apply-method

Line 7 deconstructs the term to be a Tuple(t1,t2), i.e. of the form ⟨ t1 , t2 ⟩,

Line 8 infers the type of t1 to be tpA (or returns None if this fails),

Line 11 infers the type of t2 to be tpB (or returns None if this fails),

Line 14 picks a fresh variable name xn not occuring in the current context and

Line 15 returns the type of the tuple term xn as Some(Sigma(xn,tpA,tpB)), i.e. the type
∑xn∶tpA tpB.

Listing 5.3: Introduction Rule3

1 /∗∗ Introduction: the type inference rule
2 ∗ |−t1:A, |−t2:B −−−> <t1,t2>:Sigma x:A.B ∗∗/
3 object TupleTerm extends IntroductionRule(Tuple.path, OfType.path) {
4 def apply(solver: Solver)(tm: Term, covered: Boolean)
5 (implicit stack: Stack, history: History) : Option[Term]
6 = tm match {
7 case Tuple(t1,t2) =>
8 val tpA = solver.inferType(t1)(stack, history).getOrElse(
9 return None

10)
11 val tpB = solver.inferType(t2)(stack, history).getOrElse(
12 return None
13)
14 val (xn,_) = Common.pickFresh(solver,"x")
15 Some(Sigma(xn,tpA,tpB))
16 case _ => None // should be impossible
17 }
18 }

3https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/Sigma/Rules.scala

https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/Sigma/Rules.scala

62 CHAPTER 5. IMPLEMENTING RULES IN MMT (E.G. ∑-TYPES)

5.2.4 Checking Rules

Similarly to inference rules, TypingRules (which trivially extend CheckingRule) take the head
symbol of the type to which they apply as argument. They too have an overridable method
alternativeHeads:List[GlobalName] if multiple head symbols are covered. Additionally, checking rules
can shadow other rules (by overriding the method shadowedRules:List[Rule], in which case the
shadowed ones are deactivated in the presence of the new rule. Furthermore, checking rules
can be assigned a priority : Int with default value 0 to control in which order the solver attempts
multiple applicable rules. The signature of their apply-method that needs to be implemented is
def apply(solver: Solver)(tm: Term, tp: Term)

(implicit stack: Stack, history: History) : Option[Boolean]

Alternatively to returning a simple Some(Boolean) value, checking rules can also:

1. throw DelayJudgment(msg: String) – can be thrown if the result depends on an as-of-yet
unsolved variable. In this case, the solver delays the current typing judgment until either
all variables have been solved or no other judgment remains to be checked.

2. throw SwitchToInference – indicates that the solver should switch from top-down to a
bottom-up approach using type inference to check this Judgment (see Section 4.2.1).

3. return None – indicating that the rule has determined to not be applicable to this judgment
after all. This is useful when a quick, syntactical applicability check is insufficient to
determine whether this rule can be used to check the given judgment.

Example 5.3:
Listing 5.4 shows the implementation of the type checking rule for ∑-types:

Γ⊢π` (p)⇐A Γ⊢πr (p)⇐B[x/π`(p)]

Γ⊢p⇐∑
x∶A

B

Line 4 adds the Product symbol to the list of heads this rule is applicable to.

Line 8 deconstructs the type to be a Sigma(x,tpA,tpB), i.e. of the form ∑x∶tpA tpB. Note that
by virtue of Sigma’s unapply method (see Listing 5.2), this takes care of applications
of the Product symbol as well.

Line 9 instructs the solver to verify the judgment that Proj1(tm) (i.e. π` (tm)) has type tpA,

Line 10 instructs the solver to verify the judgment that Proj2(tm) (i.e. πr (tm)) has type
tpB ^? (x/Proj1(tm)) (i.e. tpB[x/π`(tm)]). Since Solver.check returns true if and only if
the checked judgment can be verified (and throws an error otherwise) this line can
serve as the return statement.

Listing 5.4: Type Checking Rule4

1 /∗∗ type−checking: the type checking rule
2 ∗ pi1(t):A|−pi2(t):B(pi1(t)) −−−> t : Sigma x:A.B ∗∗/
3 object SigmaType extends TypingRule(Sigma.path) {
4 override def alternativeHeads:List[GlobalName] = List(Product.path)
5
6 def apply(solver:Solver)(tm:Term, tp:Term)

5.2. IMPLEMENTING RULE SYSTEMS IN MMT 63

7 (implicit stack: Stack, history: History) : Option[Boolean] = tp match {
8 case Sigma(x,tpA,tpB) =>
9 solver.check(Typing(stack,Proj1(tm),tpA))

10 Some(solver.check(Typing(stack,Proj2(tm),tpB ^? (x / Proj1(tm)))))
11 case _ => None // should be impossible
12 }
13 }

5.2.5 Equality Rules

The Mmt API provides three classes for equality rules: TypeBasedEqualityRule, TermBasedEqualityRule
and TermHeadBasedEqualityRule.

• TypeBasedEqualityRules correspond to typed equalities and use the head symbol of the type
of two terms tm1 and tm2 to determine applicability. Obviously, for these rules to fire,
the types of the two terms have to be known to the solver and be equal.

They take as class parameters the head symbol of the governing type, as well as a
(possibly empty) list of application-symbols, in case that the type constructor is applied
using a higher-order abstract syntax. This can be used to implement equality rules for e.g.
symbols from a logic or type theory which is itself implemented in a logical framework.

Additionally, an instance of this class has to implement an applicableToTerm-method. This
is convenient in case where the rule requires the two terms to have a specific form.

The signatures of the methods to implement are:
def applicableToTerm(tm: Term): Boolean
def apply(solver: Solver)(tm1: Term, tm2: Term, tp: Term)

(implicit stack: Stack, history: History): Option[Boolean]

The applicableToTerm-method will be called on both terms and the rules is considered
applicable if either returns true.

The apply should return Some(true) or Some(false) if the equality of the two terms tm1 and
tm2 is provable or disprovable, and None if the solver should proceed trying other equality
rules.

• TermBasedEqualityRules are the most general equality rules. Their apply method takes an
optional argument for the type of the two terms if known, but the solver determines
applicability by calling an applicable-method that needs to be implemented. The signatures
of the methods to implement are thus:
def applicable(tm1: Term, tm2: Term): Boolean
def apply(check: CheckingCallback)(tm1: Term, tm2: Term, tp: Option[Term])

(implicit stack: Stack, history: History): Option[Boolean]

The applicable-method should fail quickly; preferentially it should only check whether the
terms tm1 and tm2 have a specific syntactic form.

The apply-method only takes a CheckingCallback, which is a superclass of Solver with slightly
limited functionality.

4Ibid.

64 CHAPTER 5. IMPLEMENTING RULES IN MMT (E.G. ∑-TYPES)

• TermHeadBasedEqualityRule finally is a simple extension of TermBasedEqualityRule that takes
two head symbols (for tm1 and tm2) as arguments and implements an applicable method
that uses the head symbols.

Example 5.4:
In the case of ∑-types, we have a typed equality rule (for pairs at their ∑-types):

Γ⊢π` (p)≡π` (q) ∶A Γ⊢πr (p)≡πr (q) ∶B[x/π`(p)]

Γ⊢p≡q ∶∑
x∶A

B

Hence we choose a TypeBasedEqualityRule, which is given in Listing 5.5.

Line 4 adds the Product symbol to the list of heads this rule is applicable to.

Line 5 determines that the rule is applicable to any pair of terms.

Line 10 deconstructs the type to be a Sigma(x,tpA,tpB), i.e. of the form ∑x∶tpA tpB.

Line 11 checks that the projections π` of the two terms are equal under the type tpA.

Line 12 checks that the two terms Proj2(tm1) and Proj2(tm2) are equal under the type
tpB[x/π`(tm1)] and returns the result of that check.

Listing 5.5: Equality Rule5

1 /∗∗ equality−checking: the rule
2 ∗ |− pi1(t1) = pi1(t2) : A , |− pi2(t1) = pi2(t2) : B(pi1(t)) −−−> t1 = t2 : Sigma x:A. B ∗∗/
3 object TupleEquality extends TypeBasedEqualityRule(Nil,Sigma.path) {
4 override def alternativeHeads:List[GlobalName] = List(Product.path)
5 override def applicableToTerm(tm: Term): Boolean = true
6
7 def apply(solver: Solver)(tm1: Term, tm2: Term, tp: Term)
8 (implicit stack: Stack, history: History): Option[Boolean]
9 = tp match {

10 case Sigma(x, tpA, tpB) =>
11 solver.check(Equality(stack, Proj1(tm1), Proj1(tm2), Some(tpA)))
12 Some(solver.check(Equality(stack, Proj2(tm1), Proj2(tm2),
13 Some(tpB ^? (x / Proj1(tm1))))))
14 case _ => None // should be impossible
15 }
16 }

5.2.6 Computation Rules

Computation rules implement the class ComputationRule, which takes as class parameter the
head symbol of the term to decide applicability. This is only a default implementation, though
– the governing method def applicable(tm : Term): Boolean can be overridden. The apply-method has
the following signature:
def apply(check: CheckingCallback)(tm: Term, covered: Boolean)

(implicit stack: Stack, history: History): Simplifiability

5Ibid.

5.2. IMPLEMENTING RULE SYSTEMS IN MMT 65

It returns an object of type Simplifiability that instructs the solver (or other CheckingCallback
instance) on how to recurse into a term. The latter has by and large three possible instances:

1. Simplify(result: Term): The rule can simplify the given term to the new term result.

2. RecurseOnly(positions: List[Int]): This rule can not simplify the term right now, but if the
subterms at the positions given in positions can be, this rule might become applicable.

3. Simplifiability.NoRecurse: This rule can not simplify the term at all (as long as the head does
not change). This is equivalent to RecurseOnly(Nil).

The solver can use the information returned by a ComputationRule to strategically recurse only
into those subterms that might cause a rule to become applicable, without unnecessarily
simplifying subexpressions or expanding definitions.

Example 5.5:
In the case of ∑-types, we have the following computation rules:

Γ⊢b⇒B

Γ⊢π` (⟨a , b⟩)↝a

Γ⊢a⇒A

Γ⊢πr (⟨a , b⟩)↝b

The implementation of the first one is presented in Listing 5.6. The second one is completely
analogous.

Line 5 is the intended case for the rule – a projection π` applied to a pair. In that case,
the rule can simplify by returning the first component of the pair a.

Line 6 To satisfy the precondition, we call inferType(b,false) if tm has not been checked to be
well-typed (i.e. covered is false).

Line 8 is the case where we have a projection π`, but (by exclusion) no pair construct as its
argument. In that case, the rule might become applicable if we manage to simplify
the first (and only) argument of the projection such that it becomes an actual pair,
so we return RecurseOnly(List(1)) to instruct the solver accordingly.

Line 9 is the default case, where tm is not a projection. By virtue of the class parameter
Proj1.path, this case should never happen, but the general information to return
(Simplifiability.NoRecurse) would be that this rule is never applicable to the term given,
unless the head changes (to an actual projection).

Listing 5.6: Computation Rule6

1 /∗∗ computation: the beta−reduction rule Proj1(<a,b>) = a ∗∗/
2 object Projection1Beta extends ComputationRule(Proj1.path) {
3 def apply(solver: CheckingCallback)(tm: Term, covered: Boolean)
4 (implicit stack: Stack, history: History) = tm match {
5 case Proj1(Tuple(a,b)) =>
6 if (!covered) solver.inferType(b,false)
7 Simplify(a)
8 case Proj1(_) => RecurseOnly(List(1))
9 case _ => Simplifiability.NoRecurse // should be impossible

10 }
11 }

66 CHAPTER 5. IMPLEMENTING RULES IN MMT (E.G. ∑-TYPES)

5.2.7 Subtyping Rules

Finally, to implement subtyping rules Mmt offers a generic class SubtypingRule, and conve-
niently a more specific class VarianceRule for the case where we want to declare an opera-
tor to be covariant or contravariant in its arguments. The former needs to implement an
applicable(tp1 : Term, tp2 : Term)-method, the latter takes a head symbol as class argument that
determines the applicability of the rule. In both cases, the apply-method has the signature
def apply(solver: Solver)(tp1: Term, tp2: Term)

(implicit stack: Stack, history: History) : Option[Boolean]

Example 5.6:
In the case of ∑-types, we have the derivable subtyping rule given in Theorem 5.1:

Γ⊢A′
<∶A Γ, x ∶ A′

⊢B′
<∶B

Γ⊢ ∑
x∶A′

B′
<∶∑
x∶A

B

The implementation of this rule is presented in Listing 5.7.

Line 7 deconstructs both types into ∑-types.

Line 8 instructs the solver to check that a1 is a subtype of a2.

Line 9 picks a new variable name xn not occuring in the current context.

Lines 10–13 instruct the solver to check that in the context extended by xn:a1 (stack ++ xn%a1),
b1 ^? (x1/OMV(xn)) is a subtype of b2 ^? (x2/OMV(xn)) (i.e the original variable
names are replaced by the one introduced in Line 9).

Listing 5.7: Subtyping Rule7

1 /∗∗ The variance rule
2 ∗ |−A1<:A2, x:A1|−B1<:B2 −−−> Sigma x:A1.B1 <: Sigma x:A2.B2 ∗∗/
3 object SigmaSubtype extends VarianceRule(Sigma.path) {
4 def apply(solver: Solver)(tp1: Term, tp2: Term)
5 (implicit stack: Stack, history: History) : Option[Boolean]
6 = (tp1,tp2) match {
7 case (Sigma(x1,a1,b1),Sigma(x2,a2,b2)) =>
8 solver.check(Subtyping(stack,a1,a2))
9 val (xn,_) = Common.pickFresh(solver,x1)

10 Some(solver.check(Subtyping(stack ++ xn%a1,
11 b1 ^? (x1/OMV(xn)),
12 b2 ^? (x2/OMV(xn))
13)))
14 case _ => None // should be impossible
15 }
16 }

After implementing the rules in Scala, we can import them into an Mmt theory. Including
the latter into any theory will then activate those rules. It makes sense to declare the symbols
and rules in separate theories, so we can reuse the same symbols with different sets of typing rules,

6Ibid.
7Ibid.

5.3. USING ∑-TYPES 67

as in Listing 5.8. Ultimately, we implement four theories in total: for the symbols (Symbols),
the rules (Rules), a theory that combines symbols and rules in the context of the basic typing
rules (see Figure 4.7) from LF (TypedSigma), and finally one that adds symbols and rules
on top of the full LF theory with dependent function types (LFSigma). We will roughly
follow this naming convention throught this part; the various theories for e.g. the symbols are
disambiguated by the namespaces (in this case http://gl.mathhub.info/MMT/LFX/Sigma).

Listing 5.8: The Rules Theory8

import rules scala : //Sigma.LFX.mmt.kwarc.info∣∣∣∣∣∣∣∣

theory Rules =
rule rules ?SigmaTerm ∣∣∣∣
rule rules ?TupleTerm ∣∣∣∣
rule rules ?Projection1Term ∣∣∣∣
rule rules ?Projection2Term ∣∣∣∣
rule rules ?SigmaType ∣∣∣∣
rule rules ?TupleEquality ∣∣∣∣
rule rules ?Projection1Beta ∣∣∣∣
rule rules ?Projection2Beta ∣∣∣∣
rule rules ?SigmaSubtype ∣∣∣∣

∣∣∣∣∣∣∣∣

theory TypedSigma : ur:?TermsTypesKinds =
include ?Symbols ∣∣∣∣
include ?Rules ∣∣∣∣

∣∣∣∣∣∣∣∣

theory LFSigma =
include ?TypedSigma ∣∣∣∣
include ur:? LF ∣∣∣∣

∣∣∣∣∣∣∣∣

The import statement in the first line of Listing 5.8 introduces an abbreviation for the
namespace scala://Sigma.LFX.mmt.kwarc.info, which by virtue of the scala-scheme deter-
mines the fully qualified class path of the scala objects referenced by the subsequently declared
rule constants.

5.3 Using ∑-Types
The theory in Listing 5.9 from the Math-in-the-Middle library serves as an example; it
uses ∑-types to implement the product of two vector spaces, by defining the corresponding
operations on the product space – since the latter is a natural occurence of Cartesian products
in mathematics, ∑-types are naturally ideal for formalizing products of spaces (analogous e.g.
product topologies, categories etc.). In fact, thanks to ∑-types,the definitions for the universes,
operations, units and inverses here conforms quite naturally to the usual informal presentation
of product spaces.

Listing 5.9: Product Spaces using Sigma Types9

theory Productspace : base:?Logic =
include ?Vectorspace ∣∣∣∣
include base:?ProductTypes ∣∣∣∣

product_universe : {F : field } vectorspace F → vectorspace F → type ∣∣

8https://gl.mathhub.info/MMT/LFX/blob/master/source/Sigma.mmt

http://gl.mathhub.info/MMT/LFX/Sigma
scala://Sigma.LFX.mmt.kwarc.info
scala
https://gl.mathhub.info/MMT/LFX/blob/master/source/Sigma.mmt

68 CHAPTER 5. IMPLEMENTING RULES IN MMT (E.G. ∑-TYPES)

= [F,v1,v2] v1.universe × v2.universe ∣∣ # 2 x_ 1 3∣∣∣∣
product_op : {F : field , v1: vectorspace F, v2: vectorspace F}
(v1 x_ F v2) → (v1 x_ F v2) → (v1 x_ F v2) ∣∣

= [F,v1,v2] [a, b] ⟨ ((v1.op) (πl a) (πl b)), ((v2.op) (πr a) (πr b))⟩ ∣∣ # 2 xop_ 1 3 ∣∣∣∣
product_unit : {F : field , v1 : vectorspace F, v2 : vectorspace F} v1 x_ F v2 ∣∣

= [F,v1,v2] ⟨ (v1.unit), (v2.unit) ⟩ ∣∣ # product_unit 1 2 3 ∣∣∣∣
product_inverse : {F : field , v1 : vectorspace F, v2 : vectorspace F}
(v1 x_ F v2) → (v1 x_ F v2) ∣∣

= [F,v1,v2] [x] ⟨ (v1. inverse) πl x, (v2. inverse) πr x ⟩ ∣∣ # product_inverse 1 2 3 ∣∣∣∣
product_scalarmult : {F : field , v1: vectorspace F, v2: vectorspace F}
F.universe → (v1 x_ F v2) → (v1 x_ F v2) ∣∣

= [F,v1,v2][α,v] ⟨ ((v1.scalarmult) α (πl v)), ((v2.scalarmult) α (πr v)) ⟩ ∣∣
product_scalarmult 1 2 3 ∣∣∣∣

9https://gl.mathhub.info/MitM/smglom/blob/master/source/algebra/modulsvectors.mmt

https://gl.mathhub.info/MitM/smglom/blob/master/source/algebra/modulsvectors.mmt

Chapter 6

LFX

LFX [LFX] is an Mmt archive that contains various features as extensions of LF. Two such
extensions are already part of the urtheories archive [OMU], namely PLF (see Remark 4.6) and
LFS [HKR14], that adds flexary operators and sequence arguments.

Many of the features in this chapter are primitives in homotopy type theory, and are hence
treated in some detail in [Uni13]. The contribution of this chapter consists, as the previous
chapter, in adapting the rules for the typing features covered here to the Mmt framework and
their implementation. Together and correspondingly modularly implemented, these features
yield a flexible, modular meta logical framework following the LATIN approach.

6.1 Coproducts

Coproducts A⊕B can be seen as disjoint union types – their introduction form is a simple
embedding, the elimination a case distinction on the constituent types A and B. In particular,
coproducts give us a relatively simply implementable mechanism for pattern matching.

Under propositions-as-types, coproducts are the type-level correspondants to logical dis-
junction. Additionally, they arise rather naturally as the (cateogory theoretical) dual notion to
simple Cartesian products.

To be more precise:

• For every a ∶ A and every type B, there is an element (a↪`B) ∶ A⊕B and an element
(Br↩a) ∶ B⊕A

• For c1, c2 ∶ C and c ∶ A⊕B, we have the elimination form (matchc{xÔ⇒C c1 ∣ c2 }) of
type C[x/c] (where x ∶ A may occur in c1, x ∶ B may occur in c2 and x ∶ A⊕B may occur
in C – the details regarding instantiating C are apparent from the rules in Figure 6.2)

• We have (matcha↪`B{xÔ⇒C c1 ∣ c2 }) = c1[x/a] ∶ C[x/a↪`B] and
(matchAr↩b{xÔ⇒C c1 ∣ c2 }) = c2[x/b] ∶ C[x/Ar↩b].

The grammar for coproducts is given in Figure 6.1

Remark 6.1: Function Addition
The elimination form basically gives us functions on ⊕-types via case distinction, each case
of which we can think of as a lambda expression. Hence it makes sense to add the following
abbreviation:

69

70 CHAPTER 6. LFX

Γ ∶∶= ⋅ ∣ Γ, x[∶ T][∶= T] contexts
T ∶∶= x ∣ type ∣ kind variables and universes

∣ T⊕T ∣ T↪`T ∣ T r↩T ∣matchT {xÔ⇒T T ∣ T } ⊕-types

Figure 6.1: Grammar for Coproduct-Types

Definition 6.1:

For f ∶∏x∶AC(x↪`B) and g ∶∏x∶B C(Ar↩x), let:

f⊕g ∶= λy∶A⊕B.matchy{xÔ⇒C(x) f(x) ∣ g(x)} ∶ ∏
x∶A⊕B

C(x)

(In the independent case f ∶ A→ C and g ∶ B → C, we get f⊕g ∶ A⊕B → C)

The implementation consists of a single computation rule for terms f⊕g.
Notably, [Uni13] uses lambda-expressions in the elimination form of ⊕-types directly.

While this is equivalent to our treatment in the presence of dependent function types, it
makes ⊕-types entirely dependent on function types, thus breaking modularity.

The basic rule system is given in Figure 6.2, but can be extended for a more desirable
behavior in presence of subtyping.

For any U with Γ⊢U univ:

Formation:
Γ⊢A⇒U Γ⊢B⇒U ′

Γ⊢A⊕B⇒max{U,U ′ }

Introduction:
Γ⊢a⇒A Γ⊢B⇒U

Γ⊢a↪`B⇒A⊕B

Γ⊢b⇒B Γ⊢A⇒U

Γ⊢Ar↩b⇒A⊕B

Elimination:

Γ, x ∶ A⊢C⇒U Γ⊢p⇒≡A⊕B Γ, x ∶ A⊢c1⇐C[x/x↪`B] Γ, x ∶ B⊢c2⇐C[x/Ar↩x
]

Γ⊢matchp{xÔ⇒C c1 ∣ c2 }⇒C[x/p]

Computation:

Γ⊢B⇒U Γ, x ∶ B⊢c2⇐C[x/Ar↩x
]

Γ⊢matcha↪`B{xÔ⇒C c1 ∣ c2 }↝c1[x/a]

Γ⊢A⇒U Γ, x ∶ A⊢c1⇐C[x/x↪`B]

Γ⊢matchAr↩b
{xÔ⇒C c1 ∣ c2 }↝c2[x/b]

Figure 6.2: Rules for Coproducts

In a categorial setting, coproducts are dual to certesian products as covered in Chapter 5.
As a result, the roles of introduction and elimination forms in our rule pattern are somewhat
reversed. Consequently, there are a couple of things to note about our rules:

• Under the Curry-Howard correspondence, coproducts A⊕B correspond to disjunctions

6.1. COPRODUCTS 71

A ∨B.

• This time, we have two introduction forms and one elimination form.

• The premises in the computation rules again guarantee that the preconditions for
computation rules are satisfied. If the injection and match expressions are known to be
well-typed, the premises can be skipped.

• Before, the type checking rules always governed generic expressions of the newly intro-
duced type – more precisely: a term type checks against the type constructor, if all
applications of the elimination forms to the term have the expected type. This works
well for dependent functions (by applying the function to a generic variable and checking
against the codomain) and ∑-types (by checking the two projections against the expected
types). In the case of coproducts this would translate to “a term p checks against A⊕B
if all pattern matches with cases A,B are applicable to p”. This rule would look like this:

For C =matchx{yÔ⇒U A ∣ B } ∶ Γ⊢matchp{xÔ⇒C x ∣ x}⇐C[x/p]

Γ⊢p⇐A⊕B

The crucial premise here is the second one, since to evaluate the match-expression, we
will need to infer the type of p. Hence this typing rule would in practice reduce to
checking whether the inferred type of p is a subtype of A⊕B, something the solver checks
as a default anyway.

• A representation (or η) rule in the sense that “every element of a ⊕-type can be represented
as an introduction form” does not exist. In general, a term p ∶ A⊕B can not be coerced
to be an introductory form, since while morally p is either an injection from A or from
B, it is impossible to determine which without p already being an injection.

• Note that the rules given here seem to break extensionality for functions: Assume
f ∶ A⊕B → C. Then λx∶A⊕B.matchx{yÔ⇒C f(y↪`B) ∣ f(Ar↩y)} is not equal to f ,
even though for any particular introduction form for A⊕B both functions agree.

It is thus debatable whether “equal for any particular introduction form” should imply
“equal everywhere”. If we answer this question positively we imply axiom K [HS02], which
is equivalent to term irrelevance for equality types1 and hence incompatible with e.g.
HoTT (see Section 6.5) and similar constructive systems. Hence, if we want to add an
equality rule to preserve extensionality, we should do so in a separate theory and exclude
it when formalizing constructive logics and type theories.

6.1.1 Subtyping Behavior of Coproducts

We have previously used the type checking rules as a justification for derivable subtyping rules.
Since a type checking rule for arbitrary elements of A⊕B does not exist (in a meaningful way),
we can instead introduce a subtyping rule and use that to derive type checking rules for the
introductory forms. The obvious guiding criterion to use is that any pattern match on A⊕B
needs to be applicable to any x ∶ S for S<∶A⊕B. This implies the following covariance rule:

Γ⊢A′
<∶A Γ⊢B′

<∶B

Γ⊢A′
⊕B′

<∶A⊕B

1Many thanks to Claudio Sacerdoti Coen for pointing this out to me.

72 CHAPTER 6. LFX

from which we can derive the following typing rules:

Γ⊢a⇐A Γ⊢B′
<∶B

Γ⊢a↪`B
′
⇐A⊕B

Γ⊢b⇐B Γ⊢A′
<∶A

Γ⊢A′
r↩b⇐A⊕B

This is especially useful in the presence of an empty type ∅ (see Section 6.2), where a↪`∅
now type checks against any A⊕_ (analogously for r↩). However, we also need to add an
additional equality rule then, since all left injections a↪`Bi should be equal (at some ⊕-type).
Hence:

Γ⊢a1≡a2 ∶A

Γ⊢a1↪`B1≡a2↪`B2 ∶A⊕B

Γ⊢b1≡b2 ∶B

Γ⊢A1r↩b1≡A2r↩b2 ∶A⊕B

6.1.2 Implementation

Given the rules in Figure 6.2 and the examples in Chapter 5, an implementation of Coproducts
is rather straight-forward.

Listing 6.1 and Listing 6.2 show excerpts of the associated Mmt theory and a toy ex-
ample for testing the implementation. Notably, both ⊕ and match are implemented with
flexary notations; a helper object (similar to ∑-types, see Chapter Chapter 5) takes care of
deconstructing expressions with multiple arguments into binary applications of the symbol.

Notably, coproducts are not very useful in and of themselves; however, in conjunction
with a unit type they are sufficient to construct finite types (see Section 6.2), and are used to
construct W-types (see Section 6.3).

Remark 6.2:
The notation of coproducts as an “additive” construct A⊕B is suggestive of a more general
correspondance:

Thinking of coproducts as sums, we can think about the result of iteratively taking the
coproduct of a fixed type B over some index type A; i.e. B⊕B⊕ . . .⊕B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¶
∣A∣ times

. Naturally, an

element of this type consists of some element b ∶ A and its index a ∶ A; i.e. we can identify
this type with the type A×B. Analogously, taking an indexed coproduct over a type family
B(a) we can think of the type ⊕a∶AB(a) as the dependent sigma type ∑a∶A B(a). In other
words: A product is an iterated sum, reminiscent of arithmetics.

Analogously, we can think of a dependent function type∏a∶AB(a) as the iterated product
B(a1) ×B(a2) × . . ., an element of which consists of exactly one element b ∶ B(a) for each
a ∶ A, which we can naturally interpret as a set of pairs, i.e. a function.

Note that this is merely an intuitive correspondence, but neither relevant nor helpful
from an implementation perspective.

6.2 Finite Types

Finite types3 are types with a fixed, finite number of elements. Their predetermined number
of elements can be exploited using case distinction. Their usefulness is immediately obvious

2https://gl.mathhub.info/MMT/LFX/tree/master/source
3also called enumeration types, however, this usually refers to (a priori mutually disjoint) types with finitely

many uniquely named elements.

https://gl.mathhub.info/MMT/LFX/tree/master/source

6.2. FINITE TYPES 73

Theories for Coproducts2

Listing 6.1: Symbols and Rules
(Coproducts.mmt)
theory Symbols =
Coprod # 1⊕. . . prec −10000∣∣∣∣
inl # 1 ↪l 2 prec −5 ∣∣∣∣
inr # 2 r↩ 1 prec −5 ∣∣∣∣
coprodmatch
2 match V1 . 3|. . . to 4
prec −9000∣∣∣∣

∣∣∣∣∣∣∣∣

theory FuncaddSymbol =
Addfunc # 1⊕. . . prec 0∣∣∣∣

∣∣∣∣∣∣∣∣

theory SimpleRules =
rule rules ?CoprodTerm ∣∣∣∣
rule rules ?inlTerm ∣∣∣∣
rule rules ?inrTerm ∣∣∣∣
rule rules ?MatchTerm ∣∣∣∣
rule rules ?MatchComp ∣∣∣∣
rule rules ?MatchEquality ∣∣∣∣
rule rules ?CoprodSubType ∣∣∣∣

∣∣∣∣∣∣∣∣

theory TypedCoproduct
: ur:?TermsTypesKinds =

include ?Symbols ∣∣∣∣
include ?SimpleRules ∣∣∣∣

∣∣∣∣∣∣∣∣

theory FuncaddRules =
rule rules ?AddFuncComp ∣∣∣∣

∣∣∣∣∣∣∣∣

theory LFCoprod =
include ?FuncaddSymbol ∣∣∣∣
include ?FuncaddRules ∣∣∣∣
include ?TypedCoproduct ∣∣∣∣
include ur:? LF ∣∣∣∣

∣∣∣∣∣∣∣∣

Listing 6.2: Example Theory Testing Coprod-
ucts (Test.mmt)
theory coprodtest

: LFX/Coproducts?LFCoprod =
A: type ∣∣∣∣
B: type ∣∣∣∣
a:A ∣∣∣∣
b:B ∣∣∣∣
C:type ∣∣∣∣
t: A⊕B ∣∣∣∣

inla : A⊕B ∣∣= (a ↪l B) ∣∣∣∣
inlb : A⊕B ∣∣= (A r↩ b) ∣∣∣∣

// shouldfail : A⊕B ∣∣= (B r↩ a) ∣∣∣∣

f : A → C ∣∣∣∣
g:B → C ∣∣∣∣
addfuncA: C ∣∣ = (f ⊕ g) t ∣∣∣∣
// shouldfail2 : C ∣∣ = (f ⊕ g) a ∣∣∣∣

Pred : C → type ∣∣∣∣
p: Pred (t match x .
f x | g x to C) ∣∣∣∣

q: Pred (t match y .
f y | g y to C) ∣∣
= p ∣∣∣∣

refleq : {c} Pred c ∣∣∣∣
claim2: Pred ((a ↪l B) match x .
f x | g x to C) ∣∣
= refleq (f a) ∣∣∣∣

typecheck: (A ⊕B) → C ∣∣
= (f ⊕ g) ∣∣∣∣

claim: Pred ((f ⊕ g) (a ↪l B)) ∣∣
= refleq (f a) ∣∣∣∣

∣∣∣∣∣∣∣∣

74 CHAPTER 6. LFX

when trying to formalize e.g. finite groups and functions between them, but they are also
ubiquitous in e.g. object-oriented programming languages. Naturally, it is sufficient to have for
each natural number n one type with n elements, since all finite types with the same number
of elements are isomorphic. Therefore we will focus on this approach, since it conveniently
introduces names for the members of finite types and spares us the trouble of having to label
them.

Starting with the empty type ∅, we face the question how to formally declare that this
type has no elements. Since we can always declare a new constant null ∶ ∅ we need to
make sure that the existence of this constant leads to a contradiction. We can do so by
allowing to construct a term of any type given an element of ∅, which (using Curry-Howard or
judgments-as-types) corresponds to the principle ex falso quodlibet. There are three ways to go
about this:

1. Declare a new primitive ↪Ae that given e ∶ ∅ and A ∶ U has type A,

2. use function types and axiomatically declare ↪A⋅ to have type ∅→ A, or

3. declare ∅ to be a subtype of any other type.

The obvious advantage of the second approach is that it allows using ↪A⋅ like an actual typed
function. The disadvantage is that using this approach requires function types to be present,
hence reducing modularity, and the advantage is negligable.

The third approach has the advantage that it obviates the need for an elimination form
↪⋅⋅ completely – a postulated element e ∶ ∅ already gives us an element of every other type,
namely itself.

Given an additional singleton type Unit with a single element ⋆, we can use the coproducts
implemented in Section 6.1 to construct the remaining finite types. This way, we can use the
elimination form for coproducts to pattern match an element of a finite type, obviating the
need for a dedicated elimination form. There are two ways to do this:

1. We simply define 0 ∶= ∅, 1 ∶= Unit, 2 ∶= 1⊕1, 3 ∶= 1⊕2, etc. The rules for coproducts
guarantee, that 2 has exactly two elements, namely 0 ∶= ⋆↪`1 and 1 ∶= 1r↩⋆. The
elements of 3 then are 0 ∶= ⋆↪`2, 1 ∶= 1r↩(⋆↪`1) and 2 ∶= 1r↩(1r↩⋆). Notably the
terms 1 ∶ 2 and 1 ∶ 3 are distinct – 2 is not a subtype of 3.

2. If we define ∅ via subtyping, we can alternatively define 0 ∶= ∅ or 0 ∶= ∅⊕∅, 1 ∶= Unit⊕0,
2 ∶= Unit⊕1, 3 ∶= Unit⊕2, etc. This way we can use the subtyping rules for coproducts
to guarantee that i <∶ j for i < j:

0 ∶= ⋆↪`∅ ∶ 1 ∶= Unit⊕0 <∶ Unit⊕N
1 ∶= Unitr↩(⋆↪`∅) ∶ 2 ∶= Unit⊕1 <∶ Unit⊕(Unit⊕N)

2 ∶= Unitr↩(Unitr↩(⋆↪`∅)) ∶ 3 ∶= Unit⊕2 <∶ Unit⊕(Unit⊕(Unit⊕N))

and i is the same expression at all numerical types. In particular, we can easily define
the successor function as succ(n) ∶= Unitr↩n.

Conveniently, defining ∅ to be a subtype of any other type allows for implementing both
variants.

6.2. FINITE TYPES 75

In the presence of function types, we can also define Unit as ∅→ ∅, knowing that the only
possible inhabitant of this type is the function ⋆ = λx∶∅. x = λx∶∅. ↪∅x. However, even using
this definition, we still have to provide a rule for the solver to be able to exploit this knowledge
(and to make sure that ↪∅x is the identity).

All of this leaves us with several options listed in Figure 6.3 and the basic rules in Figure 6.4.

∅ Unit higher finite types elimination
finite types primitive ↪⋅⋅ primitive primitive dedicated case construct

finite types + ⊕ primitive ↪⋅⋅ primitive definable using ⊕ match-terms

finite types + ∏ ↪A⋅ ∶ ∅→ A
Unit ∶= ∅→ ∅

⋆ ∶= λx∶∅. x
primitive dedicated case construct

finite types + ⊕ + ∏ ↪A⋅ ∶ ∅→ A
Unit ∶= ∅→ ∅

⋆ ∶= λx∶∅. x
definable using ⊕ match-terms

(column ∅ can be replaced by a subtyping rule)

Figure 6.3: Possible Implementations for Finite Types

For any U with Γ⊢U univ:

Formation:

Γ⊢∅⇒type Γ⊢Unit⇒type

Introduction:

Γ⊢⋆⇒Unit

Elimination:
Γ⊢e⇐∅ Γ⊢A⇒U

Γ⊢↪Ae⇒A

Equality:

Γ⊢a≡b ∶Unit

Computation (Optional):
Γ⊢A⇒U

Γ⊢↪Ae↝e

Subtyping (Optional):
Γ⊢A⇒U

Γ⊢∅<∶A

Figure 6.4: Basic Rules for Finite Types

Of course, constructing enumeration types and their elements by nesting ⊕-types and
injections is simple to formally specify and implement, but inconvenient to use in practice.
Furthermore, while it is possible to build up enumeration types using ⊕ even in the absence of
coproducts by adapting their rules, the most general and user-friendly way to implement finite
types is via a primitive type constructor on actual integers.

76 CHAPTER 6. LFX

We can do so using a type Nat of number literals, which we discuss further in Section 6.2.1:
We implement a type constructor enum(i) for the type i, and analogously a constructor
casej(i) for i ∶ j. In this case, it is desirable that enum(x) is a valid type even if x is a variable
or otherwise undetermined and casej(x) checks against type enum(j) iff x < j. If x and
j are not definite number literals, this implies proving a judgment Γ⊢x < j, which requires
corresponding proof rules for the ordering on natural numbers and a way for the user (and the
solver) to construct (and find) such proofs.

If we want to consider enumeration types as subtypes of each other, the argument j in
casej(i) becomes unnecessary, so we can write case(i) instead.

Remark 6.3:
In service of clarity, I will not introduce object-level judgments here, since they require
corresponding proof rules which are not really relevant for this chapter. Suffice it to say that
Mmt offers a method Solver.prove(tm : Term), that returns true if and only if the Solver manages
to find any element p of type tm. This method can cover premises of the form Γ⊢x < y for
any choice of object-level judgments (and their proofs). Of course this immediately makes
type checking undecidable, and the power of the rule system ultimately depends on the
power of the internal prover, which in the case of Mmt is rather weak.

Figure 6.5 gives a set of rules for these enum-types, where n represents the (or any variant
of, in the case of subtyping) defined finite type corresponding to the (definite) number literal
n, and n represents an element of such a type (again, for a definite number n). Which of the
optional rules to implement depends on which of the implementation approaches discussed
above we choose.

To summarize: Finite types give us various ways of implementing their different aspects,
depending on which additional typing features are available in any context and how we want
them to behave with respect to subtyping. Note however, that implementing all constructors
as primitives still allows us to reuse the symbols already implemented for other typing features:
A primitive elimination form for finite types can reuse the match-symbol from the Symbols

theory for coproducts, and we can reuse the ⊕-symbol to construct higher finite types even in
the absence of the rules governing coproducts. Even the rules governing these symbols can be
reused with minimal adaptation (to restrict the types that are valid arguments to finite types).

This allows for developing library content with minimal dependencies, allowing for adding
new features (e.g. coproducts or function types) as needed without reimplementing content
that was developed without these features. The additional features only provide new definitions
for the already implemented formalizations without changing their semantics significantly.
Consequently, we will omit the rules for the constructs already covered in the previous sections
in the basic rules listed in Figure 6.4.

6.2.1 Generic Literals in Mmt

To implement enum and case, we need to be able to explicitly use numbers and have them be
syntactically valid and semantically meaningful Mmt terms – i.e. we want them to be literals.
The Mmt API offers a class RealizedType for generic literals, which combine a syntactic type
(an inhabitable Mmt term) with a SemanticType. A SemanticType represents an actual Scala class
holding the values of our literals, as well as a lexer used to parse them in surface syntax.

6.2. FINITE TYPES 77

Formation:
Γ⊢i⇐Nat

Γ⊢enum(i)⇒type

Introduction:

Γ⊢i⇐Nat Γ⊢j⇐Nat Γ⊢i < j

Γ⊢casej(i)⇒enum(j)
(

Γ⊢i⇐Nat

Γ⊢case(i)⇒enum(i + 1)
)

Elimination:
(pattern match rule)

Type Checking (Optional):
Γ⊢i < j

Γ⊢case(i)⇐enum(j)

Equality: Computation (Optional):

Γ⊢enum(n)↝n Γ⊢case(n)↝n

Subtyping (Optional):
Γ⊢i < j

Γ⊢enum(i)<∶enum(j)

Figure 6.5: Convenience Rules for Finite Types

Additionally, the Mmt API already implements SemanticTypes for the most prevalent
literals and their corresponding Scala implementations, namely BigInt (unrestricted inte-
gers), String, Double (floating point numbers), Boolean etc. In our specific case, we can use
StandardNat extends SemanticType, which uses BigInt values restricted to positive numbers.

Mmt’s urtheories library [OMU] also already has a theory NatSymbols with a type NAT

that we want to use as a syntactic type. To couple the two, we import a rule in an Mmt theory,
which we either implement in Scala (using the class RealizedType), or even more conveniently by
import the parametric rule Realize with the name of the SemanticType and the syntactic type as
parameters:

import rules scala : //lf . mmt.kwarc.info∣∣∣∣∣∣∣∣
import uom scala://uom.api.mmt.kwarc.info∣∣∣∣∣∣∣∣

theory NatLiteralsOnly =
include ?NatSymbols ∣∣∣∣
rule rules :?Realize NAT uom:?StandardNat∣∣∣∣

∣∣∣∣∣∣∣∣

Hence, by importing the above theory we can use integer literals which will be assigned the
principal type NatSymbols?NAT .

6.2.2 Implementation and Irrelevance Rules

One noteworthy aspect of the rules in Figure 6.4 is that the equality rule tells us that all terms
of a specific type are equal – in other words, the type Unit has (at most, i.e. in this case)

78 CHAPTER 6. LFX

exactly one element. While mathematically both of these statements are logically equivalent,
they are intrinsically different from the point of view of an implementation.

In an implementation, to leverage the first statement we need two syntactically distinct
terms that can then be shown to be equal. Hence this rule will only ever become relevant in
presence of two distinct terms of the same type Unit. The second statement however tells us
that whenever we need any term of type Unit, e.g. to solve a variable of type Unit, there is
exactly one element that we can use.

There is a dedicated rule class for these situations, namely TypeBasedSolutionRules. These not
only extend TypeBasedEqualityRules, but also tell the system that which term of the given type is
used is irrelevant, and more specifically, how a variable of this type should be solved. This is
particularly relevant in the presence of judgments-as-types and proof arguments, where usually
the specific term (i.e. proof) of a given judgment type J is irrelevant, as long as there is any
such term (this is called proof irrelevance), in which case the solution rule can activate the
prover.

Example 6.1:
The solution rule for the Unit type is given in Listing 6.3.

Line 2 makes this rule applicable also to Pi-terms. This is to guarantee compatibility when
defining Unit as the type ∅→ ∅ =∏_∶∅∅.

Line 5 checks that tp is the Unit type. The Unit.unapply-method also takes care of the case
∅→ ∅. If tp is the unit type, we return ⋆ as a solution.

Listing 6.3: The solution rule for Unit 4

1 object UnitIrrelevance extends TypeBasedSolutionRule(Nil,Unit.path) {
2 override def alternativeHeads: List[GlobalName] = List(Pi.path)
3 override def solve(solver: Solver)(tp: Term)
4 (implicit stack: Stack, history: History): Option[Term] = tp match {
5 case Unit(true) => Some(Unit.elemtm)
6 case _ => None
7 }
8 }

Listing 6.4 shows the Mmt theories associated with all the above options for finite types.
Note their modular development, offering theories that mix in basic LF, or coproducts, or
both, with or without subtyping. Figure 6.6 shows the corresponding development graph with
the symbol theories at the bottom.

Notably, finite types allow us to implement finite functions in an exploitably computational
manner. As an example, Listing 6.5 shows a formalization of the finite group Z/2Z and its
group operation in such a manner, that the solver manages to compute 0 ○ 0 = 0 from the
definition of the operation. While the definition of op is syntactically ugly, one could imagine
using a structural feature (see Section 6.3) specifically to introduce finite functions.

4https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/FiniteTypes/Rules.
scala

5https://gl.mathhub.info/MMT/LFX/tree/master/source - note that the theory development used in the
actual implementation is only a fragment of the more modular version described here.

https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/FiniteTypes/Rules.scala
https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/FiniteTypes/Rules.scala
https://gl.mathhub.info/MMT/LFX/tree/master/source

6.2. FINITE TYPES 79

Theories for Coproducts5

Listing 6.4: Symbols and Rules
(FiniteTypes.mmt)
namespace http://mathhub.info/MMT/LFX/Finite ∣∣∣∣∣∣∣∣
import rules scala : //FiniteTypes. LFX.mmt.kwarc.info∣∣∣∣∣∣∣∣

theory Symbols =
emptyType # ∅∣∣∣∣
emptyFun # 1 ∅f 2 prec −900 ∣∣∣∣
UNIT ∣∣∣∣
unite # ⋆ ∣∣∣∣

∣∣∣∣∣∣∣∣

theory TypedRules =
include ?Symbols ∣∣∣∣
include ur:?Typed ∣∣∣∣
include ur:?Kinded ∣∣∣∣
rule rules ?EmptyTypeFormation ∣∣∣∣
rule rules ?UnitTypeFormation ∣∣∣∣
rule rules ?UnitIntro ∣∣∣∣
rule rules ?EmptyElim ∣∣∣∣
rule rules ?UnitIrrelevance ∣∣∣∣

∣∣∣∣∣∣∣∣

theory SubtypedRules =
include ?TypedRules ∣∣∣∣
rule rules ?EmptySub ∣∣∣∣
rule rules ?EmptyFunComputation ∣∣∣∣

∣∣∣∣∣∣∣∣

theory CoprodRules =
include ?TypedRules ∣∣∣∣
include ../ Coproducts?TypedCoproduct ∣∣∣∣

∣∣∣∣∣∣∣∣

theory LFFiniteBase =
include ur:? LF ∣∣∣∣
include ?TypedRules ∣∣∣∣
rule rules ?UnitComputation ∣∣∣∣
rule rules ?UnitElemComputation ∣∣∣∣
rule rules ?EmptyFunComputation ∣∣∣∣

∣∣∣∣∣∣∣∣

theory LFFiniteCoprod =
include ?LFFiniteBase ∣∣∣∣
include ?CoprodRules ∣∣∣∣

∣∣∣∣∣∣∣∣

theory EnumSymbols =
ENUM # ENUM 1 ∣∣∣∣
CASE # CASE 1 ∣∣∣∣

∣∣∣∣∣∣∣∣

theory EnumRules =
include ur:?NatLiteralsOnly ∣∣∣∣
include ?EnumSymbols ∣∣∣∣
rule rules ?EnumFormation ∣∣∣∣

rule rules ?CaseIntroduction ∣∣∣∣
rule rules ?CaseTyping ∣∣∣∣

∣∣∣∣∣∣∣∣

theory EnumSubtyped =
include ?EnumRules ∣∣∣∣
include ?SubtypedRules ∣∣∣∣
rule rules ?EnumSubtyping ∣∣∣∣

∣∣∣∣∣∣∣∣

theory EnumCoprodRules =
include ?EnumRules ∣∣∣∣
include ?CoprodRules ∣∣∣∣
rule rules ?EnumComputation ∣∣∣∣
rule rules ?CaseComputation ∣∣∣∣

∣∣∣∣∣∣∣∣

theory EnumLF =
include ?LFFiniteBase ∣∣∣∣
include ?EnumRules ∣∣∣∣
include ur:?Ded ∣∣∣∣
include ur:?NatRels ∣∣∣∣

∣∣∣∣∣∣∣∣

theory EnumLFCoprod =
include ?EnumCoprodRules ∣∣∣∣
include ?EnumLF ∣∣∣∣

∣∣∣∣∣∣∣∣

theory EnumLFSubtyped =
include ?EnumSubtyped ∣∣∣∣
include ?EnumLF ∣∣∣∣

∣∣∣∣∣∣∣∣

theory EnumLFCoprodSubtyped =
include ?EnumLFCoprod ∣∣∣∣
include ?EnumLFSubtyped ∣∣∣∣

∣∣∣∣∣∣∣∣

Listing 6.5: Finite Functions Example
(test.mmt)
theory finitetest : ?EnumLFCoprodSubtyped =

Zmod2Z = ENUM 2 ∣∣∣∣
O : Zmod2Z ∣∣= CASE 0 ∣∣∣∣
op : Zmod2Z → Zmod2Z → Zmod2Z ∣∣
= [a,b] a match x.

b | (b match y.
a | O | y

to Zmod2Z) | x
to Zmod2Z ∣∣# 1 ○2 ∣∣∣∣

P2 : Zmod2Z → type ∣∣∣∣

claim : P2 O ∣∣∣∣
claim2 : P2 (O ○O) ∣∣ = claim ∣∣∣∣

∣∣∣∣∣∣∣∣

80 CHAPTER 6. LFX

Figure 6.6: A Modular Development Graph for Finite Types

6.3 W-Types

W-Types were introduced in [ML94] to represent wellorderings, but were shown to be able to
represent many other inductively defined sets in Martin-Löf style type theories as well (see
[Dyb97]). The central idea is to define an inductive type from the number of constructors n of
the type and their arities an with respect to the type that is being defined; the introduction
and elimination forms then assure that the resulting type represents an initial algebra.

Ignoring the category theory involved, how to represent inductive types as W-types is best
explained by example:

Example 6.2:
• Natural numbers have a constant constructor 0 ∶ N (of arity 0) and a unary constructor
S ∶ N→ N (of arity 1). We can encode the number of constructors as the type 2 and
the arities as the types 0 and 1.

Their W-type would thus be N ∶= Wx∶2matchx{yÔ⇒type 0 ∣ 1}.

• Lists over a type A have a constant constructor NilA ∶ ListA, and for each a ∶ A a unary
constructor appenda ∶ ListA → ListA. We encode the number of constructors as the type
Unit⊕A (i.e. each case appenda is considered a single unary constructor).

Their W-type would thus be ListA ∶= Wx∶Unit⊕Amatchx{yÔ⇒type 0 ∣ 1}.

• A binary tree over a type A is either a leaf a ∶ A (constant constructor), or a node
consisting of an element a ∶ A and two subtrees (one constructor of arity 2 for every
a ∶ A).

6.3. W-TYPES 81

Their W-type would thus be TreeA ∶= Wx∶A⊕Amatchx{yÔ⇒type 0 ∣ 2}.

As the examples show, constructors that depend on an element of another type A are
considered separate constructors for each a ∶ A.

Remark 6.4:
Since the number and arities of constructors in a W-type are almost always finite but need
encoding as types, W-types (at least as described here) are almost useless without finite
types. Moreover, dependent inductive types such as lists over a type A additionally require
coproducts.

However, note that our W-types do not strictly require coproducts or finite types a priori
– they are merely a lot less useful without these features.

As introduction form for a W-type W ∶= Wx∶AB(x), we have a supremum-operator
supc{xÔ⇒a(x)}, where c ∶ A tells us the constructor case, x ∶ B(c) is a variable that represents
the inductive parameters needed, and a(x) ∶W represents the arguments for the constructor.
How this works is again best understood by example:

Example 6.3:
• For natural numbers N ∶= Wx∶2matchx{yÔ⇒type 0 ∣ 1} we get:

0 ∶= sup0{xÔ⇒↪Nx} succ(n) ∶= sup1{xÔ⇒n}

• For lists ListA ∶= Wx∶Unit⊕Amatchx{yÔ⇒type 0 ∣ 1} we get:

NilA ∶= sup⋆↪`A{xÔ⇒↪ListAx} appenda(`) ∶= supUnitr↩a{xÔ⇒`}

• For trees TreeA ∶= Wx∶A⊕Amatchx{yÔ⇒type 0 ∣ 2} we get:

Leaf(a) ∶= supa↪`A{xÔ⇒↪TreeAx}

Node(a, s, t) ∶= supAr↩a{xÔ⇒matchx{yÔ⇒TreeA s ∣ t}}

We can think of the argument a(x) in supc{xÔ⇒a(x)} for a type W ∶= Wx∶AB(x) as a
function that assigns each parameter position of type W of a constructor (such as the two
subtrees in the last example) to the corresponding argument. In the constant cases, x has
type ∅ and we need to construct an element of W from it, hence in these cases the argument
is always ↪Wx.

Remark 6.5:
Note that the body of a sup-expression is basically a λ-expression. Indeed, given function
types we can instead write sup simply as supc(f) for a function f ∶ B(c)→ Wx∶AB(x).

Elimination of W-Types is cumbersome and technical, so it is worth going into some detail.
To eliminate an element of a type W ∶= Wc∶AB, we want to define a function f out of W with
target type C(w) (for w ∈ W) via well-founded recursion. For every constructor case c ∶ A,
we have an arity of B(c), so we would have to define f on c and the B(c) many (recursive)

82 CHAPTER 6. LFX

arguments of type W . The latter can be encoded (or thought of) as a function gc ∶ B(c)→W .
Additionally, we need to be able to use the recursive values of the very function f we are
defining on the recursive arguments encoded in gc. These we can similarly think of encoded as
a function hc,gc ∶∏b∶B(c)C(gc(b))

Hence, to be able to define f we need an element c ∶ A, a way to obtain gc(y) ∶W for any
y ∶ B(c) for the recursive arguments, and a way to obtain h(b) ∶ C(gc(b)) for any b ∶ B(c). The
easiest way to do so is to have the elimination constructor bind variables for these, some of them
representing (dependent) functions. This requires function types, of course. In the absence of
function types, the rules governing them can be added without making the symbols associated
(lambda-abstraction, function type constructors etc.) available to the user. Alternatively,
one could implement dedicated syntactic constructs that basically mirror the application of
functions in the particular context of recursive definitions on W-types, which is even more
cumbersome, but theoretically straight-forward. I will hence for simplicities sake assume
function types to be present in the remainder of this Section.

Consequently, we introduce an elimination operator rec(w){(c, g, h)Ô⇒C(w)e(c, g, h)},
with the defining equation:

rec(supd{xÔ⇒a(x)}){(c, g, h)Ô⇒C(supd{xÔ⇒a(x)})e(c, g, h)}

= e (d, λx∶B(d). a(x), λy∶B(d). rec(a(y)){(c, g, h)Ô⇒C(supd{xÔ⇒a(x)})e(c, g, h)}) ,

where e corresponds to the inductive definition of our function, c to the constructor case of the
input, g to the parameters of the constructor, and h to the recursive calls on these parameters.

Example 6.4:
• For natural numbers N ∶= Wx∶2matchx{yÔ⇒type 0 ∣ 1}, let us consider the factorial
function defined via induction, i.e. we need to encode the two cases 0! ∶= 1 and
succ(n)! ∶= succ(n) ⋅ n!, where we obtain n from the bound variable g and n! from the
variable h (assuming we have a multiplication already). In the case where n = succ(m),
we have c = 1 and B(c) = 1, hence we can only apply g and h to ⋆ and obtain g(⋆) =m
and h(⋆) =m!. So:

n! ∶= rec(n){(c, g, h)Ô⇒Nmatchc{xÔ⇒N 1 ∣ succ(g(⋆)) ⋅ h(⋆)}}

By the above definition, we have

2 = sup1{xÔ⇒1} = sup1{xÔ⇒sup1{xÔ⇒0}} = sup1{xÔ⇒sup1{xÔ⇒sup0{xÔ⇒↪Nx}}}

hence using the defining equation for rec, we get

6.3. W-TYPES 83

2! = (sup1{xÔ⇒1})!

= rec(sup1{xÔ⇒1}){(c, g, h)Ô⇒Nmatchc{xÔ⇒N 1 ∣ succ(g(⋆)) ⋅ h(⋆)}}

=match1{xÔ⇒N 1 ∣ succ((λy∶1. 1)(⋆)) ⋅ (λy∶1. 1!)(⋆)}

= succ(1) ⋅ 1!

= succ(1) ⋅ rec(1){(c, g, h)Ô⇒Nmatchc{xÔ⇒N 1 ∣ succ(g(⋆)) ⋅ h(⋆)}}

= succ(1) ⋅ rec(sup1{xÔ⇒0}){(c, g, h)Ô⇒Nmatchc{xÔ⇒N 1 ∣ succ(g(⋆)) ⋅ h(⋆)}}

= succ(1) ⋅match1{xÔ⇒N 1 ∣ succ((λy∶1. 0)(⋆)) ⋅ (λy∶1. 0!)(⋆)}

= succ(1) ⋅ succ(0) ⋅ 0!

• For lists ListA ∶= Wx∶Unit⊕Amatchx{yÔ⇒type 0 ∣ 1}, let us consider concatenation
of lists `1 ∶∶∶ ` for a fixed list `. In the case where `1 = NilA, we return `, in the case
`1 = appenda(r), the a is encoded in c = Unitr↩a and we return appenda(r ∶∶∶ `).
Hence:

`1 ∶∶∶ ` ∶= rec(`1){(c, g, h)Ô⇒ListAmatchc{xÔ⇒ListA ` ∣ appendx(h(⋆))}}

• For trees TreeA ∶= Wx∶A⊕Amatchx{yÔ⇒type 0 ∣ 2}, we can define the topological
order: O(Leaf(a)) ∶= appenda(NilA) and O(Node(a, s, t)) ∶= appenda(O(s) ∶∶∶ O(t)).
Hence:

O(t) ∶= rec(t){(c, g, h)Ô⇒ListAmatchc{xÔ⇒ListA appendx(NilA) ∣ appendx(h(0) ∶∶∶ h(1))}}

The resulting grammar is given in Figure 6.7, the rules are given in Figure 6.8. Again there
are several things to note:

• W-types do not correspond to a logical connective or quantifier under the Curry-Howard
correspondence; however, the rec-elimination (using either Curry-Howard or judgments-
as-types) enables proofs by well-founded induction on W-types.

• In an implementation, sup needs to carry the governing W-type in order for the introduc-
tion rule to be able to infer the type of a W-expression. Since it is usually clear which
the intended type is, we will continue to omit it outside of the rules.

• The computation rule’s premises can again be omitted if the expression is already known
to be well-typed.

Γ ∶∶= ⋅ ∣ Γ, x[∶ T][∶= T] contexts
T ∶∶= x ∣ type ∣ kind variables and universes

∣ Wx∶T T ∣ supT {xÔ⇒TT } ∣ rec(T){(x,x, x)Ô⇒TT } W-types

Figure 6.7: Grammar for Coproduct-Types

84 CHAPTER 6. LFX

For any U with Γ⊢U univ:

Formation:
Γ⊢A⇒U Γ, x ∶ A⊢B⇒U ′

Γ⊢W
x∶A

B⇒max{U,U ′ }

Introduction:
Γ⊢c⇐A Γ, x ∶ B[x/c]⊢a⇐W

x∶A
B

Γ⊢supc{xÔ⇒Wx∶AB
a}⇒W

x∶A
B

Elimination:
For C ′ ∶= C[c/supc{xÔ⇒Wx∶A Bg(x) }]:

Γ⊢w⇒≡ W
x∶A

B Γ, c ∶ W
x∶A

B⊢C⇒U Γ, c ∶ A,g ∶ B[x/c]→ W
x∶A

B,h ∶ ∏
y∶B[x/c]

C[c/g(y)]⊢e⇐C′

Γ⊢rec(w){(c, g, h)Ô⇒Ce}⇒C[c/w]

Computation:
For d ∶= supc′{xÔ⇒Wa}, g′ ∶= λx∶B[x/c′]

. a, and
h′ ∶= λy∶B[x/c′]

. rec(a[x/y]){(c, g, h)Ô⇒C[c/d]e}:

Γ⊢d⇒W ′ Γ,w ∶W ′⊢rec(w){(c, g, h)Ô⇒Ce}⇒C[c/w]

Γ⊢rec(d){(c, g, h)Ô⇒Ce}↝e[c/c′][g/g′][h/h′]

Figure 6.8: Rules for W-Types

Remark 6.6: Equality and Subtyping
There are several subtyping behaviors imaginable for W-types:

• For inductive types with named constructors, one would usually want the names to
matter, such that e.g. the type of natural numbers and the type of lists over the Unit-
type are distinct. Since both are represented as the type Wx∶2matchx{yÔ⇒type 0 ∣ 1},
this is impossible by virtue of W-types being anonymous.

The intended behavior could be recovered by having W-types carry an additional label
for each constructor.

• One might want any distinct W-types to be unrelated. This is the behavior in the
absence of any additional rules.

• One might want an inductive type A to be equal to a type B iff they
have the same number of constructors with the same arities irrespective
of the order – e.g. Wx∶A⊕Bmatchx{yÔ⇒type C1 ∣ C2 } is the same as
Wx∶B⊕Amatchx{yÔ⇒type C2 ∣ C1 }. This makes sense intuitively and would be
easily representable as an equality rule, but every call of the rule would be computa-
tionally expensive, since it would have to check equality on any possible permutation
of the constructors and their arities as a premise.

• Finally, one might want an inductive type W1 to be a subtype of W2 iff all constructor
cases of W1 are also constructors of W2 – i.e. if there is an embedding from W1 to W2.

6.3. W-TYPES 85

This can be ill-defined, if W2 has more than one constructor case with the same base
type and arity (i.e. there is no unique embedding). Consider e.g. W2 = Wx∶A⊕A 0 and
W1 = Wx∶A 0 – in this situation it is unclear which of the two (constant) constructors
of W2 the element of W1 should correspond to.

This behavior can again be achieved by having W-types carry labels for the constructors,
in which case the ambiguity can be resolved by demanding that the labels match for
intended subtypes.

6.3.1 Implementation

From an implementation perspective, W-types are conveniently simple and fall neatly into
our pattern of rules. Consequently, implementing them in Mmt is straight-forward; the
corresponding Mmt-theory is presented in Listing 6.6.

Listing 6.6: Theories for W-types6

theory Symbols =
wtype # W V1T . 2 prec −10000 ∣∣∣∣
sup # sup 2 , V1 Ô⇒ 3 to 4 prec −8000 ∣∣∣∣
rec # rec 4 , V1 , V2 , V3 Ô⇒ 5 to 6 prec −8000 ∣∣∣∣

∣∣∣∣∣∣∣∣

theory Rules =
rule rules ?WTypeFormation ∣∣∣∣
rule rules ?SupIntroduction ∣∣∣∣
rule rules ?WEquality ∣∣∣∣
rule rules ?RecElimination ∣∣∣∣
rule rules ?RecComputation ∣∣∣∣

∣∣∣∣∣∣∣∣

From a user perspective however, W-types are incredibly inconvenient and unintuitive,
counter to our goal of being as close to mathematical practice as possible. Listing 6.7 shows as
an example the natural numbers with inductively defined addition on them.

Listing 6.7: Natural Numbers on W-types7

theory Wtest : LFX/WTypes?LFW =

beta : ENUM 2 → type ∣∣
= [x] x match y. ∅ | UNIT | ∅ to type ∣∣∣∣

N : type ∣∣ = W x:ENUM 2 . (beta x) ∣∣∣∣

zeroN : N ∣∣ = sup (CASE 0) , x Ô⇒ (x ∅f N) to N ∣∣∣∣
S : N→ N ∣∣ = [x : N] sup (CASE 1) , y Ô⇒ x to N ∣∣∣∣

plusN : {n:N,m:N} N∣∣ # 1 + 2 prec 5 ∣∣
= [n][m] (rec m,c,g,h Ô⇒ (c match (ENUM 2), x. n | S (h x) | x to N) to N) ∣∣∣∣

// test : 0+0=0 ∣∣∣∣
Eq : N→ type ∣∣∣∣
eq : Eq (zeroN) ∣∣∣∣

claim : Eq (plusN zeroN zeroN) ∣∣ = eq∣∣∣∣
∣∣∣∣∣∣∣∣

6https://gl.mathhub.info/MMT/LFX/blob/master/source/WTypes.mmt
7https://gl.mathhub.info/MMT/LFX/blob/master/source/test.mmt

https://gl.mathhub.info/MMT/LFX/blob/master/source/WTypes.mmt
https://gl.mathhub.info/MMT/LFX/blob/master/source/test.mmt

86 CHAPTER 6. LFX

6.3.2 Structural Features

We can remedy this inconvenience by providing a structural feature that offers a more
convenient and intuitive syntax and elaborates into W-types, giving users a way to specify
inductive types without having to use the cumbersome syntax offered by W-types – or having
to know about them at all. The goal is to formalize natural numbers more akin to this:
induct Nats =
Nat : type ∣∣ # N ∣∣∣∣
Zero : N ∣∣ # O ∣∣∣∣
Succ : N→ N ∣∣ # S 1 ∣∣∣∣

∣∣∣∣∣∣∣∣

A structural feature is an extension of the class StructuralFeature. Firstly, it instructs the
parser how to parse the header of an instance of this feature (e.g. induct [name] =). For
this, the structural feature has to provide a notation. The header is followed by an optional
body of a theory (e.g. containing the declarations Nat , Zero and Succ). The parser wraps
any application of the header notation into an object of class DerivedDeclaration, holding the
components provided in the header and the optional body.

Secondly, after parsing, this DerivedDeclaration is passed on to the StructuralFeature, which
returns an Elaboration, holding a list of Mmt declarations computed from the DerivedDeclaration.
The details on implementing derived declarations and structural features are sketched in [Ian17]
and thus omitted here.

For inductive types, we want two structural features: One that elaborates into a W-Type
and its constructors, and one for the elimination form.8 The keywords for these features are
set as induct and def respectively, which allows us to implement natural numbers and addition
in surface syntax as in Listing 6.8.

Listing 6.8: W-Types with Structural Features9

induct Nats () ∣∣ =
Nat : type ∣∣ # N∣∣∣∣
Zero : N ∣∣ # O ∣∣∣∣
Succ : N→ N∣∣ # S 1 ∣∣∣∣

∣∣∣∣∣∣∣∣

Ntest : N ∣∣ = O ∣∣∣∣
Ntest2 : N ∣∣ = S (S Ntest) ∣∣∣∣

def addition (n : N) ∣∣ =
add : N→ N∣∣ # 1 + 2 ∣∣∣∣
Zero = n ∣∣∣∣
Succ = [m] S (add m) ∣∣∣∣

∣∣∣∣∣∣∣∣
P : N→ type ∣∣∣∣
pzero : P O ∣∣∣∣
Ptwo : P (S (S O)) ∣∣∣∣
Ntest3 : N ∣∣ = Ntest + Ntest2 ∣∣∣∣
claim : P (O + O) ∣∣= pzero ∣∣∣∣
claim2 : P((S O) + (S O)) ∣∣ = Ptwo ∣∣∣∣

8The full implementation of these is omitted here and can be found at https://gl.mathhub.info/MMT/LFX/
blob/master/scala/info/kwarc/mmt/LFX/WTypes/Features.scala

9Ibid.

https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/WTypes/Features.scala
https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/WTypes/Features.scala

6.3. W-TYPES 87

All declarations in an induct or def -environment are bundled into the body of a theory,
which is itself wrapped into a DerivedDeclaration d. This declaration is then passed on to the
StructuralFeature’s elaborate-method, which in the case of induct computes from them the
appropriate W-type (e.g. for N) and the constructors (e.g. Zero and Succ), and in the
case of def the corresponding function defined by a rec-expression. We can pass additional
parameters to the structural feature in the header of an induct or def environment, to
allow for e.g. polymorphic W-Types or inductive functions with arity > 1 (as in addition),
as shown with lists and binary trees in Listing 6.9.

Listing 6.9: Lists and Trees 10

induct Lists (B:type) ∣∣ =
List : type ∣∣ # List 1 ∣∣∣∣
Nil : List ∣∣ # Nil 1 ∣∣∣∣
Cons : B → List → List ∣∣ # 2 ~> 3∣∣∣∣

∣∣∣∣∣∣∣∣

def Concatenation (B : type, ls : List B) ∣∣ =
conc : List B → List B ∣∣ # 2 ++ 3∣∣∣∣
Nil = ls ∣∣∣∣
Cons = [b:B,l : List B] b ~> (conc l) ∣∣∣∣

∣∣∣∣∣∣∣∣

induct Trees (B : type) ∣∣ =
Tree : type ∣∣ # Tr 1 ∣∣∣∣
Leaf : B → Tree ∣∣ # Lf 2∣∣∣∣
Node : B → Tree → Tree → Tree ∣∣# Nd 2 3 4 ∣∣∣∣

∣∣∣∣∣∣∣∣

def topoSort (B : type) ∣∣ =
sort : Tree B → List B ∣∣ # topsort 2∣∣∣∣
Leaf = [b] b ~> (Nil B) ∣∣∣∣
Node = [b,s,t] b ~> ((sort s) ++ (sort t)) ∣∣∣∣

∣∣∣∣∣∣∣∣

A : type ∣∣∣∣
a1 : A ∣∣∣∣
a2 : A ∣∣∣∣
a3 : A ∣∣∣∣
test1 : Tr A ∣∣ = Lf a1 ∣∣∣∣
test2 : Tr A ∣∣ = Nd a2 test1 test1 ∣∣∣∣
test3 : List A ∣∣ = topsort test2 ∣∣∣∣

Remark 6.7: Structural Features for Induction
While we use W-types here as a target for elaborating our structural features, we are in no
way required to do so. Colin Rothgang recently developed a similar feature (as well as many
other structural features, e.g. for equivalence relations and quotients)a, which elaborates into
undefined constants for the inductive principles instead. While this has the disadvantage
that the solver can not natively exploit the generated induction principles automatically,
it has the advantage that the resulting elaboration works with plain LF and can represent
more advanced induction principles such as mutually recursive types, which can not be
represented using W-types alone.

Again, we are able to marry the two approaches quite easily while reusing the same
structural feature and hence syntactic representation. For example, the feature rule can
check for the presence of the W-type rules in the current context and decide accordingly
10Ibid.

88 CHAPTER 6. LFX

whether to elaborate into W-types or primitive LF constants.
ahttps://github.com/UniFormal/MMT/tree/master/src/mmt-lf/src/info/kwarc/mmt/lf/

structuralfeatures

6.4 Cumulative Universe Hierarchies

Plain LF offers two universes type and kind. With respect to their ontological status, they
can be thought of as analogous to the distinction between sets and proper classes. However,
often the two universes are somewhat restrictive – PLF is already an extension of this two-
tiered hierarchy, but even the shallow polymorphism enabled by it is often not enough, e.g.
when wanting to quantify over all groups (each of which has a base type), or sets (for some
correspondance between sets and types), or when formalizing categories while trying to avoid
a deep embedding.11

In those situations, it can be more convenient to have infinitely many universes U i for
each i ∈ N.12 By declaring U i⇐U j and U i<∶U j whenever i < j, we get an infinite cumulative
hierarchy of universes analogous (in a set-theoretic model) to higher levels of the Von-Neumann
hierarchy indexed by large cardinals.

This is the approach taken by homotopy type theory [Uni13], Mizar [Miz] via Grothendieck
universes, and most notably Coq [Tea03], where the precise universe in which a declaration
lives is unspecified by the user and computed by the system by solving appropriate constraints
on the full current context (floating universes).

The basic rules are straight-forward and given in Figure 6.9, and as with enumeration types
(Section 6.2), we use number literals Nat and postulate some (potentially judgments-as-types
based) judgment i < j.

Universe Rule:
Γ⊢i⇐Nat

Γ⊢Ui univ

Formation:
Γ⊢i⇐Nat

Γ⊢Ui⇒Ui+1

Subtyping (Optional):
Γ⊢i < j

Γ⊢Ui<∶Uj

Figure 6.9: Rules for Universes

To be “backwards compatible” with everything implemented in LF alone, we can redefine
type ∶= U0 and kind ∶= U1. Even though type<∶kind does not hold in LF, this additional

11These kinds of formalizations are enabled by using e.g. record types with type-valued fields, see Chapter 8
12According to folklore, all mathematics can be done with at most 7th-order universes, but this number is

seemingly arbitrary and in practice it is just as easy to drop the restriction to a fixed finite number of universes
entirely.

https://github.com/UniFormal/MMT/tree/master/src/mmt-lf/src/info/kwarc/mmt/lf/structuralfeatures
https://github.com/UniFormal/MMT/tree/master/src/mmt-lf/src/info/kwarc/mmt/lf/structuralfeatures

6.4. CUMULATIVE UNIVERSE HIERARCHIES 89

subtyping judgment does not impact plain LF content.13 However, in order for ∏-types to be
usable for types living in higher universes, we need to slightly modify the formation rule for ∏:

Γ⊢A⇐U Γ, x ∶ A⊢B⇒U ′

Γ⊢∏
x∶A

B⇒max{U,U ′ }

Note, that for U = type, this subsumes the original rule. Since we can declare our new
formation rule to shadow the old one, this does not break modularity. In addition, we augment
Definition 4.1 by new cases:

Definition 6.2:

• For A = U i and B ∶ U j we let max{A,B } = Umax (i,j)

• For A,B ∶ U i, we let

max{A,B } ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

A if B<∶A,
B if A<∶B,
undefined otherwise.

Remark 6.8: Polymorphism
One interesting aspect to consider is which universe Nat should live in. In Section 6.2.1, we
determined Nat to be a type, hence Nat⇐U0. Additionally, our formation rule for ∏ was:

Γ⊢A⇐U Γ, x ∶ A⊢B⇒U ′

Γ⊢∏
x∶A

B⇒max{U,U ′ }

Consider a type T =∏n∶Nat∏U ∶Un B. Is this type valid?
The answer is no, since the universe that T lives in would be max{U0,Un }, which can

not be computed since Un depends on a free variable. Hence our rules forbid quantification
over all universes.

However, similar as in PLF (see Remark 4.6), we might want to allow shallow polymor-
phism – i.e. the ability to quantify over all universes on the outside of a ∏-type only. By
declaring such a type to be inhabitable but untyped, we avoid paradoxes resulting from
unrestricted quantification, but still allow for implementing polymorphic functions. The
corresponding rule would hence be:

Γ, n ∶ Nat, u ∶ Un⊢B inh

Γ⊢ ∏
n∶Nat

∏
u∶Un

B inh

6.4.1 Implementation and Universe Rules

All the rules are again straight-forward, but here we encounter a universe rule for the first
time. As with the other rules, we need to implement an apply method for them, the signature

13To be precise: Any judgment that holds in LF still holds in this new logical framework, but not the other
way around.

90 CHAPTER 6. LFX

of which is rather simple:
def apply(solver: Solver)(tm: Term)(implicit stack: Stack, history: History) : Boolean

and returns true if the term tm is declared to be a universe by this rule.

Example 6.5:
The universe rule for U is given in Listing 6.10.

Line 2 makes this rule applicable also to type and kind– the helper object TypeLevel’s
unapply-method takes care of the conversions type→ U0 and kind→ U1 for us.

Line 5 merely checks that the argument passed on to U is in fact of type Nat. Since that
check returns a boolean, it can serve as the return value.

Listing 6.10: The Universe Rule for U14

1 object TypeLevelUniverse extends UniverseRule(TypeLevel.path) {
2 override def alternativeHeads: List[GlobalName] = List(TypeLevel.path,Typed.ktype,Typed.kind)
3 def apply(solver: Solver)(tm: Term)(implicit stack: Stack, history: History) : Boolean = tm match {
4 case TypeLevel(i) =>
5 solver.check(Typing(stack,i,NatRules.NatLit.synType))
6 case _ => false
7 }
8 }

The corresponding theories for the symbols and rules are given in Listing 6.11. Notably, the
theory TypedHierarchy which is to serve as a “standalone” theory of a cumulative type hierarchy
without any typing features, needs to import several fundamental Mmt theories that validate
notions like typing, notations, module expressions etc. in the first place, as well as the theories
containing the symbols for type and kind for compatibility with plain LF theories. Listing 6.12
shows a small example theory using a cumulative hierarchy. Additionally, universes are used
all over the Math-in-the-Middle archive15, notably in the algebraic theories and in categories.

Listing 6.11: Symbols and Rules16

theory Symbols =
TypeLevel # U1 prec −1000 ∣∣∣∣

∣∣∣∣∣∣∣∣

theory Rules =
rule rules ?TypeLevelUniverse ∣∣∣∣
rule rules ?TypeLevelSubRule ∣∣∣∣
rule rules ?LevelType ∣∣∣∣

∣∣∣∣∣∣∣∣

theory TypedHierarchy =
include meta:?Errors ∣∣∣∣
include http: //cds.omdoc.org/urtheories?ModExp∣∣∣∣
include meta:?mmt∣∣∣∣
include ur:?Typed ∣∣∣∣
include ur:?Kinded ∣∣∣∣
include ur:?NatLiteralsOnly ∣∣∣∣
include ?Symbols ∣∣∣∣
include ?Rules ∣∣∣∣

14https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/TypedHierarchy/Rules.
scala

15https://gl.mathhub.info/MitM/smglom/tree/master/source

https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/TypedHierarchy/Rules.scala
https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/TypedHierarchy/Rules.scala
https://gl.mathhub.info/MitM/smglom/tree/master/source

6.5. A LOGICAL FRAMEWORK BASED ON HOMOTOPY TYPE THEORY 91

∣∣∣∣∣∣∣∣

theory LFHierarchy =
include ?TypedHierarchy ∣∣∣∣
include ur:? LF ∣∣∣∣

rule rules ?Polymorphism∣∣∣∣
∣∣∣∣∣∣∣∣

Listing 6.12: A Simple Theory for Universes17

theory HierarchyTest : LFX/TypedHierarchy?LFHierarchy =
c : type ∣∣∣∣
d : U 1 ∣∣ = c ∣∣∣∣
f : U 2 → U2 ∣∣∣∣
test : U 2 ∣∣ = f c ∣∣∣∣

∣∣∣∣∣∣∣∣

6.5 A Logical Framework Based on Homotopy Type Theory

Homotopy Type Theory [Uni13] (HoTT) is a foundation of mathematics built upon a type sys-
tem that we can now define as LF+Cumulative Universes+∑-Types+⊕-Type+Finite Types+W-
Types. It is based entirely around Propositions-as-Types, as summarized in Figure 6.10 – more
precisely, the “propositional” part of homotopy type theory is an intuitionistic higher-order
logic: Our proof rules can be easily observed to correspond to the usual introduction and
elimination rules of a natural deduction calculus for intuitionistic logic. To get to a classical
setting, it suffices to add a polymorphic constant tnd ∶∏i∶Nat∏U ∶Ui∏A∶U A⊕(A→ ∅) – which
by Propositions-as-Types corresponds to the statement A ∨ ¬A for all “propositions” A.

Higher-Order Logic Homotopy Type Theory
Constant symbols c ∶ α constants c ∶ α
Function symbols f ∶ α → β functions f ∶ α → β
Predicate symbols P ∶ α → Bool functions α → type

Propositions A types A ∶ U i

Conjunctions A ∧B Simple Products A×B
Implications A⇒ B Simple Function Types A→ B
Disjunctions A ∨B Coproducts A⊕B
Negations ¬A Function Types A→ ∅

Universal Quantifier ∀x ∶ A. P (x) Dependent Function Types ∏x∶A P
Existential Quantifier ∃x ∶ A. P (x) Dependent ∑-Types ∑x∶A P

Proofs for A Elements p ∶ A

Figure 6.10: Propositions as Types

Formalizing HoTT in a logical framework such as LF is prohibitively difficult; a previous
formalization by Florian Rabe is available online and shows the limitations of such an attempt18:

16https://gl.mathhub.info/MMT/LFX/blob/master/source/TypedHierarchy.mmt
17https://gl.mathhub.info/MMT/LFX/blob/master/source/test.mmt
18https://gl.mathhub.info/MMT/examples/blob/master/source/hott.mmt

https://gl.mathhub.info/MMT/LFX/blob/master/source/TypedHierarchy.mmt
https://gl.mathhub.info/MMT/LFX/blob/master/source/test.mmt
https://gl.mathhub.info/MMT/examples/blob/master/source/hott.mmt

92 CHAPTER 6. LFX

Even ∑-types can only be fully formalized in LF by adding simplification rules (see Remark 5.2)
and W-types are left out entirely. Furthermore, since HoTT is – like LF– based on a Martin-Löf
type theory, a formalization within LF requires re-implementing that very type theory using a
HOAS deep embedding, with all the associated drawbacks for working with and within the
resulting formalization. This is contrasted by HoTT’s aim to be a foundation of mathematics
alongside and orthogonal to other such frameworks. Consequently, it is much more adequate
to lift an implementation of Homotopy Type Theory to the level of logical frameworks itself.
Additionally, this makes HoTT an attractive case study for a modular logical framework.

Homotopy Type Theory is a framework under active investigation and development, and
hence frequently subject to change and subtle shifts regarding formal details. The description
here follows the presentation in [Uni13], which does not necessarily reflect the current state of
the art.

Accordingly, the following definitions and theorems are all taken from the same source
and described in much more detail there. They are only contained here for clarification. In
particular, we omit all proofs.

6.5.1 Identity Types

Notably, in the correpondences in Figure 6.10 we are yet missing (propositional) equalities. For
these, we can add a simple equality type a≐Ab ∶ U whose semantics is provided by the intended
propositions-as-types correspondence.

However, HoTT is somewhat peculiar here, since it does not consider propositional types
to be proof irrelevant - Equality of elements a≐Ab is considered a type with arbitrarily many
distinct elements, and this notion of equality is distinct from the judgmental equality a≡b ∶A. In
particular, the existence of a “proof” p ∶ a≐Ab does not imply a≡b ∶A. The reverse implication
holds trivially by the introduction form, for which we use reflexivity : For every a ∶ A, we have
refla ∶ a≐Aa.

For elimination we use a mechanism called (in the context of HoTT) path induction: Given any
p ∶ a≐Ab and c(x) ∶ C(x), we have indp{x, y, qÔ⇒C(x,y,q)c(x)} ∶ C(a, b, p), where for any x ∶ A
we demand that c(x) ∶ C(x,x,reflx) and will declare that indrefla{x, y, qÔ⇒C(x,y,q)c(x)} =
c(a). This requires some deliberation:

The central idea is that given a proposition (or type) C(x) depending on x ∶ A, if we have
a proof/element c(a) ∶ C(a) and a proof p ∶ a≐Ab, then we should also have a proof/element
c(b) ∶ C(b) (congruence of equality). This is what ind yields in the simple case where C only
depends on x.

In homotopy type theory, this principle is generalized in that the type C may depend not
just on x, but also on an element y considered propositionally (but not necessarily judgmentally)
equal to x, as well as the proof p ∶ x≐Ay for that equality. The postulated judgmental equality
indrefla{x, y, qÔ⇒C(x,y,q)c(x)} = c(a) can then be interpreted as the statement that the
family of types x≐Ay (for fixed A and variable x, y) is inductively defined by the elements
of the form refla, in the sense that any type family C(x, y, p) for x, y ∶ A and p ∶ x≐Ay is
determined by the cases of the form C(x,x,reflx).

Note that this does not imply that the types a≐Ab (for fixed elements a, b ∶ A) are themselves
inductively defined via the elements refla– whenever a and b are not judgmentally equal, this

6.5. A LOGICAL FRAMEWORK BASED ON HOMOTOPY TYPE THEORY 93

type is not inhabited by a refl_-term at all.

Remark 6.9: Based Path Induction
The above is often inconvenient in situations where we want to use congruence of equality –
i.e. when we know P (a) holds for a fixed, definite element a ∶ A, and given p ∶ a≐Ab want to
infer that P (b) holds as well. The reason is that we need to be able to provide an element
c(x) which for arbitrary x ∶ A represents a witness for P (x), which we don’t have in those
instances.

The way around this is to instead use path induction on lambda abstractions, which is a
common enough situation to warrant a separate name: Based Path Induction. This is
definable using general path induction in the following way:

Let TC =∏x∶A a≐Ax→ U and TD =∏z∶A x≐Az → U :
based_ind ∶ ∏a∶A∏C ∶TC ∏c∶C(a,refla)∏b∶A∏p∶a≐AbC(b, p)

∶= λa∶A. λC ∶TC . λc∶C(a,refla). λb∶A. λp∶a≐Ab.

(indp{x, y, qÔ⇒∏D∶TD D(x,reflx)→ D(y,q)λD,d. d}) (C, c)

Example 6.6:

1. We can use path induction to prove symmetry of equality, i.e. a function of type

∏
a∶A
∏
b∶A
a≐Ab→ b≐Aa

for any type A.

Given the argument p ∶ a≐Ab, we have indp{x, y, qÔ⇒C(x,y,q)c(x)} ∶ C(a, b, p), so we
need to choose C(x, y, q) = y ≐Ax for C(a, b, p) to be the type b≐Aa.

The term c(x) will have to check against C(x,x,reflx), so we can choose c(x) ∶= reflx.

Hence, we get indp{x, y, qÔ⇒y ≐Axreflx } ∶ b≐Ba, so our function is

symm ∶= λa∶A. λb∶A. λp∶a≐Ab. indp{x, y, qÔ⇒y ≐Axreflx }

2. We can use based path induction to prove congruence, i.e. a function of type

∏
a∶A
∏
b∶A

∏
P ∶A→ U

a≐Ab→ P (a)→ P (b)

simply by applying the function based_ind in Remark 6.9:

cong ∶= λa,b,P,p,pa. based_ind(a, (λx,q. P (x)), pa, b, p)

The rules for identitiy types are given in Figure 6.11. Note that if we wanted to identify
propositional equality a≐Ab and judgmental equality a≡b ∶A, we could add a corresponding
equality rule.

6.5.2 Equivalences and Univalence

The principal idea behind homotopy type theory is to interpret propositional equality topologi-
cally: Given two “points” a, b ∶ A, the type a≐Ab is interpreted as the type of all continuous
paths between a and b. This makes sense of the multitude of possible “proofs” of a≐Ab, since

94 CHAPTER 6. LFX

For any U with Γ⊢U univ:

Formation:
Γ⊢A⇒U Γ⊢a⇐A Γ⊢b⇐A

Γ⊢a≐Ab⇒U

Introduction:
Γ⊢a⇒A Γ⊢A⇒U

Γ⊢refla⇒a≐Aa

Elimination:

Γ⊢p⇒≡a≐Ab Γ, x ∶ A,y ∶ A, q ∶ x≐Ay⊢C⇒U Γ, x ∶ A⊢c⇐C[y/x][q/reflx]

indp{x, y, qÔ⇒Cc}⇒C[x/a][y/b][q/p]

Computation:

Γ⊢a⇒A Γ, x ∶ A,y ∶ A, q ∶ x≐Ay⊢C⇒U Γ, x ∶ A⊢c⇐C[y/x][q/reflx]

Γ⊢indrefla{x, y, qÔ⇒Cc}↝c[x/a]

Figure 6.11: Rules for Identity Types

not all continuous paths between points are equal. Two such paths p, q ∶ a≐Ab can be equivalent
though, in the sense that there can be a continuous transformation from p to q - i.e. there can
be a path r ∶ p≐ (a≐Ab)q - making r a homotopy.

Definition 6.3:

Let f, g ∶∏x∶AB(x). A homotopy from f to g is a function of type

f ∼ g ∶=∏
x∶A

f(x)≐B(x)g(x)

Theorem 6.1:

Under propositions-as-types, homotopy is an equivalence relation, i.e.there are functions
of the following types:

∏
f ∶∏x∶AB(x)

f ∼ f

∏
f,g∶∏x∶AB(x)

(f ∼ g)→ (g ∼ f)

∏
f,g,h∶∏x∶AB(x)

(f ∼ g)→ (g ∼ h)→ (f ∼ h)

We can now use homotopies to define two types as equivalent in the category theoretical
manner: A function is an equivalence (isomorphism) if it is invertible (up to homotopy), and
two types are equivalent (isomorphic) if there is an equivalence between them:

6.5. A LOGICAL FRAMEWORK BASED ON HOMOTOPY TYPE THEORY 95

Definition 6.4:

1. We call a function f ∶ A→ B an equivalence if the following type is inhabited:

isequiv(f) ∶=
⎛

⎝
∑

g∶B → A

f ○ g ∼ (λx∶B. x)
⎞

⎠
×
⎛

⎝
∑

g∶B → A

g ○ f ∼ (λx∶A. x)
⎞

⎠

Note that under propositions-as-types, this corresponds to the proposition “there
are left-inverse and right-inverse functions for f ”.

2. We call two types A,B equivalent if the following type is inhabited:

A ≃ B ∶= ∑
f ∶A→ B

isequiv(f)

Note that under propositions-as-types, this corresponds to “there is an equivalence
f ∶ A→ B”.

Theorem 6.2:

As with homotopy, equivalence of types is an equivalence relation.

The final step that Homotopy Type Theory takes is to declare function extensionality (on
equivalences) and postulating the univalence axiom that declares equality of types itself an
equivalence.

Definition 6.5:

1. We define a polymorphic function:

happly ∶ ∏
n∶Nat

∏
A∶Un

∏
B∶A→ Un

∏
f,g∶∏x∶AB(x)

f ≐∏x∶AB(x)g → ∏
x∶A

f(x)≐B(x)g(x),

which is definable using ind.

2. We define a polymorphic function

idtoequiv ∶ ∏
n∶Nat

∏
A,B∶Un

A≐ UnB → A ≃ B,

which is definable using ind.

Axiom 6.1: Function Extensionality

For any A,B, f, g, happly is an equivalence, i.e. we have a constant

_ ∶ isequiv(happly(n,A,B, f, g))

96 CHAPTER 6. LFX

Axiom 6.2: Univalence

For any A,B, idtoequiv is an equivalence, i.e. we have a constant

_ ∶ isequiv(idtoequiv(n,A,B))

In particular, it follows that
(A≐ UnB) ≃ (A ≃ B)

6.5.3 Implementation

Implementing the rules for identity types as in Figure 6.11 is straight-forward19. All concepts
and axioms of Homotopy Type Theory beyond our previously covered typing features can
conveniently be specified in MMT syntax directly, as in Listing 6.13.

Listing 6.13: A Theory for HOTT 20

theory Types : TypedHierarchy?LFHierarchy =
include WTypes?Inductive ∣∣∣∣
include Equality ?LFEquality ∣∣∣∣

based_ind : {n : NAT, A :U n} {a : A, C : {x : A}a ≐ x on A → Un, c : C a (refl a), b : A,
p : a ≐ b on A} C b p ∣∣

= [n,A,a,C,c, b,p] (ind p.x, y, q Ô⇒ ([C : {z:A}x ≐z on A → Un,d : C x (refl x)] d)
to ({C:{z:A}x ≐ z on A → Un}C x (refl x) → C y q)) C c∣∣∣∣

Bool : type ∣∣ = ENUM 2 ∣∣∣∣
True : Bool ∣∣ = CASE 1 ∣∣# ⊺∣∣∣∣
False : Bool ∣∣ = CASE 0 ∣∣# �∣∣∣∣

u_eqtype : {i : NAT}{A: U i} A → A → U i∣∣ = [i,A,a,b] a ≐ b on A ∣∣ # 3 ≐ 4 prec −499 ∣∣∣∣
// to allow for types of equalities to be inferred rather than given explicitly ∣∣∣∣

∣∣∣∣∣∣∣∣

theory HOTT : ?Types =

identity_fun : {i : NAT, A : U i } A → A ∣∣= [i , A]([x : A] x) ∣∣ # id 2 ∣∣∣∣

homotopy : {i : NAT}{A : U i, B : A → U i} ({x: A} B x) → ({x:A} B x) → U i ∣∣
= [i][A, B][f][g] {x:A} (f x ≐ g x) ∣∣ # 4 ∼ 5 ∣∣∣∣

is_equiv : {i : NAT}{A:U i,B:U i} (A → B) → U i ∣∣
= [i][A,B][f] (∑ g : B → A . ([x: B] f (g x)) ∼ (id B)) ×

(∑ h : B → A . ([x: A] h (f x)) ∼ (id A)) ∣∣ # isequiv 4 ∣∣∣∣

equivalence : {i : NAT}U i → U i → U i ∣∣
= [i][A,B] ∑f : A → B . isequiv f ∣∣ # 2 ≃ 3 ∣∣∣∣

univalence : {i : NAT}{A:U i,B:U i} equivalence (succ i) (A ≃ B) (A ≐ B) ∣∣∣∣
∣∣∣∣∣∣∣∣

19The implementation can be found at https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/
kwarc/mmt/LFX/Equality/Rules.scala, the corresponding symbols in https://gl.mathhub.info/MMT/LFX/
blob/master/source/Equality.mmt

20https://gl.mathhub.info/MMT/LFX/blob/master/source/HOTT.mmt

https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/Equality/Rules.scala
https://gl.mathhub.info/MMT/LFX/blob/master/scala/info/kwarc/mmt/LFX/Equality/Rules.scala
https://gl.mathhub.info/MMT/LFX/blob/master/source/Equality.mmt
https://gl.mathhub.info/MMT/LFX/blob/master/source/Equality.mmt
https://gl.mathhub.info/MMT/LFX/blob/master/source/HOTT.mmt

6.5. A LOGICAL FRAMEWORK BASED ON HOMOTOPY TYPE THEORY 97

Remark 6.10: Higher Inductive Types
One noteworthy aspect in Homotopy Type Theory that is being actively researched is the
notion of higher inductive types - types that are inductively defined via elements of equality
types. The prototypical example is the unit circle:

Since in HoTT, elements of an equality type can be thought of as a (homotopical)
continuous path between two points, one can imagine defining a unit circle as a single point
a ∶ S1 with a non-trivial path from a to a; that is an element p ∶ a≐ S1a distinct from refla.
Using higher inductive types, the unit circle (as a type) S1 is thougt to be inductively defined
/ freely generated from the two declarations a ∶ S1 and p ∶ a≐ S1a.

Unfortunately, no formal specification of higher inductive types in general exists yet.
However, once such a specification exists, one can use a structural feature as in Remark 6.7
(or even the same feature) to generate higher inductive types. In the mean time, such
a feature can easily serve as a tool to test and experiment with various approaches for
formalizing higher inductive types.

Chapter 7

Subtyping

The previously discussed subtyping rules were almost exclusively concerned with variance
behavior of type constructors, i.e. rules of the form C(a)<∶C(a′) if (depending on the variance)
a<∶a′ or a′<∶a. Naturally, in the absence of any additional subtyping rules, these variance rules
ultimately reduce to equality rules, since the only way to prove a<∶a′ (ignoring recursively
calling variance rules) is to check a≡a′ ∶A. However, some systems allow for primitive subtyping
principles of various forms, e.g. by declaring A<∶B axiomatically for two primitive types
A,B or by introducing predicate subtypes. Systems with subtyping mechanism include e.g.
PVS [ORS92], IMPS [FGT93] and – in a certain sense – Coq [Coq15] and Matita [Asp+06a],
as we will discuss later. Variance rules are accordingly important for the composite types to
behave as intended in the presence of primitive subtyping principles.

Notably, subtyping in general breaks several often desirable properties of a type system,
such as terms having a unique type and (potentially) decidability. Consequently, many systems
decide to not support any subtyping. While this allows for a convenient implementation and
formal analysis of a system, it often leads to awkward formalizations of content which can be
implemented very naturally with subtypes. For example, numerical types (natural numbers,
integers, real numbers) are often desirable to behave as subtypes. Similarly, types for algebraic
structures yield a very natural subtyping hierarchy (e.g. all groups are monoids).

In this chapter, I will discuss various approaches to implementing subtyping principles in
Mmt, how and why they are not fully implementable in the system, and speculate on how to
improve Mmt to better support subtyping mechanisms.

7.1 Issues with Subtyping in Mmt

Mmt supports subtyping in the form of a binary subtyping judgment A<∶B and rules
returning these judgments as conclusion. Notably however, a binary subtyping judgment is
insufficient to exploit all deducable subtyping judgments without additional treatment or huge
increases in computational cost. A simple example is transitivity :

Example 7.1:
Assume we have N,Z,R ∶ type and subtyping rules proving N<∶Z and Z<∶R. Consider a
statement ∏n∶N∏r∶R n+ r, where “+” has type R→ R→ R. In order for this to be well-typed,
the system has to prove Γ, n ∶ N⊢n⇐R, which in the absence of additional rules would default
to checking N<∶R. We know that this follows from Z being an intermediary type between N
and R, but in an implementation, this implies finding a seemingly arbitrary type C satisfying

99

100 CHAPTER 7. SUBTYPING

two additional (binary) judgments, which is computationally expensive. Hence the solver
can not algorithmically conclude the judgment from the above two subtyping rules alone.

This example alone is sufficient to demonstrate that merely checking binary subtyping
judgments is not sufficient for covering subtyping mechanisms found in other systems.

One way this can be resolved is by keeping the full subtyping lattice for the current context
in memory, and dynamically expanding it whenever the context is extended by additional
types. Additionally, we can model subtyping premises as constraints (i.e. lower and upper
bounds in the subtyping lattice), and introduce appropriate constraints when encountering
unsolved type variables. These can then be solved in a manner similar to the method proposed
in [KP93]. Notably, to be able to solve these constraints the full subtyping lattice still needs to
be known. The feasibility, potential cost and benefits of this approach will need to be explored.

Additional problems arise whenever it becomes necessary to coerce a term to a refinement of
its principal type:

Example 7.2:
Consider n,m ∶ N odd numbers, r1 ∶ R = n/2 and r2 ∶ R =m/2, and S ∶ N→ N.

We know then, that S(r1 + r2) is a well-typed expression, since r1 + r2 can be coerced
to have type N, however, r1 + r2 will have the inferred type R from the types of + and the
arguments r1, r2 - from the point of view of the algorithm, the information that r1 + r2 is in
fact a natural number is lost.

This problem can in principle be solved by introducing an object-level typing-predicate
a$B with a rule of the form

Γ⊢_⇐a$B
Γ⊢a⇐B

.

By allowing arbitrary terms for a and B and quantification on the outside, this corresponds to
term declarations [SS89]. Again, how to implement this efficiently and whether doing so is an
effective solution remains to be determined.

Things get more difficult in the presence of predicate subtyping: ⟨x ∶ A ∣ P (x)⟩ – the subtype
of A containing exactly the elements x ∶ A for which the predicate P (x) holds. Correspondingly,
checking a ∶ ⟨x ∶ A ∣ P (x)⟩ entails proving the proposition P (a), for which a strong prover
is (if not required) strongly desirable, and the typing system is immediately undecidable.
Additionally, the set of all types for a given term t is now a (for all practical purposes) infinite
lattice induced by all propositions that hold for t and the implications between them.

However, for knowledge management purposes where fully checking the accuracy of content
is not strictly necessary, even weak support for computationally difficult features is sufficient
for most purposes, especially plain representation. Consequently, in this section we will discuss
several subtyping mechanisms that, while not strongly supported by Mmt, are still desirable as
purely syntactical features with weak inference support to cover as many situations as possible.

7.2. DECLARED SUBTYPES AND RULE GENERATORS 101

7.2 Declared Subtypes and Rule Generators

At its most primitive, a user might want to axiomatically declare two types A,B to be subtypes
of each other. Naively, one might want to implement this by introducing a new constructor
A< ∗B such that A< ∗B is inhabitable whenever A and B are, and adding a simple subtyping
rule:

Γ⊢_ ∶ A< ∗B

Γ⊢A<∶B

The disadvantage of this naive approach is the existence of a subtyping rule that a) needs
to be applicable for arbitrary types A,B and hence be potentially called every time a subtyping
judgments is checked, and b) defers to the prover to find an element p ∶ A< ∗B, which is
computationally expensive and fails in the majority of cases anyway (e.g. when A,B are
actually equal). Correspondingly, even though adequate, the mere presence of this rule will
noticably slow down type checking in general.

To avoid this problem, we can instead implement a change listener, that generates a
new subtyping rule for every constant of type A< ∗B which is only applicable on the specific
judgment A<∶B and always returns true if applicable. Additionally, this introduces the constraint
on the user that they can only declare two types as subtypes by introducing a constant of the
respective < ∗-type, which prohibits subtype judgments as arguments in dependent types. This
allows the typing system (barring other factors) to stay decidable. The resulting inference
rules are simple and listed in Figure 7.1.

Formation:
Γ⊢A inh Γ⊢B inh

Γ⊢A< ∗B inh

Subtyping:
For each constant c ∶ A< ∗B:

Γ⊢A<∶B

Figure 7.1: Rules for Declared Subtypes

A change listener extends the class ChangeListener and needs to implement the following
methods:

• onAdd(e: StructuralElement) is called whenever a new StructuralElement (e.g. Constants, Theorys)
are added to Mmt’s library, as after parsing.

• onDelete(e: StructuralElement) is called whenever a StructuralElement is removed from Mmt’s
memory, as during reparsing.

• onCheck(e: StructuralElement) is called when the StructuralElement has been checked to be
well-typed.

102 CHAPTER 7. SUBTYPING

Example 7.3:
The change listener generating subtyping rules is given in Listing 7.1.

Line 1 declares a new class SubtypeJudgRule for our generated SubtypingRules for the
judgment tm1<∶tm2. Its head is the path to the symbol < ∗.

Line 3 makes such a rule applicable for the above judgement only, in which case

Line 4/5 simply returns true for that judgement.

The actual ChangeListener starts in Line 8.

Line 12 Given a constant with path m?c that generates a SubtypeJudgRule, the cor-
responding RuleConstant which declares the generated rule valid has path
m?{c/subtypeTag}.

Line 16 attempts to map a constant c to its corresponding generated rule.

Lines 31–33 makes sure to remove the RuleConstant whenever the generating constant is
removed.

Lines 35–47 contain the core method of the change listener. It acts whenever a new constant
is added (Line 36) whose type is of the form A< ∗B (Line 37), in which case a
new SubtypeJudgRule is generated (Line 38), as well as a corresponding RuleConstant
(Line 39), and the latter is added to the library (Line 42).

Listing 7.1: A Change Listener Generating Subtyping Rules 1

1 class SubtypeJudgRule(val tm1 : Term, val tm2 : Term, val by : GlobalName) extends SubtypingRule {
2 val head = subtypeJudg.path
3 def applicable(tp1: Term, tp2: Term): Boolean = tp1.hasheq(tm1) && tp2.hasheq(tm2)
4 def apply(solver: Solver)(tp1: Term, tp2: Term)(implicit stack: Stack, history: History): Option[Boolean]
5 = Some(true)
6 }
7
8 class SubtypeGenerator extends ChangeListener {
9 override val logPrefix = "subtype−rule−gen"

10 protected val subtypeTag = "subtype_rule"
11
12 private def rulePath(r: SubtypeJudgRule) = r.by / subtypeTag
13
14 private def present(t: Term) = controller.presenter.asString(t)
15
16 private def getGeneratedRule(p: Path): Option[SubtypeJudgRule] = {
17 p match {
18 case p: GlobalName =>
19 controller.globalLookup.getO(p / subtypeTag) match {
20 case Some(r: RuleConstant) => r.df.map(df => df.asInstanceOf[SubtypeJudgRule])
21 case _ => None
22 }
23 case _ => None
24 }
25 }
26
27 override def onAdd(e: StructuralElement) {
28 onCheck(e)
29 }
30

7.3. INTERSECTION TYPES 103

31 override def onDelete(e: StructuralElement) {
32 getGeneratedRule(e.path).foreach { r => controller.delete(rulePath(r)) }
33 }
34
35 override def onCheck(e: StructuralElement): Unit = e match {
36 case c: Constant if c.tpC.analyzed.isDefined => c.tp match {
37 case Some(subtypeJudg(tm1,tm2)) =>
38 val rule = new SubtypeJudgRule(tm1,tm2,c.path)
39 val ruleConst = RuleConstant(c.home,c.name / subtypeTag,subtypeJudg(tm1,tm2),Some(rule))
40 ruleConst.setOrigin(GeneratedBy(this))
41 log(c.name + "␣~~>␣" + present(tm1) + "␣<:␣" + present(tm2))
42 controller add ruleConst
43 case _ =>
44 }
45 case _ =>
46 }
47 }

Remark 7.1:
A ChangeListener is an Extension that needs to be explicitly registered with the Mmt sys-
tem. As such it can not be activated by a rule <path>-statement. Instead, the command
extension <fully−qualified−classpath> needs to be called before handling any content which de-
pends on the ChangeListener. This is because change listeners have access to Mmt’s central
components (backend, library, server, other extensions) and hence can change the global
state of the system, which mere content should not be allowed to do.

For that reason, the above change listener is currently implemented as part of the
ODK-plugin in the MMT code repository itself ([MMT]) rather than the LFX repository
([LFX]), where it arguably belongs.

7.3 Intersection Types

In [Pfe93], the authors present an extension of LF by refinement types (sorts) and intersection
types, which introduce a weak subtyping principle while retaining decidability. The following
canonical example illustrates the usefulness of these intersection types:

Example 7.4:
Assume a type N of natural numbers with two declared subtypes (refinement types) Even
and Odd, representing even and odd natural numbers, respectively. Naturally, the successor
function S has type N→ N, however, we also know that it will map odd numbers to even
numbers and vice versa – hence S can also be implemented with the types Odd→ Even and
Even→ Odd, both of which are refinements of the type N→ N.

Intersection types allow to encode this additional typing information by giving S all
three types at once, or more precisely: The intersection type of all three:

S ∶ (Odd→ Even)⊓ (Even→ Odd)⊓ (N→ N)

1https://github.com/UniFormal/MMT/blob/master/src/mmt-odk/src/info/kwarc/mmt/odk/Rules.
scala

https://github.com/UniFormal/MMT/blob/master/src/mmt-odk/src/info/kwarc/mmt/odk/Rules.scala
https://github.com/UniFormal/MMT/blob/master/src/mmt-odk/src/info/kwarc/mmt/odk/Rules.scala

104 CHAPTER 7. SUBTYPING

Remark 7.2: ∏-Elimination
As the above example suggests, intersection types are primarily useful for refining function
types by encoding additional information on the return types based on the (refinement) types
of the inputs. Note that this breaks the up until now valid assumptions that every function
has a principal ∏-type. In fact, the basic rules for LF (to be precise: the elimination rule for
function application) assume that the inferred type of every function is equal to a ∏-type.

[Pfe93] deals primarily with refinement types, which can be thought of as sorts of a
specific (maximal) type. Two refinement types can only be compared if they refine the same
maximal type. This allows for retaining decidability and keep the original elimination rule
for function applications (under the additional rule that (∏x∶AB) ⊓ (∏x∶AC)<∶∏x∶AB ⊓C),
but already excludes Example 7.4.

Thankfully, Mmt allows for rules to shadow other rules – we can hence implement a
new elimination rule for LF with intersection types which subsumes the primtive LF rule.
In the presence of this new rule, the old rule is “deactivated”, thus preserving modularity.

Remark 7.3: Inhabitants of Intersection Types
Another problem with intersection types in a logical framework is to inhabit them with
λ-terms. Consider the following example:

succ : (Even → Odd) ⊓ (Odd → Even) ⊓ (Nat → Nat) ∣∣ # S 1 ∣∣∣∣
succ2 : (Even → Even) ⊓ (Odd → Odd) ⊓ (Nat → Nat) ∣∣ = [x] S S x ∣∣∣∣

To check the definiens of succ2 against its type, the λ-bound variable x needs to be either
explicitly typed, or its type must be inferred from the remainder of the definiens. In both
cases we run into the problem that checking the λ-expression against the three distinct
intersected function types requires typing x differently each time.

[Sto+17] attempts to solve this by introducing a dedicated introduction form ⟨a, b⟩ for
intersection types A⊓B, where it is required that a⇐A, b⇐B and a and b have the same
shape (roughly meaning: the same syntax tree disregarding types of bounds variables). The
idea being that the definiens for succ2 would have to be ⟨[x:Even] S S x, [x:Odd] S S x, [x:Nat] S S x⟩.
While this solves the problem in theory, it is in practice inconvenient for users.

The basic rules for intersection types are given in Figure 7.2.

For any U with Γ⊢U univ:

Formation:
Γ⊢A⇒U Γ⊢B⇒U ′

Γ⊢A⊓B⇒max{U,U ′ }

Type Checking:
Γ⊢a⇐A Γ⊢a⇐B

Γ⊢a⇐A⊓B

Subtyping:
Γ⊢A<∶C

Γ⊢A⊓B<∶C

Γ⊢B<∶C

Γ⊢A⊓B<∶C

Γ⊢C<∶A Γ⊢C<∶B

Γ⊢C<∶A⊓B

Figure 7.2: Rules for Intersection Types

7.4. PREDICATE SUBTYPES 105

Remark 7.4: Lambda-Expressions in Intersection Types
We can attempt to simplify the introduction form in Remark 7.3 for users by supplying
additional rules. This is necessarily computationally expensive, since every conjunct in an
intersection needs to be checked individually for each application of such a function, and
hence not an ideal solution. Consider the following expression:

add2 ∶ E→ E→ E⊓O→ O→ E⊓E→ O→ O⊓O→ E→ O⊓N→ N→ N
= ⟨λn. λm. n +m⟩

where E and O abbreviate Even and Odd, respectively. Then we can supply the ⟨⋅⟩-Operator
with rules that either duplicate the lambda-expression with different types for the bound
variables (as in Remark 7.3), or alternatively type the variables n,m with appropriate
⊕-types and automatically insert ⋅↪`⋅ or ⋅r↩⋅ in any application of a ⟨λ⟩-expression. Either
case would retain the formal correctness of the approach in [Sto+17] without forcing users to
provide multiple lambda expressions of the same shape, and require merely a new inference
and computation rule for LF-function applications.

A rudimentary form of intersection types has been implemented in Mmt2. Notably,
intersection types as described above still have the drawback that a user has to provide all the
intersected types when declaring a new constant, without being able to refine afterwards. For
example, the successor function as in Remark 7.3 would require the types Odd and Even to be
declared beforehand, which is counter to the usual order of declarations when implementing
natural numbers.

Term declarations as mentioned above could potentially be used to add additional refinement
types to a constant after its declaration.

7.4 Predicate Subtypes

The type ⟨x ∶ A ∣ P (x)⟩ corresponds to the subtype of A containing exactly those elements x ∶ A
for which the predicate P (x) holds. In the presence of Judgments-as-Types, this corresponds
to the type of elements x ∶ A for which the dependent type P (x) is inhabited – i.e. checking
a term t against the type ⟨x ∶ A ∣ P (x)⟩ entails checking t ∶ A and the existence of a witness
p ∶ P (t).

Given an element a ∶ ⟨x ∶ A ∣ P (x)⟩, we should be able to obtain a witness p ∶ P (a), hence
we add an additional symbol predOf (a) ∶ P (a).

The remaining rules can be easily derived from this intended semantics:

Remark 7.5:
Note that the second subtyping rule is immediately derivable from the type checking rule.
Furthermore, either subtyping rule implies ⟨x ∶ A ∣ P (x)⟩<∶⟨y ∶ A ∣ Q(y)⟩ iff for any z ∶ A
the proposition P (z) implies Q(z) – i.e. if there is a function f ∶∏z∶A P (z)→ Q(z).

Remark 7.6:
As mentioned in Remark 5.1, predicate subtyping is on paper subsumed by ∑-types. The
difference in an implementation is that ∑-types necessitate inserting coercions between the
types A and ∑x∶A P ; by pairing an element a ∶ A with a witness p ∶ P (a) in the one direction,
2https://gl.mathhub.info/MMT/LFX/blob/master/source/IntersectionTypes.mmt

https://gl.mathhub.info/MMT/LFX/blob/master/source/IntersectionTypes.mmt

106 CHAPTER 7. SUBTYPING

For any U with Γ⊢U univ:

Formation:
Γ⊢A⇒U Γ, x ∶ A⊢P⇒U ′

Γ⊢⟨x ∶ A ∣ P ⟩⇒max{U,U ′ }

Type Checking:
Γ⊢a⇐A Γ⊢_⇐P [x/a]

Γ⊢a⇐⟨x ∶ A ∣ P ⟩

Elimination:
Γ⊢a⇒⟨x ∶ A ∣ P ⟩

Γ⊢predOf (a)⇒P [x/a]

Subtyping:
Γ, x ∶ A,p ∶ P⊢x⇐B

Γ⊢⟨x ∶ A ∣ P ⟩<∶B

Γ⊢B<∶A Γ, y ∶ B⊢_⇐P [x/y]

Γ⊢B<∶⟨x ∶ A ∣ P ⟩

Figure 7.3: Rules for Predicate Subtypes

and by the projection π` (⋅) in the other. If these coercions can be inserted automatically
and hence left implicit, we can define predOf (a) ∶= πr (a) and all rules in Figure 7.3 are
derivable for ∑-types. This approach is taken e.g. in Matita and enabled in Coq via the
Program packagea, which is intended to mimic the subtyping behavior of PVS.

ahttps://coq.inria.fr/refman/addendum/program.html

The rudimentary implementation for predicate subtypes3 in Mmt based on these rules is
used e.g. for our formalization of the PVS logic, described in Chapter 10.

3https://gl.mathhub.info/MMT/LFX/blob/master/source/Subtyping.mmt

https://coq.inria.fr/refman/addendum/program.html
https://gl.mathhub.info/MMT/LFX/blob/master/source/Subtyping.mmt

Chapter 8

Record Types and Models

Disclaimer:

The contents of this chapter have been previously published as [MRK18] and [MRK]
with coauthors Florian Rabe and Michael Kohlhase. Regarding individual contributions,
both the research and the original writing have been done in close collaboration, hence
a strict seperation of contributions among the authors is impossible in retrospect. The
writing has been revised for this thesis.

Additionally, the implementation and formulation of the rules for record types are
my contribution, under supervision (and with help) by Florian Rabe.

In the area of formal systems like type theories, logics, and specification and programming
languages, various language features have been studied that allow for inheritance and modularity,
e.g., theories, classes, contexts, and records. They all share the motivation of grouping a
list of declarations into a new entity such as in R = ⟦x1 ∶ A1, . . . , xn ∶ An ⟧. The basic
intuition behind it is that R behaves like a product type whose values are of the form
jx1 ∶ A1 ∶= a1, . . . , xn ∶ An ∶= an o. Such constructs are indispensable already for elementary
applications such as defining the algebraic structure of Semilattices (as in Figure 8.1), which
we will use as a running example.

Semilattice =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U ∶ type

∧ ∶ U → U → U
assoc ∶ DED ∀x, y, z ∶ U. (x ∧ y) ∧ z ≐ x ∧ (y ∧ z)
commutative ∶ . . .
idempotent ∶ . . .

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Figure 8.1: A Grouping of Declarations for Semilattices

Many systems support stratified grouping (where the language is divided into a lower level
for the base language and a higher level that introduces the grouping constructs) or integrated
grouping (where the grouping construct is one out of many type-forming operations without
distinguished ontological status), or both. The names of the grouping constructs vary between
systems, and we will call them theories and records in this chapter. An overview of some
representative examples is given in Figure 8.2.

107

108 CHAPTER 8. RECORD TYPES AND MODELS

Name of feature
System stratified integrated
ML signature/module record
C++ class class, struct
Java class class
Idris [Bra13] module record
Coq [Coq15] module record
HOL Light [Har96] ML signatures records
Isabelle [Wen09] theory, locale record
Mizar [Miz] article structure
PVS [ORS92] theory record
OBJ [Gog+93] theory
FoCaLiZe [Har+12] species record

Figure 8.2: Stratified and Integrated Groupings in Various Systems

The two approaches have different advantages. Stratified grouping permits a separation
of concerns between the core language and the module system. It also captures high-level
structure well in a way that is easy to manage and discover in large libraries, closely related
to the advantages of the little theories approach [FGT92a]. But integrated grouping allows
applying base language operations (such as quantification or tactics) to the grouping constructs.
For this reason, the (relatively simple) stratified Coq module system is disregarded in favor of
records in major developments such as [Mat].

Allowing both features can lead to a duplication of work where the same hierarchy is
formalized once using theories and once using records. A compromise solution is common
in object-oriented programming languages, where classes behave very much like stratified
grouping but are at the same time normal types of the type system. We call this internalizing
the higher level features. While combining advantages of stratified and integrated grouping,
internalizing is a very heavyweight type system feature: stratified grouping does not change
the type system at all, and integrated grouping can be easily added to or removed from a type
system, but internalization adds a very complex type system feature from the get-go. It has not
been applied much to logics and similar formal systems: the only example we are aware of is the
FoCaLiZe [Har+12] system.A much weaker form of internalization is used in OBJ and related
systems based on stratified grouping: here theories may be used as (and only as) the types of
parameters of parametric theories. Most similarly to our approach, OCaml’s first-class modules
internalize the theory (called module type in OCaml) M as the type moduleM ; contrary to
both OO-languages and our approach, this kind of internalization is in addition and unrelated
to integrated grouping.

In any case, because theories usually allow for advanced declarations like imports, definitions,
and notations, as well as extra-logical declarations, systematically internalizing theories requires
a correspondingly expressive integrated grouping construct. Records with defined fields are
comparatively rare; e.g., present in [Luo09] and OO-languages. Similarly, imports between
record types and/or record terms are featured only sporadically, e.g., in Nuprl [Con+86], maybe
even as an afterthought only.

Finally, note a related trade-off that is orthogonal to our development: even after choosing
either a theory or a record to define grouping, many systems still offer a choice whether a

8.1. GROUPINGS IN FORMAL LANGUAGES 109

declaration becomes a parameter or a field. See [SW11] for a discussion.

This chapter presents the first formal system that systematically internalizes theories into
record types1. The central idea is to use an operator Mod that turns the theory T into the
type Mod(T), which behaves like a record type. We take special care not to naively compute
this record type, which would not scale well to the common situations where theories with
hundreds of declarations or more are used. Instead, we introduce record types that allow for
defined fields and merging so that Mod(T) preserves the structure of T .

This approach combines the advantages of stratified and integrated grouping in a lightweight
language feature that is orthogonal to and can be easily combined with other foundational
language features. Concretely, it is realized as a module in the Mmt framework. By combining
our new modules with existing ones, we obtain many formal systems with internalized theories.
In particular, our typing rules conform to the abstractions of Mmt so that Mmt’s type
reconstruction [Rab17a] is immediately applicable to our features.

8.1 Groupings in Formal Languages

Languages can differ substantially in the syntax and semantics of these constructs. Our interest
here is in one difference in particular, which we call the difference between stratified and
integrated grouping.

8.1.1 Analysis

With stratified grouping, the language is divided into a lower level for the base language
and a higher level that introduces the grouping constructs. For example, the SML module
system is stratified: it uses a simply typed λ-calculus at the lower level and signatures for the
type-like and structures for the value-like grouping constructs at the higher level. Critically,
the higher level constructs are not valid objects at the lower level: even though signatures
behave similarly to types, they are not types of the base language. With integrated grouping,
only one level exists: the grouping construct is one out of many type-forming operations of the
base language with no distinguished ontological status. For example, SML also provides record
types as a grouping construct that is integrated with the type system.

Stratified languages have the advantage that they can be designed in a way that yields
a conservativity property: all higher level features can be seen as abbreviations that can be
compiled into the base language. This corresponds to a typical historical progression where
a simple base language is designed first and studied theoretically (e.g., the simply-typed
λ-calculus) and grouping is added later when practical applications demand it. But they have
the disadvantage that they tend towards a duplication of features: many operations of the
lower level are also desirable at the higher level. For example, SML functors are essentially
functions whose domain and codomain are signatures, a duplication of the function types
that already exist in the base language. In logics, this problem is even more severe because
quantification and equality (and eventually tactics, decision procedures etc.) quickly become
desirable at the higher level as well, at which point a duplication of features tends to become
infeasible. A well-known example of this trap is the stratified Coq module system (inspired by

1originally published as [MRK18]; for an extended report see [MRK].

110 CHAPTER 8. RECORD TYPES AND MODELS

SML), which practitioners often dismiss in favor of using record types, most importantly in
the mathematical components project [Mat].

This may lead us to believe that record types are the way to go — but this is not ideal
either. Record types usually do not support advanced declarations like imports, definitions,
and notations, which are commonplace in stratified languages and indispensable in practice.
Depending on the system, record types may also forbid some declarations such as type
declarations (which would require a higher universe to hold the record type), dependencies
between declarations (which would require dependent types), and axioms (which do not fit
the record paradigm in systems that do not use a propositions-as-types design). And complex
definition principles such as for inductive types and recursive functions are often placed into a
stratified higher level just to handle their inherent difficulty. Moreover, stratified grouping has
proved very appropriate for organizing extra-logical declarations such as prover instructions
(e.g., tactics, rewrite rules, unification hints) examples, sectioning, comments, and metadata.
While some systems use files as a simple, implicit higher level grouping construct, most
systems use an explicit one. The exalted status of higher level grouping also often supports
documentation and readability because it makes the large-scale structure of a development
explicit and obvious. This is particularly helpful when formalizing software specifications or
mathematical theories, whose structure naturally corresponds to those offered by higher-level
grouping. In our work on integrating theorem prover libraries (see Part III), my colleagues at
KWARC and me have experienced that this correspondence makes it much easier to compare
and integrate different stratified formalizations of the same concepts.

For an in-depth discussion of stratified and integrated groupings in various languages, see
[MRK].

8.2 Record Types with Defined Fields

We now introduce record types as an additional module of our framework. The basic intuition
is that ⟦Γ⟧ and jΓo construct record types and terms. We call a context fully typed resp.
defined if all fields have a type resp. a definition. In ⟦Γ⟧, Γ must be fully typed and may
additionally contain defined fields. In jΓo, Γ must be fully defined; the types are optional and
usually omitted in practice.

Because we frequently need fully defined contexts, we introduce a notational convention for
them: a context denoted by a lower case letters like γ is always fully defined. In contrast, a
context denoted by an upper case letter like Γ may have any number of types or definitions.

We extend our grammar as in Figure 8.3.

Γ ∶∶= ⋅ ∣ Γ, x[∶ T][∶= T]

T ∶∶= x ∣ type ∣ kind

∣ ⟦Γ⟧ ∣ jΓo ∣ T .x record types, terms, projections

Figure 8.3: Grammar for Records

Remark 8.1: Field Names and Substitution in Records
Note that we use the same identifiers for variables in contexts and fields in records. This
allows reusing results about contexts when reasoning about and implementing records. In
particular, it immediately makes our records dependent, i.e., both in a record type and —

8.2. RECORD TYPES WITH DEFINED FIELDS 111

maybe surprisingly — in a record term every variable x may occur in subsequent fields. In
some sense, this makes x bound in those fields. However, record types are critically different
from ∑-types: we must be able to use x in record projections, i.e., x can not be subject to
α-renaming.

As a consequence, capture-avoiding substitution is not always possible. This is a well-
known problem that is usually remedied by allowing every record to declare a name for itself
(e.g., the keyword this in many object-oriented languages), which is used to disambiguate
between record fields and a variable in the surrounding context (or fields in a surrounding
record). We gloss over this complication here and simply make substitution a partial function.

Before stating the rules, we introduce a few critical auxiliary definition:

Definition 8.1: Substituting in a Record

We extend substitution t[x/t′] to records:

• ⟦x1 ∶ T1, . . . , xn ∶ Tn ⟧[y/t]

= {
⟦x1 ∶ T1[y/t], . . . , xi−1 ∶ Ti−1[y/t], xi ∶ Ti, . . . , xn ∶ Tn ⟧if y = xi
⟦x1 ∶ (T1[y/t]), . . . , xn ∶ (Tn[y/t])⟧else

if none of the xi are free in t. Otherwise the substitution is undefined.

• jx1 ∶= t1, . . . , xn ∶= tn o[y/t] = {
jx1 ∶= t1, . . . , xn ∶= tn oif y ∈ {x1, . . . , xn}
jx1 ∶= (t1[y/t]), . . . , xn ∶= (tn[y/t])oelse

if none of the xi are free in t. Otherwise the substitution is undefined.

• (r.x)[y/t] = (r[y/t]).x.

Definition 8.2: Substituting with a Record

We write t[r/∆] for the result of substituting any occurrence of a variable x declared
in ∆ with r.x

In the special case where r = jδ o, we simply write t[δ] for t[jδ o/δ], i.e., we have
t[x1 ∶= t1, . . . , xn ∶= tn] = t[xn/tn] . . . [x1/t1].

Our rules for records are given in Figure 8.4. We remark on a few subtleties below.

• The formation rule is partial in the sense that not every context defines a record type or
kind. This is because the universe of a record type must be as high as the universe of
any undefined field to avoid inconsistencies. If the presence of a hierarchy of universes
(see Section 6.4), we can turn every context into a record type.

• The introduction rule infers the principal type of every record term. Because we allow
record types with defined fields, this is the singleton type containing only that record
term. This may seem awkward but does not present a problem in practice, where type
checking is preferred over type inference anyway.

• The elimination rule is straightforward, but it is worth noting that it is entirely parallel
to the second computation rule.2

2Note that it does not matter how the fields of the record are split into ∆1 and ∆2 as long as ∆1 contains
all fields that the declaration of x depends on.

112 CHAPTER 8. RECORD TYPES AND MODELS

Formation:

⊢ Γ,∆ ctx ∆ fully typed max{∆} ∈ {type,kind}

Γ⊢⟦∆⟧⇒max{∆}

Introduction:

⊢ Γ,∆ ctx δ fully defined ∆ like δ but with all missing types inferred
Γ⊢jδ o⇒⟦∆⟧

Elimination:
Γ⊢r⇒⟦∆1, x ∶ T [∶= t],∆2 ⟧

Γ⊢r.x⇒T [r/∆1]

Type checking:

For x ∶ T [∶= t] ∈ ∆
³¹¹·¹¹¹µ
Γ⊢r.x⇐T [r/∆]

additionally for x ∶ T ∶= t ∈ ∆
³¹¹¹·¹¹¹µ
Γ⊢r.x≡t[r/∆] ∶T [r/∆] Γ⊢r⇒R

Γ⊢r⇐⟦∆⟧

Equality checking (extensionality):

For every (x ∶ T) ∈ ∆
³¹¹¹·¹¹µ
Γ⊢r1.x≡r2.x ∶T [r1/∆]

Γ⊢r1≡r2 ∶⟦∆⟧

Computation:

δ = (δ1, x[∶ T] ∶= t, δ2) Γ⊢jδ o⇒R

Γ⊢jδ o.x↝t[δ1]

Γ⊢r⇒⟦∆1, x ∶ T ∶= t,∆2 ⟧

Γ⊢r.x↝t[r/∆1]

Figure 8.4: Rules for Records

• The type checking rule has a surprising premise that r must already be well-typed
(against some type R). Semantically, this assumption is necessary because we only check
the presence of the fields required by ⟦∆⟧ — without the extra assumption, typing
errors in any additional fields that r might have could go undetected. In practice, we
implement the rule with an optimization: If r is a variable or a function application, we
can efficiently infer some type for it. Otherwise, if r = jδ o, some fields of δ have already
been checked by the first premise, and we only need to check the remaining fields. The
order of premises matters in this case: we want to first use type checking for all fields for
which ⟦∆⟧ provides an expected type before resorting to type inference on the remaining
fields.

• In the equality checking rule, note that we only have to check equality at undefined fields
— the other fields are guaranteed to be equal by the assumption that r1 and r2 have type
⟦∆⟧.

8.2. RECORD TYPES WITH DEFINED FIELDS 113

• Like the type checking rule, the first computation rule needs the premise that r is well-
typed to avoid reducing an ill-typed into a well-typed term. In practice, our framework
implements computation with a boolean flag that tracks whether the term to be simplified
can be assumed to be well-typed or not; in the former case, this assumption can be
skipped.

• The second computation rule looks up the definition of a field in the type of the record.
Both computation rules can be seen uniformly as definition lookup rules — in the first
case the definition is given in the record, in the second case in its type.

Remark 8.2: Horizontal Subtyping and Equality
As mentioned in Remark 4.3, Mmt’s equality judgment could alternatively be formulated
as an untyped equality t≡t′. For our presentation of record types, however, the use of typed
equality is critical.

For example, consider record values r1 = ja ∶= 1, b ∶= 1o and r2 = ja ∶= 1, b ∶= 2o as well
as record types R = ⟦a ∶ nat⟧ and S = ⟦a ∶ nat, b ∶ nat⟧. Due to horizontal subtypinga, we
have S<∶R and thus both ri⇐S and ri⇐R. This has the advantage that the function S → R
that throws away the field b becomes the identity operation. Now our equality at record
types behaves accordingly and checks only for the equality of those fields required by the
type. Thus, r1≡r2 ∶R is true whereas r1≡r2 ∶S is false, i.e., the equality of two terms may
depend on the type at which they are compared. While seemingly dangerous, this makes
sense intuitively: r1 can be replaced with r2 in any context that expects an object of type R
because in such a context the field b, where r1 and r2 differ, is inaccessible.

Of course, this treatment of equality precludes downcasts: an operation that casts the
equal terms r1 ∶ R and r2 ∶ R into the corresponding unequal terms of type S would be
inconsistent. But such downcasts are still possible (and valuable) at the meta-level. For
example, a tactic GroupSimp(G,x) that simplifies terms x in a group G can check if G is
commutative and in that case apply more simplification operations.

We will sometimes omit a type in the formal presentation of rules if convenient. The
implementation in Mmt allows for equality rules to have an optional argument for the type
at which they operate, hence both typed an untyped equalities can be treated by the system.

aAlso called structural subtyping ; e.g., ⟦x ∶ T, y ∶ S ⟧ is a subtype of ⟦x ∶ T ⟧. In contrast, e.g. the
straightforward covariance rule for record types is called vertical subtyping.

Example 8.1:
Figure 8.5 shows a record type of Semilattices (actually, this is a kind because it contains
a type field) analogous to the grouping in Figure 8.1 (using the usual encoding of axioms
via judgments-as-types and higher-order abstract syntax for first-order logic).

Semilattice ∶=

L
P
P
P
P
P
P
P
P
P
N

U ∶ type

∧ ∶ U → U → U
assoc ∶ DED ∀x, y, z ∶ U. (x ∧ y) ∧ z ≐ x ∧ (y ∧ z)
commutative ∶ . . .
idempotent ∶ . . .

M
Q
Q
Q
Q
Q
Q
Q
Q
Q
O

Figure 8.5: The (Record-)Kind of Semilattices
Then, given a record r ∶ Semilattice, we can form the record projection r.∧, which has

114 CHAPTER 8. RECORD TYPES AND MODELS

type r.U → r.U → r.U and r.assoc yields a proof that r.∧ is associative. The intersection
on sets forms a semilattice so (assuming we have proofs ∩ − assoc, ∩−comm, ∩−idem with
the corresponding types) we can give an instance of that type as

interSL ∶ Semilattice ∶= jU ∶= Set,∧ ∶= ∩,assoc ∶= ∩−assoc, . . . o

Theorem 8.1: Principal Types

Our inference rules (in plain LF) infer a principal type for each well-typed normal
term.

Proof. Let Γ be a fixed well-typed context. We need to show that for any normal
expression t the inferred type is the most specific one, meaning if Γ⊢t⇒T , then for any
T ′ with Γ⊢t⇐T ′ we have Γ⊢T<∶T ′.
If the only type checking rule applicable to a term t is an inference rule, then the only
way for t to check against a type T ′ which is not the inferred type T is by first inferring
T and then checking Γ⊢T<∶T ′, so in these cases the claim follows by default.
By induction on the grammar:

t = x and x ∶ T ∈ Γ, then Γ⊢t⇒T , which is principal by default.

t = type then Γ⊢t⇒kind, which is principal by default.

t = kind is untyped.

t =∏x∶AB then Γ⊢t⇒U , where U ∈ {kind,type}, both of which are principal by default.

t = λx ∶ A.t′ then for some B ∶ U we have Γ, x ∶ A⊢t′⇒B, which is principal by default.

t = fa then Γ⊢t⇒B[x/a], where Γ⊢f⇒∏x∶AB Γ⊢a⇒A′ are both principal types
and for well-typedness Γ⊢A′<∶A needs to hold. Since t is normal, f does not
simplify to a lambda-expression and B[x/a] is principal by default.

t = ⟦∆⟧ then Γ⊢t⇒U , where U ∈ {kind,type}, both of which are unique and hence
principal.

t = jδ o then Γ⊢r⇒⟦∆⟧, wheren ∆ contains the exact same variables, but with
all types inferred (and by induction hypothesis principal). For t to check
against a type, it has to have the form ⟦∆′ ⟧, hence we need to show that if
Γ⊢t⇐⟦∆′ ⟧, then Γ, r ∶ ⟦∆⟧⊢r⇐⟦∆′ ⟧.
Consider the type checking rule for records in Figure 8.4 and let x ∶ T [∶=

d] ∈ ∆′. Since Γ⊢t⇐⟦∆′ ⟧, we have Γ⊢r.x⇐T (and if x is defined in ∆′ also
Γ⊢t.x≡d ∶T) and since ∆ is inferred from t we have x ∶ T ′ ∶= d in ∆, where
by hypothesis T ′ is the principal type of d and hence Γ⊢T ′<∶T .
As a result, Γ, r ∶ ⟦∆⟧⊢r.x⇒T ′, therefore Γ, r ∶ ⟦∆⟧⊢r.x⇐T and Γ, r ∶

⟦∆⟧⊢r.x≡d ∶T and hence Γ, r ∶ ⟦∆⟧⊢r⇐⟦∆′ ⟧, which makes ⟦∆⟧ the
principal type of t.

t = r.x Since t is normal, we have Γ⊢r.x⇒T [r/∆1] for some Γ⊢r⇒⟦∆1, x ∶ T,∆2 ⟧.
Since the latter is by hypothesis the principal type of r, for t to typecheck
against some T ′ it needs to be the case that r type checks against some
R = ⟦∆′

1, x ∶ T
′,∆′

2 ⟧ and Γ⊢T<∶T ′ holds by the principal type of r.

8.2. RECORD TYPES WITH DEFINED FIELDS 115

In analogy to function types, we can derive the subtyping properties of record types. We
introduce context subsumption and then combine horizontal and vertical subtyping in a single
statement.

Definition 8.3: Context Subsumption

For two fully typed contexts ∆i we write Γ⊢∆1↪∆2 iff for every declaration x ∶ T [∶= t]
in ∆1 there is a declaration x ∶ T ′[∶= t′] in ∆2 such that

• Γ⊢T ′<∶T and
• if t is present, then so is t′ and Γ⊢t≡t′ ∶T

Intuitively, ∆1↪∆2 means that everything of ∆1 is also in ∆2. That yields:

Theorem 8.2: Record Subtyping

The following rule is derivable:

Γ⊢∆1↪∆2

Γ⊢⟦∆2 ⟧<∶⟦∆1 ⟧

Proof. Assume Γ⊢∆1↪∆2. We need to show Γ, r ∶ ⟦∆2 ⟧⊢r⇐⟦∆1 ⟧. By the type checking
rule in Figure 8.4, for any x ∶ T [∶= t] ∈ ∆1, we need to show that Γ, r ∶ ⟦∆2 ⟧⊢r.x⇐T (and
if applicable Γ, r ∶ ⟦∆2 ⟧⊢r.x≡t ∶T).
By definition of ∆1↪∆2, since x ∶ T [∶= t] ∈ ∆1, we have x ∶ T ′[∶= t] ∈ ∆2 and Γ⊢T ′<∶T ,
and if x is defined in ∆1 the required equality holds as well, so the type checking rule
proves Γ, r ∶ ⟦∆2 ⟧⊢r⇐⟦∆1 ⟧ and the claim follows.

Merging Records We introduce an advanced operation on records, which proves critical for
both convenience and performance: Theories can easily become very large containing hundreds
or even thousands of declarations. If we want to treat theories as record types, we need to be
able to build big records from smaller ones without exploding them into long lists. Therefore,
we introduce an explicit merge operator + on both record types and terms.

In the grammar, this is a single production for terms:

T ∶∶= T+T

The intended meaning of + is given by the following definition:

116 CHAPTER 8. RECORD TYPES AND MODELS

Definition 8.4: Merging Contexts

Given a context ∆ and a (not necessarily well-typed) context E, we define a partial
function ∆∓E as follows:

• ⋅∓E = E
• If ∆ = d,∆0 where d is a single declaration for a variable x:

– if x is not declared in E: (d,∆0)∓E = d, (∆0∓E)

– if E = E0, e,E1 where e is a single declaration for a variable x:
∗ if a variable in E0 is also declared in ∆0: ∆∓E is undefined,
∗ if d and e have unequal types or unequal definitions: ∆∓E is undefined3,
∗ otherwise, (d,∆0)∓(E0, e,E1) = E0,m, (∆0,E1) where m arises by merg-

ing d and e.

Note that ∓ is an asymmetric operator: While ∆ must be well-typed (relative to some ambient
context), E may refer to the names of ∆ and is therefore not necessarily well-typed on its own.

We do not define the semantics of + via inference and checking rules. Instead, we give
equality rules that directly expand + into ∓ when possible:

⊢ Γ, (∆1∓∆2) ctx

Γ⊢⟦∆1 ⟧+⟦∆2 ⟧↝⟦∆1∓∆2 ⟧

⊢ Γ, (δ1∓δ2) ctx

Γ⊢jδ1 o+jδ2 o↝jδ1∓δ2 o

⊢ Γ, (∆∓δ) ctx

Γ⊢⟦∆⟧+jδ o↝j∆∓δ o

In implementations some straightforward optimizations are needed to verify the premises of
these rules efficiently; we omit that here for simplicity. For example, merges of well-typed
records with disjoint field names are always well-typed, but e.g., ⟦x ∶ nat⟧+⟦x ∶ bool⟧ is not
well-typed even though both arguments are.

In practice, we want to avoid using the computation rules for + whenever possible. Therefore,
we prove admissible rules (i.e., rules that can be added without changing the set of derivable
judgments) that we use preferentially:

Theorem 8.3:

• If R1, R2, and R1+R2 are well-typed record types, then R1+R2 is the greatest
lower bound with respect to subtyping of R1 and R2. In particular, Γ⊢r⇐R1+R2

iff Γ⊢r⇐R1 and Γ⊢r⇐R2

• If Γ⊢ri⇐Ri and r1+r2 is well-typed, then Γ⊢r1+r2⇐R1+R2

Proof. • If R1 = ⟦∆1 ⟧ and R2 = ⟦∆2 ⟧ are well-typed record types, then
R1+R2↝⟦∆1∓∆2 ⟧. By definition of ∓, any r ∶ R1+R2 hence has all fields defined
that are required by both ⟦∆1 ⟧ and ⟦∆2 ⟧ and the other way around.

• By the rules for +, for r1 = jδ1 o and jδ2 o we get r1+r2 = jδ1∓δ2 o and if R1 = ⟦∆1 ⟧ and
R2 = ⟦∆2 ⟧, then (since Γ⊢ri⇐Ri) we have ∆1↪δ1 and ∆2↪δ2.

3It is possible and important in practice to also define ∆∓E when the types/definitions in d and e are
provably equal. We omit that here for simplicity.

8.3. INTERNALIZING THEORIES 117

As can easily be verified, it follows that ∆1∓∆2↪δ1∓δ2, and hence jδ1∓δ2 o⇒⟦δ1∓δ2 ⟧ <∶

⟦∆1∓∆2 ⟧ = R1+R2.

Inspecting the type checking rule in Figure 8.4, we see that a record r of type ⟦∆⟧ must
repeat all defined fields of ∆. This makes sense conceptually but would be a major inconvenience
in practice. The merging operator solves this problem elegantly as we see in the following
example:

Example 8.2:
Continuing our running example, we can now define a type of semilattices with order (and
all associated axioms) as in Figure 8.6.

SemilatticeOrder ∶= Semilattice+

L
P
P
P
P
P
N

≤ ∶ U → U → U ∶= λx,y∶U . x ≐ x ∧ y
refl ∶ DED ∀a ∶ U. a ≤ a ∶= (proof)
. . .

M
Q
Q
Q
Q
Q
O

interSLO ∶= SemilatticeOrder+interSL

Figure 8.6: Running Example
Now the explicit merging in the type SemilatticeOrder allows the projection interSLO. ≤,
which is equal to λx, y ∶ (interSLO.U) . (x ≐ x(interSLO.∧)y) and interSLO.refl yields a
proof that this order is reflexive – without needing to define the order or prove the axiom
anew for the specific instance interSL.

8.3 Internalizing Theories

For the purposes of this section, let Θ be the global context of available modules.
We can now add the internalization operator, for which everything so far was preparation.

We add one production to the grammar:

T ∶∶= Mod(X)

The intended meaning of Mod(X) is that it turns a theory X into a record type and a
morphism X ∶ P→Q into a function Mod(Q)→ Mod(P). For simplicity, we only state the rules
for the case where all include declarations are at the beginning of theory/morphism:

P = {include P1, . . . ,include Pn,∆} in Θ ∆ flat max{P } defined
Θ; Γ⊢Mod(P)↝Mod(P1)+ . . .+Mod(Pn)+⟦∆⟧

V ∶ P → Q = {include V1, . . . ,include Vn, δ} in Θ δ flat
Θ; Γ⊢Mod(V)↝λr ∶ Mod(Q). Mod(P)+(Mod(V1)r)+ . . .+(Mod(Vn)r)+jδ[r]o

where we use the following abbreviations:
• In the rule for theories, max{P } is the biggest universe occurring in any declaration

transitively included into P , i.e., max{P } = max{max{P1 }, . . . ,max{Pn },max{∆}}

(undefined if any argument is).

118 CHAPTER 8. RECORD TYPES AND MODELS

• In the rule for morphisms, δ[r] is the result of substituting in δ every reference to a
declaration of x in Q with r.x.

In the rule for morphisms, the occurrence of Mod(P) may appear redundant; but it is critical to
(i) make sure all defined declarations of P are part of the record and (ii) provide the expected
types for checking the declarations in δ.

Example 8.3:
Consider the theories in Figure 8.7. Applying Mod(⋅) to these theories yields exactly the
record types of the same name introduced in Section 8.2 (Figures 8.5 and 8.6), i.e., we have
interSL⇐Mod(Semilattice) and interSLO⇐Mod(SemilatticeOrder). In particularly,
Mod preserves the modular structure of the theory.

theory Semilattice =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

U ∶ type
∧ ∶ U → U → U
assoc ∶ DED ∀x, y, z ∶ U. (x ∧ y) ∧ z ≐ x ∧ (y ∧ z)
commutative ∶ . . .
idempotent ∶ . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

theory SemilatticeOrder =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

include Semilattice

order ∶ U → U → U ∶= λx,y∶U . x ≐ x ∧ y
refl ∶ DED ∀a ∶ U. a ≤ a ∶= (proof)
. . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Figure 8.7: A Theory of Semilattices

The basic properties of Mod(X) are collected in the following theorem:

Theorem 8.4: Functoriality

Mod(⋅) is a monotonic contravariant functor from the category of theories and morphisms
ordered by inclusion to the category of types (of any universe) and functions ordered by
subtyping. In particular,

• if P is a theory in Θ and maxP ∈ {type,kind}, then Θ; Γ⊢Mod(P)⇐maxP
• if V ∶ P→Q is a theory morphism in Θ; Γ⊢Mod(V)⇐Mod(Q)→ Mod(P)

• if P is transitively included into Q, then Θ; Γ⊢Mod(Q)<∶Mod(P)

Proof. • Follows immediately by the computation rule for Mod(P).

• Follows immediately by the computation rule for Mod(V) and the type checking rule
for λ.

• Follows immediately by the computation rule for Mod(P) and Theorem 8.3.

An immediate advantage of Mod(⋅) is that we can now use the expression level to define
expression-like theory level operations. As an example, we consider the intersection P ∩ P ′

of two theories, i.e., the theory that includes all theories included by both P and P ′. Instead
of defining it at the theory level, which would begin a slippery slope of adding more and more
theory level operations, we can simply build it at the expression level:

P ∩ P ′
∶= Mod(Q1)+ . . .+Mod(Qn)

8.3. INTERNALIZING THEORIES 119

where the Qi are all theories included into both P and P ′.4

Note that the computation rules for Mod are efficient in the sense that the structure of the
theory level is preserved. In particular, we do not flatten theories and morphisms into flat
contexts, which would be a huge blow-up for big theories.5

However, efficiently creating the internalization is not enough. Mod(X) is defined via +,
which is itself only an abbreviation whose expansion amounts to flattening. Therefore, we
establish admissible rules that allow working with internalizations efficiently, i.e., without
computing the expansion of +:

Theorem 8.5:

Fix well-typed Θ, Γ and P = {include P1, . . . ,include Pn,∆} in Θ. Then the following
rules are admissible:

1≤i≤n
³¹¹·¹¹µ
Θ; Γ⊢r⇐Mod(Pi)

x∶T ∈∆
³¹¹·¹¹µ
Θ; Γ⊢r.x⇐T [r/P]

x∶T ∶=t∈∆
³¹¹¹·¹¹¹µ
Θ; Γ⊢r.x≡t[r/P] ∶T [r/P] Γ⊢r⇒R

Θ; Γ⊢r⇐Mod(P)

1≤i≤n
³¹¹¹·¹¹µ
Θ; Γ⊢ri⇐Mod(Pi)

1≤i,j≤n
³¹¹¹·¹¹¹µ
Θ; Γ⊢ri≡rj ∶Pi ∩ Pj Θ; Γ⊢jδ o[r/P]⇐⟦∆⟧ Γ⊢r⇒R

Θ; Γ⊢Mod(P)+r1+ . . .+rn+jδ o
´¹¹¸¹¹¶

=∶r

⇒Mod(P)

where [r/P] abbreviates the substitution that replaces every x declared in a theory
transitively-included into P with r.x.

The first rule in Theorem 8.5 uses the modular structure of P to check r at type Mod(P).
If r is of the form jδ o, this is no faster than flattening Mod(P) all the way. But in the typical
case where r is also formed modularly using a similar structure as P , this can be much faster.
The second rule performs the corresponding type inference for an element of Mod(P) that is
formed following the modular structure of P . In both cases, the last premise is again only
needed to make sure that r does not contain ill-typed fields not required by Mod(P). Also
note that if we think of Mod(P) as a colimit and of elements of Mod(P) as morphisms out of
P , then the second rule corresponds to the construction of the universal morphisms out of the
colimit.

Example 8.4:
We continue Example 8.3 and assume we have already checked

interSL⇐Mod(Semilattice) (*).
We want to check interSL+jδ o⇐Mod(SemilatticeOrder). Applying the first rule of

Theorem 8.5 reduces this to multiple premises, the first one of which is (*) and can thus be
discharged without inspecting interSL.

4Note that because P ∩ P ′ depends on the syntactic structure of P and P ′, it only approximates the least
upper bound of Mod(P) and Mod(P ′) and is not stable under, e.g., flattening of P and P ′. But it can still be
very useful in certain situations.

5The computation of max{P } may look like it requires flattening. But it is easy to compute and cache its
value for every named theory.

5In practice, these substitutions are easy to implement without flattening r because we can cache for every
theory which theories it includes and which names it declares.

120 CHAPTER 8. RECORD TYPES AND MODELS

Example 8.4 is still somewhat artificial because the involved theories are so small. But the
effect pays off enormously on larger theories.

Additionally, we can explicitly allow views within theories into the current theory. Specifically,
given a theory T , we allow a view

T = {. . . , V ∶ T ′→⋅ = {. . .}, . . . }

the codomain of which is the containing theory T (up to the point where V is declared).
This view induces a view T /V ∶ T ′→T in the top-level context Θ, but importantly, within T
(and its corresponding inner context Γ) every variable in V is defined via a valid term in Γ.
Correspondingly, Mod(V) is – in context Γ – a constant function Mod(T) → Mod(T ′) which
we can consider as an element of Mod(T) directly.

This allows for conveniently building instances of Mod(⋅) and all checking for well-formedness
is reduced to structurally checking the view to be well-formed, effectively carrying over all
efficiency advantages of structure checking and modular development of theories/views:

Theorem 8.6:

Let Θ,Γ be well-formed and T /V ∶ T ′→T = {. . .} in Θ, where Γ is the current context
within theory T containing V ∶ T ′→⋅ = {. . .}. The following rule is admissible:

Θ; Γ⊢Mod(V)⇐Mod(T ′)

Proof. We consider Mod(V) an abbreviation for Mod(T /V)(j ⋅ o). Since all definitions
in Mod(T /V) are well-typed terms in context Γ, the record j ⋅ o does not actually occur
anywhere in the simplified application Mod(T /V)(j ⋅ o), which makes this expression
well-typed.

8.4 Implementation

The implementation of record types and the Mod(⋅) can be found at [LFX]/scala/.../Records.
They are used extensively in the Math-in-the-Middle archive (see Section 3.4).

For a particularly interesting example that occurs in MitM, consider the theories for
modules and vector spaces (over some ring/field) given in Listing 8.1 to Listing 8.4, which
elegantly follow informal mathematical practice. Going beyond the syntax introduced so far,
these use parametric theories. Our implementation extends Mod to parametric theories as well,
namely in such a way that e.g. Mod(module_theory) ∶∏R∶ring Mod(module_theory(R)) and
correspondingly for fields. Thus, we obtain

vectorspace = λF ∶ field.((moduleF) + . . .)

and, e.g., vectorspace(R)<∶module(R), where vectorspace, module, field and ring are all
Mod(⋅)-types.

Because of type-level parameters, this requires some kind of parametric polymorphism in
the type system. For our approach, the shallow polymorphism module that is available in PLF
(see Remark 4.6) is sufficient.

8.4. IMPLEMENTATION 121

Listing 8.1: A Theory of Rings6

theory Ring : base:?Logic =

theory ring_theory : base:?Logic =
include sets :? SetStructures /setstruct_theory ∣∣∣∣
structure addition : ?AbelianGroup/abeliangroup_theory =
universe = ‘sets :? SetStructures /setstruct_theory ?universe ∣∣ # Uadd ∣∣∣∣
op @ rplus ∣∣ # 1 + 2 prec 5∣∣∣∣
unit @ rzero ∣∣ # O ∣∣∣∣
inverse @ rminus ∣∣ # − 1 ∣∣∣∣

∣∣∣∣∣∣∣∣
structure multiplication : ?Monoid/monoid_theory =
universe = ‘sets :? SetStructures /setstruct_theory ?universe ∣∣ # Umult ∣∣∣∣
op @ rtimes ∣∣ # 1 ⋅ 2 prec 6∣∣∣∣
unit @ rone ∣∣ # I ∣∣∣∣

∣∣∣∣∣∣∣∣
unitset = ⟨ x: U | ⊢ x ≠ O ⟩ ∣∣∣∣
axiom_distributive : ⊢ prop_distributive rplus rtimes ∣∣∣∣
axiom_oneNeqZero : ⊢I ≠ O ∣∣∣∣
axiom_leftUnital : ⊢ ∀[x : U] I ⋅ x ≐ x ∣∣∣∣
axiom_rightUnital : ⊢ ∀[x : U] x ⋅ I ≐ x ∣∣∣∣

∣∣∣∣∣∣∣∣
ring = Mod ring_theory ∣∣∣∣

∣∣∣∣∣∣∣∣

Listing 8.2: A Theory of Fields 7

theory Field : base:?Logic =
include ?Ring ∣∣∣∣

theory field_theory : base:?Logic =
include ?Ring/ring_theory ∣∣∣∣
inverse : unitset → unitset ∣∣ # 1 −1 prec 24 ∣∣∣∣
axiom_inverse : ⊢ ∀ [x : unitset] x ⋅ (x −1) ≐ I ∣∣∣∣
axiom_commutative : ⊢∀[x : U]∀[y] (x ⋅ y) ≐ (y ⋅ x) ∣∣∣∣

∣∣∣∣∣∣∣∣
field : kind ∣∣ = Mod field_theory ∣∣∣∣

∣∣∣∣∣∣∣∣

Listing 8.3: A Theory of Modules 8

theory Module : base:?Logic =
include ?Ring ∣∣∣∣

theory module_theory : base:?Logic > scalars : ring ∣∣ =
scaltp : type ∣∣ = scalars . universe ∣∣∣∣
include ?AbelianGroup/abeliangroup_theory ∣∣∣∣
scalarmult : scaltp → U → U ∣∣# 1 ⋅ 2 ∣∣∣∣
axiom_dist1 : ⊢ prop_dist1 scalarmult op∣∣∣∣
axiom_dist2 : ⊢ prop_dist2 scalarmult (scalars . rplus) op ∣∣∣∣
axiom_associative_scalars : ⊢ prop_associative_scalars scalarmult (scalars . rtimes) ∣∣∣∣
axiom_unit_scalars : ⊢ prop_unit_scalars scalarmult (scalars . rone) ∣∣∣∣

∣∣∣∣∣∣∣∣
module = [R : ring] Mod module_theory R ∣∣∣∣

∣∣∣∣∣∣∣∣

Listing 8.4: A Theory of Vector Spaces 9

6https://gl.mathhub.info/MitM/smglom/blob/master/source/algebra/ringsfields.mmt
7Ibid.
8https://gl.mathhub.info/MitM/smglom/blob/master/source/algebra/modulsvectors.mmt

https://gl.mathhub.info/MitM/smglom/blob/master/source/algebra/ringsfields.mmt
https://gl.mathhub.info/MitM/smglom/blob/master/source/algebra/modulsvectors.mmt

122 CHAPTER 8. RECORD TYPES AND MODELS

theory Vectorspace : base:?Logic =
include ?Field ∣∣∣∣
include ?Module ∣∣∣∣

theory vectorspace_theory : base:?Logic > scalars : field ∣∣ =
include ?Module/module_theory (scalars) ∣∣∣∣

∣∣∣∣∣∣∣∣
vectorspace : field → kind ∣∣ = [F : field] Mod vectorspace_theory F ∣∣∣∣

∣∣∣∣∣∣∣∣

9Ibid.

Chapter 9

Conclusion and Additional Features

The features presented in this part, collectively, yield a logical framework capable of representing
the logical foundations of most formal systems encountered in practice. Our modular approach
allows for picking and choosing the required features for a given formalization in a compositional
manner, while avoiding the potential overhead of unnecessary rules for a given formalization.

Additional Features Notably, many formal systems offer additional features as “syntactic
sugar”, with an abbreviation-like semantics that can already be fully represented in the
underlying logic, but which allow for formalizing content more conveniently. Examples include
record and function updates in PVS (e.g. “r is defined as the record s, except for field a, which
has value t instead”), let-operators that introduce new variables as abbreviations for complex
expressions, or sections in Coq (where local variables are introduced as constants, references
to which are lambda-abstracted away when closing a section).

In the interest of preserving the syntactic representation of an imported library as much as
possible, we prefer adding these features in the formalization of a system’s foundation. Due to
their trivial semantics, these features rarely pose a challenge for implementation, and because
they can be elaborated away (and usually are in the system itself during checking), they do
not introduce hurdles for library integration.

We have implemented some of these convenience features, including a let-operator1, an
object-level substitution function2, a primitive polymorphic type of lists3, and Coq-like sections4,
the latter of which is very naturally implemented as a structural feature and used in our import
of the Coq library [MRS]. Furthermore, Fulya Horozal previously implemented an extension of
LF with finite sequences and flexary operators [Hor14].

Module-Level Extensions The Mod-operator described in Chapter 8 additionally uses
Module-level expressions (namely references to theories), but is still a rule-based object-level
typing feature of the underlying logic. However, it is also possible to extend Mmt’s module
system itself in various ways. These are (regarding their implementation) rather recent additions
to the Mmt system and are not central to this thesis, however, they offer interesting extensions

1https://gl.mathhub.info/MMT/LFX/tree/master/scala/info/kwarc/mmt/LFX/datatypes
2ibid.
3ibid.
4https://github.com/UniFormal/MMT/blob/master/src/mmt-coq/src/info/kwarc/mmt/coq/Features.

scala

123

https://gl.mathhub.info/MMT/LFX/tree/master/scala/info/kwarc/mmt/LFX/datatypes
https://github.com/UniFormal/MMT/blob/master/src/mmt-coq/src/info/kwarc/mmt/coq/Features.scala
https://github.com/UniFormal/MMT/blob/master/src/mmt-coq/src/info/kwarc/mmt/coq/Features.scala

124 CHAPTER 9. CONCLUSION AND ADDITIONAL FEATURES

for the goal of this part. In particular, module-level features are entirely orthogonal to the
logic-level typing feature discussed in this part; hence they are intrinsically compatible with
the modular development approach central to this thesis, and composable with all features
herein:

• Structural features have by now been extended to the module level. Instead of elaborating
into a list of declarations, they can instead elaborate into a list of modules.5

• Implicit morphisms can be used to treat arbitrary theory morphisms in a manner similar
to plain includes; in particular they preserve the (fully qualified) names of the symbols
in the source theory, whose semantics in the target theory is provided by the morphism.
This approach has been published in [RM18], which also contains a novel description of
Mmt’s module system and its semantics. While the details therein are largely irrelevant
and unnecessarily elaborate for this thesis, it is highly recommended for readers interested
in designing module systems.

• In this thesis, we treat all theories as named modules with explicitly declared contents.
However, Mmt treats module references as Mmt terms, and theory combinators (such as
unions or pushouts) allow for building complex terms representing anonymous theories.
In particular, the theory combinators of mathscheme [CFO10] have been implemented in
Mmt in .

In addition to allowing the formalization of the foundations of formal systems, our modular
logical framework is used as a basis for the Math-in-the-Middle library (see Section 3.4), which
serves as a case study and explorative playground for evaluation and inspiration for additional
features.

Additionally, the latter allows us to experiment with combining and unifying various
different approaches and combinations of features, e.g. Mod-types for theories defined via
theory combinators that are the codomains of implicit morphisms, or identifying natural
numbers as a W-type with a declarative implementation using the Peano axioms, and a
separate type populated by literals.

5As-of-yet unpublished

Part III

Translating Mathematical Libraries
into a Universal Format

125

127

To integrate formal libraries from various sources and to implement generic knowledge
management services, as is one of the objectives of this thesis (see Section 3.5), it is necessary
to have a unifying framework and language in which these libraries are represented. Naturally,
OMDoc/Mmt is (due to its generality and modularity) the prime candidate for such a
framework. This Part covers the process of translating one library from an external system
into the OMDoc/Mmt language.

The OAF project (see Section 3.2) in particular focuses on integrating libraries from theorem
prover systems; however, the methodology involved generalizes easily to the purposes of
the OpenDreamKit project (see Section 3.3), where the aim is to integrate databases of
mathematical objects and their properties (e.g. finite groups), computer algebra systems and
related systems. Together, they cover three aspects of the tetrapod (see Chapter 1), namely
inference, tabulation and computation. Additionally, the Mmt system itself manages the
organization aspect.

In all settings, the process involved in translating a library L from system S to OM-
Doc/Mmt entails the following steps:

1. Use a suitable logical framework (as discussed in Part II) to formalize the foundational
ontology of S.

2. Obtain an export of the contents of L in a parsable format. In the case of theorem prover
libraries, this usually requires collaboration with the developers of S, since the source
files themselves are often only readable for the corresponding system and do not contain
inferred information such as implicit arguments, resolved notations, relevant type-check
conditions, etc.

3. Implement an importer that systematically translates the export from the previous step
into OMDoc/Mmt, using the symbols in the formalization from step 1 to represent the
foundational concepts of S.

There is a continuum of possible translations, ranging from perfect adequacy to mere
representation. In the best case, we can fully type check the result of the translation and the
precise semantics of the original content is preserved under translation. In the worst case,
we obtain a representation of the symbols in the original library as untyped and undefined
constants. Ideally we want the former, however, depending on the specifics of the system, this
might be impossible to achieve without reimplementing the entire system within Mmt. For
example, a system with predicate subtypes and a powerful automated prover will usually rely
on the latter to type check contents in a manner that can only be reproduced with a similarly
powerful prover. In the case of (untyped) computer algebra systems, it might be impossible to
check whether a given expression in the language of the system is even well-formed without
passing it back to the system itself and evaluating the result.

However, it should be noted that for many knowledge management services such as
alignments (see Chapter 14) or (in a limited form) content translation (see Chapter 15), even
mere representation is sufficient to obtain useful results. From that point of view, an adequate
translation is not strictly necessary, but usually the usefulness of generic services strongly
correlates with the amount of details and structure preserved in the translated library.

128

In this thesis we only consider the statements in a given formal library (declarations,
definitions, theorems, axioms) – i.e. we do not cover proofs or specific implementations of
methods in computer algebra system. Importing proofs poses additional challenges and requires
an adequate proof language sufficiently generic to subsume the various ways proofs can be
represented in formal systems, if they can be exported from the system at all. To the best
of my knowledge, such a generic proof language that can serve as an adequate target for
translations from theorem prover systems does not yet exist. All knowledge management
services presented in this thesis consequently do not benefit from any knowledge about proofs,
other than (potentially) the binary information whether a statement is proven at all and
(possiby) dependency management.

The methodology described in this part has been applied to various systems and libraries by
several people, resulting in OMDoc/Mmt imports for Mizar [Ian+13], HOL Light [KR14],
TPTP [Sut09], IMPS [Bet18], Isabelle (as-of-yet unpublished), Coq [MRS] and PVS [Koh+17b].
As a representative example, the latter is covered in detail in Chapter 10. Moving on to less
formal corpora, Chapter 11 demonstrates how to handle databases of mathematical objects,
exemplary the LMFDB, and Chapter 12 covers computer algebra systems, using the GAP and
Sage systems as examples.

Chapter 10

Integrating Theorem Prover Libraries -
PVS

Disclaimer:

The contents of this chapter have been published in [Koh+17b] with coauthors Michael
Kohlhase, Sam Owre and Florian Rabe.

Both the writing as well as the theoretical results were developed in close collab-
oration between the authors, hence it is impossible to precisely assign authorship to
individual authors. My contribution with regards to these can be assumed to be minor,
although the writing has been reworked for this thesis.

The implementations (as described below) of the PVS-to-OMDoc translation, the
formalization of the PVS foundation and the implementation of the logical framework
used therein are my contribution.

10.1 Introduction and Preliminaries

PVS [ORS92] is a verification system, combining language expressiveness with automated
tools. Its language is based on higher-order logic, and is strongly typed. It includes types
and terms for concepts such as: numbers, records, tuples, functions, quantifiers, and recursive
definitions. Full predicate subtypes are supported, which makes type checking undecidable;
PVS generates type obligations (TCCs) as artefacts of type checking. For example, division is
defined such that the second argument is nonzero, where nonzero is defined:
nonzero_real: TYPE = {r: real | r /= 0}

Note that functions in PVS are total; partiality is only supported via subtyping.
Beyond this, the PVS language has structural subtypes (i.e., a record that adds new

fields to a given record), dependent types for records, tuples, and functions, recursive and
co-recursive datatypes, inductive and co-inductive definitions, theory interpretations, and
theories as parameters, conversions, and judgements that provide control over the generation
of proof obligations. Specifications are given as collections of parameterized theories, which
consist of declarations and formulas, and are organized by means of imports.

The PVS prover is interactive, but with a large amount of automation built in. It is
closely integrated with the type checker, and features a combination of decision procedures,

129

130 CHAPTER 10. INTEGRATING THEOREM PROVER LIBRARIES - PVS

including BDDs, automatic simplification, rewriting, and induction. There are also rules for
ground evaluation, random test case generation, model checking, and predicate abstraction.
The prover may be extended with user-defined proof strategies.

PVS has been used as a platform for integration. It has a rich API, making it relatively
easy to add new proof rules and integrate with other systems. Examples of this include the
model checker, Duration Calculus, MONA, Maple, Ag, and Yices. The system is normally used
through a customized Emacs interface, though it is possible to run it standalone (PVSio does
this), and PVS features an XML-RPC server (developed independently of the work presented
here) that will allow for more flexible interactions. PVS is open source, and is available at
http://pvs.csl.sri.com.

As an example, Figure 10.1 gives a part of the PVS theory defining equivalence closures
on a type T in its original syntax. PVS uses upper case for keywords and logical primitives;
square brackets are used for types and round brackets for term arguments. The most important
declarations in theories are

• includes of other theories, e.g., the binary subset predicate subset? and the type
equivalence of equivalence relations on T are included from the theories sets and
relations (These includes are redundant in the PVS prelude and added here for
clarity.),

• typed identifiers, possibly with definitions such as EquivClos , and

• named theorems (here with omitted proof) such as EquivClosSuperset .

VAR declarations are one of several non-logical declarations: they only declare variable
types, which can then be omitted later on; here PRED[[T,T]] abbreviates the type of binary
relations on T .

EquivalenceClosure[T : TYPE] : THEORY
BEGIN
IMPORTING sets, relations
R: VAR PRED[[T, T]]
x, y : VAR T
EquivClos(R) : equivalence[T] =
{ (x, y) | FORALL(S : equivalence[T]) : subset?(R, S) IMPLIES S(x, y) }

EquivClosSuperset : LEMMA
subset?(R, EquivClos(R))

...
END EquivalenceClosure

Figure 10.1: An Excerpt From the PVS Prelude Library

10.2 Formalizing Foundations

To define the language of PVS in Mmt, we carry out two steps.
Firstly, we choose a suitable logical framework by picking the necessary features presented

in Part II. Notably, we include three features: anonymous record types (see Chapter 8),
predicate subtypes (see Chapter 7), and imports of multiple instances of the same parametric

http://pvs.csl.sri.com

10.2. FORMALIZING FOUNDATIONS 131

theory. The latter is achieved by a structural feature (see Section 6.3) that elaborates into the
lambda-abstracted declarations of the imported theory.

Then we use this logical framework to define the Mmt theory for PVS. Listing 10.1 shows
the most fundamental constants of this theory.

Listing 10.1: The Fundamental Higher-Order Logic of PVS 1

tp : type ∣∣∣∣
expr : tp → type ∣∣ # 1 prec −1 ∣∣∣∣
tpjudg : {A} expr A → tp → type ∣∣ # 2 : 3 ∣∣∣∣

pvssigma : {A} (expr A → tp) → tp ∣∣ # ∑2 ∣∣∣∣
tuple_tp : tp → tp → tp ∣∣ # 1 × 2 ∣∣ = [A][B] ∑ [x: expr A]B ∣∣∣∣
tuple_expr : {A,B} expr A → expr B → expr A ×B ∣∣ # < 3 , 4 > ∣∣ ## (3 , 4) ∣∣∣∣
proj : {A,B} expr A → expr NatLit → expr B ∣∣ # 3 _ 4 ∣∣∣∣

pvspi : {A} (expr A → tp) → tp ∣∣ # Π2 ∣∣∣∣
fun_type : tp → tp → tp ∣∣ = [A,B] Π[x: expr A] B ∣∣ # 1 Ô⇒ 2 ∣∣∣∣
pvsapply : {A,f : expr A → tp} expr (Π f) → {a:expr A} expr (f a)

∣∣ # 3 (4) prec −1000015 ∣∣∣∣
lambda : {A,f : expr A → tp} ({a:expr A}expr (f a)) → expr (Π f) ∣∣ # λ3 ∣∣∣∣

bool : tp ∣∣∣∣
boolean : tp ∣∣ = bool ∣∣∣∣

FALSE : expr bool ∣∣∣∣
TRUE: expr bool ∣∣∣∣
NOT @ ¬∣∣ : expr (bool Ô⇒ bool) ∣∣∣∣
...

NatLit : tp ∣∣∣∣
StringLit : tp ∣∣∣∣
RatLit : tp ∣∣∣∣
rule rules ?NatLiterals ∣∣∣∣
rule rules ?StringLiterals ∣∣∣∣
rule rules ?RationalLiterals ∣∣∣∣
...

setsub : {A} (expr (A Ô⇒ bool)) → tp ∣∣# ⟨1 | 2 ⟩ ∣∣∣∣
rule rules ?SetsubRule ∣∣∣∣

rectp : {’ ’} → tp ∣∣ ## 1 ∣∣∣∣
recordexpr : {r : {’ ’} } {’ ’} → expr (rectp r) ∣∣ ## 2 ∣∣∣∣
fieldapp # 1 .@ 2 ∣∣ ## 1 . 2 ∣∣∣∣

recursor : {A} (expr A → expr A) → expr A ∣∣ ## INDUCTIVE 2∣∣∣∣

We begin with a definition of PVS’s higher-order logic using only LF features. This includes
dependent product and function types2, classical booleans, and the usual formula constructors
(see Listing 10.1). This is novel in how exactly it mirrors the syntax of PVS (e.g., PVS allows
multiple aliases for primitive constants) but requires no special Mmt features.

We declare three constants for the three types of built-in literals together with Mmt rules
for parsing and typing them. Using the new framework features, we give a shallow encoding of
predicate subtyping (see Listing 10.2 for the new typing rule), a shallow definition of anonymous
record types, as well as new declarations for PVS-style inductive and co-inductive types.

1https://gl.mathhub.info/PVS/Prelude/blob/master/source/pvs.mmt
2Contrary to typical dependently-typed languages, PVS does not allow declaring dependent base types, but

predicate subtyping can be used to introduce types that depend on terms. Interestingly, this is neither weaker
nor stronger than the dependent types in typical λΠ calculi.

https://gl.mathhub.info/PVS/Prelude/blob/master/source/pvs.mmt

132 CHAPTER 10. INTEGRATING THEOREM PROVER LIBRARIES - PVS

Listing 10.2: PVS-Style Predicate Subtyping in MMT and the Corresponding Rule 3

object SetsubRule extends ComputationRule(PVSTheory.expr.path) {
def apply(check: CheckingCallback)(tm: Term, covered: Boolean)
(implicit stack: Stack, history: History): Option[Term]
= tm match {
case expr(PVSTheory.setsub(tp,prop)) =>
Some(LFX.Subtyping.predsubtp(expr(tp),proof("internal_judgment",
Lambda(doName,expr(tp),pvsapply(prop,OMV(doName),expr(tp),

bool.term)._1))))
case _ => None

}
}

10.3 Importing Libraries

The PVS library export required three separate developments:
Firstly, Sam Owre has extended PVS with an XML export. This is similar to the LATEX

extension in PVS, which is built on the Common Lisp Pretty Printing facility. The XML export
was developed in parallel with a Relax NG specification for the PVS XML files. Because PVS
allows overloading of names, infers theory parameters, and automatically adds conversions, the
XML generation is driven from the internal type-checked abstract syntax, rather than the parse
tree. Thus the generated XML contains the fully type-checked form of a PVS specification
with all overloading disambiguated. Future work on this will include the generation of XML
forms for the proof trees.

Figure 10.2 exemplary shows the (slightly simplified) XML representation of the PVS
theory presented in Figure 10.1.

<theory place="6049␣0␣6075␣22">
<id>EquivalenceClosure</id>
<const−decl place="6057␣2␣6058␣75">
<id>EquivClos</id>
<arg−formals>
<binding place="6057␣12␣6057␣13">
<id>R</id>
<type−name>
<id>PRED</id>
<actuals>
<tuple−type>
<type−name><id>T</id></type−name>
<type−name><id>T</id></type−name>

</tuple−type>
</actuals>

</type−name>
</binding>

</arg−formals>
<type−name place="6057␣17␣6057␣31">
<id>equivalence</id>
<actuals>
...

Figure 10.2: A Simplified Part of the Function EquivalenceClosure/EquivClos in XML 4

3Ibid. and https://github.com/UniFormal/MMT/blob/master/src/mmt-pvs/src/info/kwarc/mmt/pvs/
Plugin.scala

https://github.com/UniFormal/MMT/blob/master/src/mmt-pvs/src/info/kwarc/mmt/pvs/Plugin.scala
https://github.com/UniFormal/MMT/blob/master/src/mmt-pvs/src/info/kwarc/mmt/pvs/Plugin.scala

10.3. IMPORTING LIBRARIES 133

Secondly, Florian Rabe documented the XML schema used by PVS as a set of case classes
in Scala and wrote a generic XML parser in Scala that generates a schema-specific parser
from such a set of inductive types (see Figure 10.3 for part of the specification). That way
any change to the inductive types automatically changes the parser. While seemingly a
minor implementation detail, this was critical for feasibility because the XML schema changed
frequently along the way.

case class const_decl(
named: ChainedDecl,
arg_formals: List[bindings],
tp: DeclaredType,
_def: Option[Expr]

) extends Decl

Figure 10.3: The Scala-Specification of PVS Constant Declarations for XML Parsing

Thirdly, I wrote an Mmt plugin that parses the XML files generated by PVS and system-
atically translates their content into OMDoc/Mmt, using the symbols from my formalization
of the PVS logic. This includes creating various generic indexes that can be used later for
searching the content.

All processing steps preserve source references, i.e., URLs that point to a location (file
and line/column) in a source file (the quatruples of numbers at place= in Figure 10.2 and
<link rel="...?sourceRef" in Figure 10.4).

<omdoc>
<theory name="EquivalenceClosure"
base="http://pvs.csl.sri.com/prelude"
meta="http://pvs.csl.sri.com/?PVS">
<constant name="EquivClos">
<type>
<om:OMOBJ>
<om:OMA>
<om:OMS base="http://cds.omdoc.org/urtheories" module="LambdaPi" name="apply"/>
<om:OMS base="http://pvs.csl.sri.com/" module="PVS" name="expr"/>
<om:OMA>
<om:OMS base="http://cds.omdoc.org/urtheories" module="LambdaPi" name="apply"/>
<om:OMS base="http://pvs.csl.sri.com/" module="PVS" name="pvspi"/>
...
<metadata>
<link rel="http://cds.omdoc.org/mmt?metadata?sourceRef"

resource="prelude/pvsxml/EquivalenceClosure.xml#−1.6057.17:−1.6057.31"/>
</metadata>

</om:OMA>

Figure 10.4: A Part of the Function EquivalenceClosure/EquivClos in OMDoc 5

The table in Figure 10.5 gives an overview of the sizes of the involved libraries and the
run times6 of the conversion steps. We note that the XML encoding considerably increases
the size of representations. This is due to two effects: the internal, disambiguated form
contains significantly more information than the user syntax (e.g. theory parameter instances

4https://gl.mathhub.info/PVS/Prelude/blob/master/source/prelude/pvsxml/EquivalenceClosure.
xml

5https://gl.mathhub.info/PVS/Prelude/blob/master/content/http..pvs.csl.sri.com/prelude/
$Equivalence$Closure.omdoc

6all numbers measured on standard laptops

https://gl.mathhub.info/PVS/Prelude/blob/master/source/prelude/pvsxml/EquivalenceClosure.xml
https://gl.mathhub.info/PVS/Prelude/blob/master/source/prelude/pvsxml/EquivalenceClosure.xml
https://gl.mathhub.info/PVS/Prelude/blob/master/content/http..pvs.csl.sri.com/prelude/$Equivalence$Closure.omdoc
https://gl.mathhub.info/PVS/Prelude/blob/master/content/http..pvs.csl.sri.com/prelude/$Equivalence$Closure.omdoc

134 CHAPTER 10. INTEGRATING THEOREM PROVER LIBRARIES - PVS

PVS source PVS → XML XML → OMDoc
size/gz check time result size/gz run time result size/gz run time

Prelude 189.7/46.6kB 33s 23.5/.67MB 11s 83.3/1.6MB 3m41s
NASA Lib 1.9/.426MB 23m25s 387.2/8.9MB 3m11s 2.5/.04GB 58m56s

Figure 10.5: File Sizes of the PVS Import at Various Stages

and reconstructed types), and XML as a machine-oriented format is naturally more verbose.
Furthermore, OMDoc uses OpenMath for term structures, which again increases file size.
While in practice the file sizes are no problem for the Mmt tools presented here, the analogous
import for the Isabelle libraries due to Makarius Wenzel7 has prompted us to compress the
OMDoc files by default, significantly reducing their sizes. The Mmt system can read the
compressed files directly without need for a user to extract them manually.

7As of yet unpublished

Chapter 11

Integrating External Databases
(LMFDB)

Having covered importing fully formal theorem prover libraries, we will now turn our attention
to systems, where the semantics of the imported ontology is less precise. Specifically, we will
look at our methodologies to integrate external databases of mathematical objects (exemplarily
the LMFDB) and computer algebra systems (examplarily the GAP and Sage systems). In
other words, the tabulation and computation aspects of the tetrapod (see Chapter 1).

Integrating these into the Mmt system was done as part of the OpenDreamKit project
(see Section 3.3) with the aim to facilitate data exchange and remote procedure calls between
the systems, using the Math-in-the-Middle approach (MitM, see Section 3.4).

Disclaimer:

Parts of the contents of this and the following chapter have been published in [Deh+16]
with coauthors Paul-Olivier Dehaye, Mihnea Iancu, Michael Kohlhase, Alexander
Konovalov, Samuel Lelièvre, Markus Pfeiffer, Florian Rabe, Nicolas M. Thiéry and Tom
Wiesing.

Both the writing as well as the theoretical results were developed in close collab-
oration between the authors, hence it is impossible to precisely assign authorship to
individual authors. With respect to the writing itself, this applies only to the intro-
ductory sections and descriptions of the systems involved, and my contribution with
regards to these can be assumed to be minor. However, they provide important context
for the methodologies described.

My contribution in this and the following chapter consists of

• A detailed description of the workflows involved in importing the system ontologies.

• Implementing the importers for Sage and GAP.

• Implementing the schema theories for the LMFDB.

• Minor parts in the implementation of the infrastructure connecting the schema
theories to the LMFDB backend.

135

136 CHAPTER 11. INTEGRATING EXTERNAL DATABASES (LMFDB)

11.1 LMFDB Knowledge and Interoperability

11.1.1 Introduction

The L-functions and modular forms database is a project involving dozens of mathematicians
who assemble computational data about L-functions, modular forms, and related number
theoretic objects. The main output of the project is a website, hosted at http://www.lmfdb.
org, that presents this data so that it can serve as a reference for research efforts, and is
accessible for postgraduate students. The mathematical concepts underlying the LMFDB are
complex and varied, and a large amount of effort has been focused on how to relay knowledge,
such as mathematical definitions and their relationships, to data and software. For this
purpose, the LMFDB has developed so-called knowls, which are a technical solution to present
LATEX-encoded information interactively, heavily exploiting the concept of transclusion. The
end result is a very modular and highly interlinked set of definitions in mathematical vernacular
which can be easily anchored in vastly different contexts, such as an interface to a database, to
browsable data, or as constituents of an encyclopedia [Lmfa].

The LMFDB code is primarily written in Python, with some reliance on Sage for
the business logic. The backend uses the database system PostgreSQL. Again, due to the
complexity of the objects considered, many idiosyncratic encodings are used for the data. This
makes the whole data management lifecycle particularly tricky, and dependent on different
select groups of individuals for each component.

As the LMFDB spans the whole “vertical” workflow, from writing software, to producing
new data, up to presenting this new knowledge, it is a perfect test case for a large scale case
study of the MitM approach. Conversely, a semantic layer would be beneficial to integrating
its activities across data, knowledge and software.

11.2 Integrating the LMFDB with Math-in-the-Middle

Among the components of the LMFDB, elliptic curves stand out as a well-documented data
set, and a source of best practices for other areas. We have generated MitM interface theories
for LMFDB elliptic curves by (manually) refactoring and flexiformalizing the LATEX source of
knowls into sTEX (see Listing 11.1 for an excerpt), which can be converted into flexiformal
OMDoc/MMT automatically. The MMT system can already type-check the definitions,
avoiding circularity and ensuring some level of consistency in their scope and make it browsable
through MathHub.info.

Listing 11.1: sTEX Flexiformalization of an LMFDB Knowl (original: [Lmfb])
\begin{mhmodnl}{minimal−Weierstrass−model}{en}

A \defi{minimal} \trefii{Weierstrass}{model} is one for which
$\absolutevalue\wediscriminantOp$ is minimal among all Weierstrass models
for the same curve. For elliptic curves over \RationalNumbers, minimal
models exist, and there is a unique minimal model which satisfies the
additional constraints $\minset{\livar{a}1,\livar{a}3}{\set{0,1}}$, and
$\inset{\livar{a}2}{\set{−1,0,1}}$.
This is defined as the reduced minimal Weierstrass model of the elliptic curve.

\end{definition}
\end{mhmodnl}

The first step consisted of translating these informal definitions into progressively more
exhaustive MMT formalizations of mathematical concepts (see Listing 11.2) as part of the

http://www.lmfdb.org
http://www.lmfdb.org

11.2. INTEGRATING THE LMFDB WITH MATH-IN-THE-MIDDLE 137

MitM library. The two representations are coordinated via the theory and symbol names – we
can see the sTEX representation as a human-oriented documentation of the Mmt equivalent.

Listing 11.2: MMT Formalization of Elliptic Curves1

theory Elliptic_curve : ?Base =
include ?Weierstrass_model ∣∣∣∣

elliptic_curve : type ∣∣∣∣
base_field : elliptic_curve → field ∣∣∣∣
weierstrass_model_construction : weierstrass_model → elliptic_curve ∣∣∣∣
minimal_Weierstrass_model : elliptic_curve → weierstrass_model ∣∣∣∣
construction_surjective : {A} ⊢weierstrass_model_construction (minimal_Weierstrass_model A) ≐A ∣∣∣∣

∣∣∣∣∣∣∣∣

This gives us the necessary formal content to more precisely specify the semantics of the
contents of the LMFDB elliptic curves database. The entries in this database represent elliptic
curves and contain fields such as their Cremona-label, that uniquely identifies a curve, its
2-adic generators, conductor, degree, etc.

The core methodology to connect a database to the MitM infrastructure is described in
detail in [WKR17]. It relies on the following strategy:

• The contents of a database are specified by a schema theory in Mmt, whose constants
specify the columns of the database and their semantics (via metadata), and whose URI
specifies the URL at which the database can be queried.

Listing 11.3: The Schema Theory for Elliptic Curves2

theory ec_curves : lmfdb:/omf?EllipticCurves =
meta /?Metadata?implements elliptic_curve∣∣∣∣
meta /?Metadata?constructor from_record∣∣∣∣
meta /?Metadata?key "label"∣∣∣∣

2adic_gens: List (matrix int_lit 2 2)
∣∣ meta /?Metadata?codec standardList (standardMatrix standardInt 2 2)
∣∣ link /?Metadata?implements MitM:/smglom/elliptic_curves?Rouse_classification?rouse_generators ∣∣∣∣

...
conductor: pos_lit ∣∣ meta /?Metadata?codec standardPos

∣∣ link /?Metadata?implements MitM:/smglom/elliptic_curves?Conductor?conductor∣∣∣∣
degree : pos_lit ∣∣ meta /?Metadata?codec standardPos

∣∣ link /?Metadata?implements MitM:/smglom/elliptic_curves?Modular_degree?modular_degree∣∣∣∣
∣∣∣∣∣∣∣∣

• A database corresponds to a virtual theory in Mmt– a theory whose declarations are
generated on demand by querying the database.

• An entry in the database corresponds to a constant in its virtual theory, whose name is
generated from the key -metadatum in the schema theory, whose type is specified by
the implements -metadatum (e.g. elliptic_curve obtained from the formalization
above), and whose definiens is a dedicated constuctor specified by the constructor -
metadatum (e.g. from_record) applied to a record expression (see Chapter 8).

• This record is obtained by generating a field for each constant in the schema theory,
and applying codecs to the query result obtained from the database, that compute

1https://gl.mathhub.info/MitM/smglom/blob/master/source/elliptic_curves/
minimal-Weierstrass-model.omf.mmt

2https://gl.mathhub.info/ODK/lmfdb/blob/master/source/schemas/elliptic_curves.mmt

https://gl.mathhub.info/MitM/smglom/blob/master/source/elliptic_curves/minimal-Weierstrass-model.omf.mmt
https://gl.mathhub.info/MitM/smglom/blob/master/source/elliptic_curves/minimal-Weierstrass-model.omf.mmt
https://gl.mathhub.info/ODK/lmfdb/blob/master/source/schemas/elliptic_curves.mmt

138 CHAPTER 11. INTEGRATING EXTERNAL DATABASES (LMFDB)

OMDoc/Mmt objects of the required type. For example, standardInt converts a
JSON number to an integer literal of type int_lit , and standardMatrix converts
an array of arrays to a MitM matrix.

• A new computation rule (see Part II) guarantees that the relevant func-
tions (specified by the implements -metadatum) formalized in OMDoc/Mmt
applied to the constants obtained simplify to the field in the record corre-
sponding to the function. For example, the function Conductor?conductor

applied to an expression from_record(j . . . ,conductor ∶= 5, . . . o) simplifies to

j . . . ,conductor ∶= 5, . . . o.conductor and hence ultimately to 5.

This methodology is generic and extends beyond the motivating databases in the LMFDB.
[BKR] describes how to add the necessary infrastructure to cover additional databases and
generate e.g. query interfaces and other services directly from schema theories.

Listing 11.4 shows how we can use the resulting constants in practice. The included theory
db?ec_curves is the virtual theory generated by the schema theory in Listing 11.3. The
constant 11a1 is computed as described above from the entry in the database with label
11a1 when it is first referenced. Applying the conductor function to this constant yields
an int_lit with the value obtained from querying the database.

Listing 11.4: Using Virtual Theories3

include db?ec_curves∣∣∣∣
// get elliptic curve 11a1 from LMFDB ∣∣∣∣
mycurve: elliptic_curve ∣∣= ‘db?ec_curves?11a1∣∣∣∣
// let c be its conductor (as stored in the LMFDB) ∣∣∣∣
c: int_lit ∣∣ = conductor mycurve∣∣∣∣ // = 11 ∣∣∣∣

As a result, we obtain access to all the objects in the databases from within the Mmt
system. The objects have globally unique Mmt URIs, and all properties and values for a given
object that are stored in the database are obtainable using the Mmt syntax. In other words:
The database behaves just like any other collection of Mmt theories and can consequently be
used for any of the applications described in this thesis; most importantly those described in
Part IV and those relevant for the OpenDreamKit project.

3https://gl.mathhub.info/ODK/lmfdb/blob/master/source/schemas/tutorial_example.mmt

https://gl.mathhub.info/ODK/lmfdb/blob/master/source/schemas/tutorial_example.mmt

Chapter 12

Integrating Generic Ontologies

12.1 Distributed Collaboration with GAP/Sage

Another aspect of interoperability in a mathematical virtual research environment – as is the
goal of OpenDreamKit – is the possibility of distributed multisystem computations, where
e.g. a given system may decide to delegate certain subcomputations or reasoning tasks to other
systems.

There are already a variety of peer-to-peer interfaces between systems in the Open-
DreamKit project (see Figure 3.3), which are based on the handle paradigm; for example
Sage includes, among others, interfaces for GAP, Singular, and PARI. In this paradigm,
when a system A delegates a calculation to a system B, the result r of the calculation is not
converted to a native A object; instead B just returns a handle h (or reference) to the object r.
Later, A can run further calculations with r by passing it as argument to functions or methods
implemented by B. Some advantages of this approach are that we can avoid the overhead of
back and forth conversions between A and B, and that we can manipulate objects of B from
A, even if they have no native representation in A.

The next desirable feature is for the handle h to behave in A as if it was a native A object;
in other words, one wants to adapt the API satisfied by r in B to match the API for the same
kind of objects in A. For example, the method call h.cardinality() on a Sage handle h to

a GAP object G should trigger in GAP the corresponding function call Size(G) .
This can be implemented using the classical adapter pattern, mapping calls to Sage’s

method to corresponding GAP methods. Adapter classes have already been implemented for
certain types of objects, like Sage’s PermutationGroup or MatrixGroup . However, this
implementation lacks modularity: for example, if h is a handle to a mere set S, Sage cannot use
the adapter method that maps h.cardinality() to Size(S) , because this adapter method
is only available in the above two adapter classes.

To get around this problem, Nicolas M. Thiéry and others have worked on a more semantic
integration, where adapter methods are made aware of the type hierarchies of the respective
systems, and defined at the highest available level of generality, as in Listing 12.1.

Listing 12.1: A Semantic Adapter Method in Sage
class Sets: # Everything generic about sets in Sage

class GAP: # Adapter methods relevant to Sets in the Sage−Gap interface
class ParentMethods: # Adapter methods for sets

def cardinality(self): # The adapter for the cardinality method

139

140 CHAPTER 12. INTEGRATING GENERIC ONTOLOGIES

return self.gap().Size().sage()
class ElementMethods: # Adapter methods for set elements

...
class MorphismMethods: # Adapter methods for set morphisms

...
class Groups: # Everything generic about groups in Sage

This automatically includes features defined at a more general level

This peer-to-peer approach however does not scale up to a dozen systems. This is where
the Math-in-the-Middle paradigm comes to the rescue. With it, the task is reduced to building
interface theories and interface views into the core MitM ontology in such a way that the
adapter pattern can be made generic in terms of the MitM ontology structure, without relying
on the concrete structure of the respective type systems. Then the adapter methods for each
peer-to-peer interface can be automatically generated. In our example the adapter method for
cardinality can be constructed automatically as soon as the MitM interface views link the
cardinality function in the Sage interface theory on Sets with the Size function in the
corresponding interface theory for GAP.

Exporting the GAP Knowledge: Type System Documentation The GAP type
system encodes a wealth of mathematical knowledge, which can influence method selection.
For example establishing that a group is nilpotent will allow for more efficient methods to be
run for finding its centre. The main difference between Sage and GAP lies in the method
selection process. In Sage the operations implemented for an object and the axioms they
satisfy are specified by its class which, together with its super classes, groups syntactically all
the methods applicable in this context. In GAP, this information is instead specified by the
truth-values of a collection of independent filters, while the context of applicability is specified
independently for each method (the details are discussed later). Breuer and Linton describe
the GAP type system in [BL] and the GAP documentation [Gap] also contains extensive
information on the types themselves.

GAP allows some introspection of this knowledge after the system is loaded: the values of
those attributes and properties that are unknown on creation, can be computed on demand,
and stored for later reuse.

As a first step in generating interface theories for the MitM ontology, GAP developers have
implemented tools to access mathematical knowledge encoded in GAP, such as introspection
inside a running GAP session, export to JSON to import to MMT, and export as a graph
for visualization and exploration. The JSON output of the GAP object system with default
packages is currently around 11 Megabytes, and represents a knowledge graph with 540 vertices,
759 edges and 8 connected components, (see Figures 12.1,12.2). If all packages are loaded, this
graph expands to 1616 vertices, 2178 edges and 17 connected components.

There is, however, another source of knowledge in the GAP universe: the documentation,
which is provided in the GAPDoc format [LN12]. Besides the main manuals, GAPDoc is
adopted by 97 out of the 130 packages currently redistributed with GAP. Conventionally
GAPDoc is used to build text, PDF and HTML versions of the manual from a common source
given in XML. The reference manual has almost 1400 pages and the packages add hundreds
more.

The GAPDoc sources classify documentation by the type of the documented object (function,
operation, attribute, property, etc.) and index them by system name. In this sense they are
synchronized with the type system (which e.g. has the types of the functions) and can be
combined into flexiformal OMDoc/MMT interface theories, just like the ones for LMFDB in

12.1. DISTRIBUTED COLLABORATION WITH GAP/SAGE 141

Figure 12.1: The GAP Knowledge Graph.

142 CHAPTER 12. INTEGRATING GENERIC ONTOLOGIES

Section 11.1. This conversion is currently under development and will lead to a significant
increase of the scope of the MitM ontology.

Figure 12.2: The GAP Knowledge Graph (fragment).

As a side-effect of this work, Markus Pfeiffer discovered quite a few inconsistencies in the
GAP documentation, which came from a semi-automated conversion of GAP manuals from the
TEX-based manuals used in GAP 4.4.12 and earlier. In response, he implemented a consistency
checker for the GAP documentation, which extracts type annotations from the documented
GAP objects and compares them with their actual types. It immediately reported almost 400
inconsistencies out of 3674 manual entries, 75% of which have been eliminated in a subsequent
cleanup.

Semantics in the Sage Category System The Sage library includes 40k functions and
allows for manipulating thousands of different kinds of objects. In any large system it is critical
to tame code bloat by
i) identifying the core concepts describing common behavior among the objects;
ii) implementing generic operations that apply on all objects having a given behavior, with

appropriate specializations when performance calls for it;
iii) designing or choosing a process for selecting the best implementation available when calling

an operation on some objects.
Following mathematical tradition and the precedent of the Axiom, Fricas, or MuPAD

systems, Sage has developed a category-theory-inspired “category system”, and found a way
to implement it on top of the underlying Python object system [Dev16; SC]. In short, a
category specifies the available operations and the axioms they satisfy. This category
system models taxonomic knowledge from mathematics explicitly and uses it to support
genericity, control the method selection process, structure the code and documentation, enforce
consistency, and provide generic tests.

To generate interface theories from the Sage category system, Nicolas Thiéry et al are
experimenting with a system of annotations in the Sage source files. Consider for instance

12.2. REPRESENTING THE GAP ONTOLOGY IN OMDOC/MMT 143

@semantic(mmt="sets")
class Sets:

class ParentMethods:
@semantic(mmt="card?card", gap="Size")
@abstractmethod
def cardinality(self):

"Return␣the␣cardinality␣of␣‘‘self‘‘"

Figure 12.3: An Annotated Category in Sage

the situtation in Figure 12.3 where we have annotated the Sets() category in Sage with

@semantic lines that state correspondences to other interface theories. From these the
Sage-to-MMT exporter can generate the respective interface theories and views.

In ongoing experiments, variants of the annotations are tested for annotating existing
categories without touching their source files and providing the signature or the corresponding
method names in other systems when this information has not yet been formalized elsewhere.

12.2 Representing the GAP Ontology in OMDoc/Mmt

To facilitate the kind of integration demanded by the OpenDreamKit project (such as remote
procedure calls), we need appropriate representations of the functionalities offered by the
targeted systems. In particular, we need to represent the underlying ontologies of the systems.

In the case of GAP, this ontology is based on the notion of filters, as described above:
Every object belongs to several categories and satisfies a list of filters, which can be thought of
as predicates (e.g. IsGroup and Abelian , jointly specifying that the object is an abelian
group). The way a user interacts with the system is by calling operations (e.g. the order of
a group) on an object, which has to satisfy certain filters in order for the operation to be
applicable. Notably however, each operation is implemented by possibly multiple methods:
specific algorithms for computing an operation. The system uses the known filters of an object
to determine which specific method to use for a specific operation. For example,the order of a
group might be easier to compute if the group is known to be abelian, hence the system would
choose a more appropriate method to compute the order of an abelian group than for a group
that is not (known to be) abelian. Notably, the system chooses the method automatically; a
user only interacts with the system by calling operations.

This notion of filters effectively yields a soft typing system, which we formalize as in
Listing 12.2.

Listing 12.2: The GAP Foundational Ontology in Mmt 1

1 theory Types : ur:?PLF =
2 object : type ∣∣∣∣
3 category : type ∣∣∣∣
4
5 booleans : type ∣∣∣∣
6 integers : type ∣∣∣∣
7 floats : type ∣∣∣∣
8 rule rules ?Booleans ∣∣∣∣
9 rule rules ?Integers ∣∣∣∣

10 rule rules ?Floats ∣∣∣∣
11
12 gapbool : booleans → object ∣∣∣∣

144 CHAPTER 12. INTEGRATING GENERIC ONTOLOGIES

13 gapint : integers → object ∣∣∣∣
14 gapfloat : floats → object ∣∣∣∣
15
16 filter = object → type ∣∣∣∣
17 hastp : object → filter → type ∣∣ = [o][f] f o ∣∣ # 1 $ 2 ∣∣∣∣
18
19 filter_and : filter → filter → filter ∣∣ # 1 and 2 ∣∣∣∣
20 filter_and_hasFilter1 : {x : object , f : filter , g : filter } x $ f → x $ g → x $ (f and g) ∣∣∣∣
21 filter_and_hasFilter2 : {x : object , f : filter , g : filter } x $ (f and g) → x $ f ∣∣∣∣
22 filter_and_hasFilter3 : {x : object , f : filter , g : filter } x $ (f and g) → x $ g ∣∣∣∣
23
24 catFilter : category → filter ∣∣∣∣
25 propertyFilter : (object → object) → filter ∣∣ = [p] [o] ded (p o) ∣∣∣∣
26
27 CategoryCollection : filter → category ∣∣∣∣
28 Set : filter → (object → object) ∣∣∣∣
29 ∣∣∣∣∣∣∣∣

The most primitive notions in the GAP ontology are objects and categories, which we
represent as LF types. Naturally, GAP uses literals for booleans, integers and real numbers;
consequently we introduce new types for these and populate them with literals as well (lines
5–10).To convert our literals to GAP objects, we introduce conversion functions (lines 12–14).
These GAP native literals do not occur in the JSON-export; they are needed for most services
implemented in the OpenDreamKit project however. For example, they are needed for
translating even simple commands such as 2 + 2 into the GAP ontology to allow for remote
procedure calls.

We formalize filters as functions object→ type and effectively use judgments-as-types for

the judgment o$f representing “object o has filter f”. The filter_and-operator corresponds to
a conjunction of filters. catFilter allows to build the corresponding filter to a given category,
conversely, CategoryCollection allows to form the category of all objects satisfying a given
filter. An operation f is considered a property if it returns a boolean value. In this case we can
form the corresponding filter propertyFilter(f) that an object satisfies iff the operation f
returns true on that object.

Using this formalization, we can systematically translate the contents of the JSON-export
of the GAP ontology mentioned above into OMDoc/Mmt declarations.

The export contains a JSON object for each category and operation. For cat-
egories, it additionally contains the list of implied filters, for example, the cate-
gory IsAbelianNumberFieldPolynomialRing implies filters such as IsCollection and
IsDuplicateFree . Naturally, a category C is translated to a constant of type
category . For each implied Filter F , we generate an additional constant of type
∏x∶object x$catFilter(C)→ x$F .

Unfortunately, the current JSON export does not yet contain any information regarding
the required filters of an operation, or the filters of the return object. In the course of the work
on the export described above, attempts are being made to make those accessible as well. For
now, all operations are correspondingly simply typed as objectn → object, depending on the
arity.

While more detailled information regarding the filters would be desirable for documentation
purposes, the above import methodology is sufficient to translate GAP objects, operations,

1https://gl.mathhub.info/ODK/GAP/blob/master/source/types.mmt

https://gl.mathhub.info/ODK/GAP/blob/master/source/types.mmt

12.3. REPRESENTING THE SAGE ONTOLOGY IN OMDOC/MMT 145

and applications of operations to objects into well-formed OMDoc/Mmt expressions.2

12.3 Representing the Sage Ontology in OMDoc/Mmt

Having covered the GAP ontology already, extending the same methodology to a smiliar system
as Sage is in many respects straight forward. Notably however, whereas GAP implements
its own fundamental notions for even simple concepts like integers, Sage is a python library,
and as such operates on many of python’s datatypes directly. Consequently, we start with a
formalization of the python datatypes relevant for our purposes:

Listing 12.3: Python Datatypes in Mmt 3

theory Python : ur:?PLF =
// types ∣∣∣∣
python_type : type ∣∣∣∣
Str : python_type∣∣∣∣
Int : python_type∣∣∣∣
Float : python_type∣∣∣∣
Bool : python_type∣∣∣∣
Tuple : python_type∣∣∣∣
List : python_type∣∣∣∣
Dict : python_type∣∣∣∣
None : python_type∣∣∣∣
Fun : python_type∣∣∣∣
Type : python_type∣∣∣∣

// object constructors ∣∣∣∣
python_obj : type ∣∣∣∣
false : python_obj∣∣∣∣
true : python_obj∣∣∣∣
tuple : python_obj∣∣∣∣
list : python_obj∣∣∣∣
// dict takes arguments of the form tuple (key, value) ∣∣∣∣
dict : python_obj∣∣∣∣
// dot takes a and a string f and returns a. f ∣∣∣∣
dot : python_obj∣∣∣∣
none : python_obj∣∣∣∣

∣∣∣∣∣∣∣∣

Note that since python uses a dynamic type system, we can not assign a fixed type to a
given python object. This is reflected by our ontology, which specifies even the constructors
for the various types as having type python_object rather than some dependent type on
python_type . As with GAP, these datatypes are not needed for the import of the ontology,
but rather for services that operate on expressions within the ontology.

For the ontology itself, we use – as with GAP– a generic type object .

Listing 12.4: The Sage Foundational Ontology in Mmt 4

theory Types : ur:?PLF =
object : type ∣∣∣∣
prop : type ∣∣∣∣
ded : prop → type ∣∣ ## ⊢1 ∣∣∣∣
structural : type ∣∣∣∣
structureof : structural → type ∣∣ ## ≤1 ∣∣∣∣

∣∣∣∣∣∣∣∣

2The resulting ontology is available at https://gl.mathhub.info/ODK/GAP
3https://gl.mathhub.info/ODK/Sage/blob/master/source/sage.mmt

https://gl.mathhub.info/ODK/GAP
https://gl.mathhub.info/ODK/Sage/blob/master/source/sage.mmt

146 CHAPTER 12. INTEGRATING GENERIC ONTOLOGIES

theory Sage : ?Python =
include ?Types ∣∣∣∣
sage_type : type ∣∣∣∣
sageMMT : sage_type → type ∣∣∣∣
sagepy : sage_type → python_type∣∣∣∣

∣∣∣∣∣∣∣∣

As mentioned above, knowledge in Sage– and hence in its JSON-export – is organized in
categories (e.g. Ring). A category satisfies certain axioms/properties (which after translating
live in the type prop in Listing 12.4) and implements certain structures (or signatures, which
will live in structural) – e.g. the category of rational polynomials implements the signature
of a ring, and satisfies (among others) the axioms of a commutative ring.

Each category provides certain methods; namely element methods that operate on the
elements in an object of the category (e.g. addition or multiplication in a ring), parent methods
that operate on an object of the category directly (e.g. its characteristic or degree), and
morphism methods that operate on the respective morphisms of the category.

We translate categories directly to OMDoc/Mmt theories. The JSON-export currently
provides no further information on neither the axioms nor the structures. Correspondingly,
we treat them as atomic objects of the respective type. We collect all axioms and structures
occuring during the import and store them in separate generated theories Axioms and
Structures , which are included in all the theories corresponding to categories. If a category
C statisfies an axiom A or implements a structure S, we add to the theory constants of types
⊢ A or ≤ S, respectively.

As with GAP, we currently have no information about the input or output types (or
categories) of methods; hence we are left with translating those to functions objectn → object,
depending on their arity. Again, this yields a sufficient formalization of the functionalities
provided by Sage to facilitate the goals of the OpenDreamKit project.5

4Ibid.
5The full import of the Sage import can be found at https://gl.mathhub.info/ODK/Sage

https://gl.mathhub.info/ODK/Sage

Chapter 13

Conclusion

We have seen how, using the logical frameworks developed in Part II, we can represent libraries
(in the broadest sense) of formal systems in OMDoc/Mmt, including both fully formal libraries
as obtained by theorem prover systems, as well as the ontologies of less formal systems such as
computer algebra systems and databases of mathematical objects.

In Section 13.1 below, we will look at some suggested applications enabled by representing
a single (fully formal) library in OMDoc/Mmt; however, in the light of the title of this
thesis, we are much more interested in applications enabled across libraries. Consequently, the
important result of this part is less the ability to represent a single library, rather than having
a universal framework in which multiple libraries/ontologies of various systems can be (and
are) represented, as a prerequisite for the knowledge management service described in Part IV.
As such, the intended goals of the OpenDreamKit project are much more in line with the
aims of this thesis, even though the systems involved therein (covered in Chapters 11 and 12)
are less formal than the fully formal – and hence for knowledge management purposes more
interesting – libraries discussed in Chapter 10.

13.1 Enabled Applications

With the OMDoc/Mmt translation of formal libraries, the originating systems gain access
to library management facilities implemented at the OMDoc/Mmt level.1 There are two
ways to exploit this: publishing the converted libraries on a dedicated server, like the MathHub
system [MH], or running the OMDoc/Mmt toolstack locally. Both options offer similar
functionality, the main difference is the intended audience: the first option is for outside users
who want to access the libraries, and the latter is for users who develop new content or refactor
the library.

MathHub (see Section 4.1.2) bundles a GitLab-based repository manager with Mmt and
various periphery systems into a common, web-based user interface. We commit the exported
libraries – exemplarily from PVS– as OMDoc/Mmt files into a repository to make these
available via the i) MathHub user interface, ii) Mmt presentation web server, iii) Mmt web
services, and iv) the MathWebSearch daemon. All of these components give the user different
ways of interacting with the system and content. Below we explore three examples that are
directly useful for PVS users, but the services apply similarly to users of other systems.

1The description of services in this Section has been adapted from [Koh+17b] and [Con+]

147

148 CHAPTER 13. CONCLUSION

The local workflow installs OMDoc/Mmt tools on the same machine as PVS. In that
case, users are able to browse the current version of the available PVS libraries including all
experimental or private theories that are part of the current development. This also enables
PVS to use OMDoc/Mmt services as background tools that remain transparent to the PVS
user.

Figure 13.1: The PVS Prelude in the Mmt Browser

In both workflows, OMDoc/Mmt-based periphery systems become available to the PVS
user that are either not provided by the PVS tools or in a much restricted way. We will go
over the three most important ones in detail.

13.1.1 Browsing and Interaction

The transformed PVS content can be browsed interactively in the document-oriented MathHub
presentation pages (theories as active documents) and in the Mmt web browser (see Figure 13.1).
Both allow interaction with the PVS content via a generic Javascript-based interface. This
provides buttons to toggle the visibility of parts computed by PVS – e.g. omitted types and
definitions – at the declaration level. The right-click menu shown in Figure 13.1 is specific
to the selected sub-formula (highlighted in gray); here we have eight applicable interactions
which range from inferring the subformula type via definition lookup to management actions
such as registering an alignment to concepts in other libraries. New interactions can be added
as they become available in the MMT system.

The Mmt instance in the local workflow provides the additional feature of inter-process
communication between PVS and Mmt as a new menu item: the action navigate to this
declaration in connected systems. Florian Rabe implemented a listener for this action that
forwards the command to PVS via an XML-RPC call at the default PVS port. Correspondingly,
Sam Owre implemented an experimental handler in the PVS server that opens the corresponding
file in the PVS emacs system and navigates to the relevant line – unfortunately, due to time

13.1. ENABLED APPLICATIONS 149

constraints this functionality has so far not been fully developed and integrated in an official
PVS release.

13.1.2 Graph Viewer

MathHub includes a theory graph viewer developed by Marcel Rupprecht that allows interactive,
web-based exploration of the OMDoc/Mmt theory graphs [RKM17]. It builds on the visjs
JavaScript visualization library [VJS], which uses the HTML5 canvas to layout and interact
with graphs client-side in the browser.

Figure 13.2: The Basic PVS Libraries in the MathHub Theory Graph Viewer

PVS libraries make heavy use of theories as a structuring mechanism, which makes a graph
viewer for PVS particularly attractive. Figure 13.2 shows the full graph in a central-gravity
layout induced by the PVS prelude, where we have (manually) clustered the subgraphs for
bit vectors and finite sets (the orange barrel-shaped nodes). The lower right corner shows a
zoomed-in fragment.

The theory graph allows dragging nodes around to fine-tune the layout. Hovering over
a node or edge triggers a preview of the theory. All nodes support the same context menu
actions in the graph viewer as the corresponding theories do in the browser above. Thus, it is
possible to select a theory in the graph viewer and then navigate to it in the browser or (if run
locally) in the PVS system.

13.1.3 Search

MathWebSearch [KŞ06] is an OMDoc/Mmt-level formula search engine that uses query
variables for subterms and first-order unification as the query language. It is developed
independently, but Mmt includes a plugin for generating MathWebSearch index files using its

150 CHAPTER 13. CONCLUSION

content MathML interface. Thus, any library available to Mmt can be indexed and searched via
MathWebSearch. Moreover, Mmt includes a frontend for MathWebSearch so that search queries
can be supplied in any format that Mmt can understand, e.g., the XML format produced by
PVS.

<mws:query limitmin="0" answsize="1000" totalreq="yes"
output="xml" xmlns:m="http://www.w3.org/1998/Math/MathML"
xmlns:mws="http://www.mathweb.org/mws/ns">
<mws:expr>
<apply>
<csymbol>http://cds.omdoc.org/urtheories?LambdaPi?apply</csymbol>
<csymbol>http://pvs.csl.sri.com/?PVS?pvsapply</csymbol>
<mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns">I1</mws:qvar>
<mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns">I2</mws:qvar>
<csymbol>http://pvs.csl.sri.com/prelude?EquivalenceClosure?EquivClos</csymbol>
<mws:qvar xmlns:mws="http://www.mathweb.org/mws/ns">A</mws:qvar>
</apply>
</mws:expr>
</mws:query>

Figure 13.3: A Query for Applications of EquivClos

Mmt exposes the search frontend both in its GUI for humans and as an HTTP service for
other systems. Here we use the latter: We have added a feature to the PVS emacs interface
that allows users to enter a search query in PVS syntax. PVS parses the query, type-checks it,
and converts it to XML. The XML is sent to Mmt, which acts as the mediator between the
proof assistant — here PVS — and library management periphery — here MathWebSearch—
and returns the search results to PVS.

[{"lib_name" : "",
"theory_name" : "EquivalenceClosure",
"name" : "EquivClosMonotone",
"Position" : "3_2_5_5_5_5"},
{"lib_name" : "",
"theory_name" : "EquivalenceClosure",
"name" : "EquivalenceCharacterization",
"Position" : "2_2_5_5_5_5"},
. . .

]

Figure 13.4: A Query Result for Figure 13.3

The PVS user enters the PVS query EquivClos(?A) , where we have extended the PVS
syntax with query variables like ?A. After OMDoc/Mmt translation, this becomes the
MathWebSearch query in Figure 13.3 — note the additional symbols from LF introduced by
the representation in the logical framework. The representation also introduces unknown
meta-variables for the domain and range of the EquivClos function, which become the
additional query variables I1 and I1. MathWebSearch returns a JSON record with all results,
and we show the first two in Figure 13.4: two occurrences of (instances of) EquivClos(?A)

in two declarations in the theory EquivalenceClosure Figure 10.1. The attribute lib_name
is the name of the library; by PVS convention, it is empty for the Prelude. The attributes
theory_name and name give the declaration that contains the match, and Position gives the path
to its subterm that matched the query.

13.1. ENABLED APPLICATIONS 151

Figure 13.5: Example for Displaying the Query Result in PVS

Figure 13.5 shows what the query will look like while doing a PVS proof. The current
implementation is just a proof-of-concept — for the mature version the part of PVS that sends
the query to the Mmt server and displays the results still has to be implemented thoroughly.
But the remaining steps are straightforward.

Future work could potentially exploit this functionality to search specifically for existing
theorems that may be helpful in a specific part of an ongoing PVS proof.

13.1.4 Querying Across Libraries

Going beyond a single system, we exported relational data for several theorem prover libraries
as RDF triples for more advanced queries without relying on the Mmt system (as published in
[Con+]). This relational data is already contained in the underlying OMDoc representation
of Mmt archives and can thus be easily generated from imported libraries. In conjunction
with alignments (which we will discuss in Chapter 14) this allows for conveniently querying for
mathematical concepts across different theorem prover libraries using an arbitrary triple store
as backend. For example, for the cited paper I set up an instance of Virtuoso Open-Source2,
providing a SPARQL endpoint. Using the query
SELECT ?x ?y WHERE {
?x ulo:inductive−on ?y .
http://mathhub.info/MitM/Foundation?NatLiterals?nat_lit ulo:aligned−with ?y . }

we receive as results (which are shown in Figure 13.6) all functions and predicates defined by
induction on the natural numbers regardless of implementation - by only considering those

2https://github.com/openlink/virtuoso-opensource

https://github.com/openlink/virtuoso-opensource

152 CHAPTER 13. CONCLUSION

Figure 13.6: Virtuoso Output for the Example Query using Alignments

symbols that are aligned with the Math-in-the-Middle symbol for the type of natural numbers.

Part IV

Cross-Library Knowledge Management

153

155

Now that we have a unifying framework in which many different libraries are represented,
we can approach the problem of integrating these libraries with each other, e.g. to translate
knowledge between them.

Naturally, these libraries use different foundations; which is reflected in Mmt as the
contained theories having different meta theories. Consequently, as a first step one might want
to integrate the foundations themselves, i.e. by implementing systematic translations between
them.

An obvious challenge arises here, namely that the foundations used by formal systems
are usually mutually incompatible. This is obvious for systems using fundamentally different
logics, such as set theories vs. type theories, but even if the platonic foundation used by
two systems is the same (e.g. higher-order logic), there are subtle differences in the specific
implementations – and hence ontologies – of the foundations, that make implementing such
translations less straight-forward than one might at first suspect. For example, the systems
might offer different additional features (e.g. records, subtyping) where there is no universally
valid elimination procedure. Additionally, systems usually offer distinct convenience operations,
automations, module systems and conventions, that are suggestive of different approaches and
best practices for formalizing content, leading to very different library developments for the
same mathematical concept even if the foundation used by the systems is the same.

As a result, even when a translation between foundations is straight-forward (which it
usually is not), the result of translating content between libraries on the basis of a translation
between the foundations can yield awkward reformalizations of known content completely
disconnected from the content already available in the target library.

Consequently, any generic methodology for integrating libraries needs to go beyond – or
even entirely bypass – mere foundations and take distinct library developments into account.
This part of this thesis presents our approach to library integration on that premise.

First, we introduce the notion of alignments in Chapter 14. This is a binary relation
between symbols expressing that the two symbols (possibly from different libraries) denote
the same abstract mathematical concept. In the simplest case, we can then translate symbol
occurences in expressions across libraries by merely substituting along alignments. We then
classify various more complex types of alignments (e.g. “up to argument order” or “up to
additional arguments”) that occur in practice and develop a convenient way to specify them.

Chapter 15 generalizes this approach to translating expressions; using alignments wherever
possible, but additionally using theory morphisms (within or across libraries) and – as is crucial
for translating across different foundations – programmatic translations, which can be supplied
for more complex situations.

To avoid having to provide ad-hoc traslation mechanisms between all pairs of libraries, we
instead try to use translations between any library and a fixed set of interface theories, in line
with the Math-in-the-Middle approach (see Section 3.4). In a library of interface theories, we
can implement all possible developments and definitions of the same mathematical concept
and connect them via theory morphisms, lifting the more complicated translation problems to
a realm governed by a single, flexible foundation using the logical frameworks developed in
Part II. Not surprisingly, this methodology is used to implement the functionalities aimed at
by the OpenDreamKit project (see Section 3.3) – Section 15.3 shows a real-world use case
from the OpenDreamKit community that is covered by our approach.

In Chapter 16, we describe how to automatically find theory morphisms; both within
and across different libraries. These can be used to identify overlap between libraries and

156

consequently suggest new alignments and translations between the theories; ideally resulting
in a positive feedback loop of ever increasing connections between libraries.

Lastly, Chapter 17 develops a method for using theory morphisms to refactor library content
to increase modularity within a given library.

Chapter 14

Alignments

Disclaimer:

The contents of this chapter have largely been previously published as [Mül+17b]
(Extended in [Mül+17c]), [Kal+16] and [Mül+17a] with coauthors Cezary Kaliszyk,
Thibault Gauthier, Michael Kohlhase, Florian Rabe, Colin Rothgang and Yufei Liu.
Both the writing as well as the theoretical results were developed in close collaboration
between the authors, hence it is impossible to precisely assign authorship to individual
authors. The writing has been reworked for this thesis.

My contribution in this chapter consists of the actual implementations presented in
Section 14.4 and the practical evaluation of the concept.

The sciences are increasingly collecting and curating their knowledge systematically in
machine-processable corpora. For example, in biology many important corpora take the form
of ontologies, e.g., as collected on BioPortal. These corpora typically overlap substantially,
and much recent work has focused on integrating them. A central problem here is to find
alignments: pairs (a1, a2) of identifiers from different corpora that describe the same concept,
giving rise to ontology matching [ESC07].

In the certification of programs and proofs, the ontology matching problem is most apparent
when trying to use multiple reasoning systems together. For example, Wiedijk [Wie06] explored
a single theorem (and its proof) across 17 proof assistants implicitly generating alignments
between the concepts present in the theorem’s statement and proof. The Why3 system
[Bob+11] maintains a set of translations into different reasoning systems for discharging proof
obligations. Each translation must manually code individual alignments of elementary concepts
such as integers or lists in order to fully utilize the respective system’s automation potential.
But automating the generation and use of alignments, which would be necessary to scale up
such efforts, is challenging because the knowledge involves rigorous notations, definitions, and
properties, which leads to very diverse corpora with complex alignment options. This makes
it very difficult to determine whether an alignment is perfect (we will attempt to define this
notion in the next section), or to predict whether an imperfect alignment will work just as well
or not at all.

Alignment Use Cases Many practical services are enabled by alignments:

• Simultaneous browsing of multiple corpora. This is already enabled (so far for a limited

157

158 CHAPTER 14. ALIGNMENTS

number of corpora) by our system presented in Section 14.4.

• Imperfect alignments can be used to search for a single query expression in multiple
corpora at once. This has been demonstrated in the Whelp search engine [Asp+06b] where
Coq and Matita shared the URI syntax with the basic Calculus of Constructions constants
aligned, as well as by the MathWebSearch engine [KR14] and a recent alignment-aware
standardization of relational information (see [Con+] and Section 13.1.4).

• Statistical analogies extracted from large formal libraries combined with imperfect
alignments can be used to create new conjectures and thus to automatically explore a
logical corpus [GKU16]. This complements the more classical conjecturing and theory
exploration mechanisms.

• Automated reasoning services can make use of alignments to provide more precise proof
recommendations. The quality of the HOL(y) Hammer proof advice for HOL Light can
be improved from 30% to 40% by using the imperfect alignments to HOL4 [GK15].

• Translations between systems. [KK13b] uses more than 70 manually discovered alignments
between HOL Light and Isabelle/HOL to obtain translated theorems that talk about
target system constants and types. Note, that it is not necessary for the translation for
the definitions of the concepts to be the same. It is enough if the same properties are
provable or if they yield the same computational behavior. Consider the real numbers:
In some HOL proof assistants they are defined using Cauchy sequences, while others use
Dedekind cuts. The two structures share all the relevant real number properties. However,
they disagree with respect to irrelevant properties, e.g., in the construction of the former
usually a canonical Cauchy sequence for each real number is introduced. Despite this
minor difference, we can use such an alignment in a logical translation [KK13b].

Translations along alignments will be covered in Chapter 15.

• Refactoring of proof assistant corpora. Aligning concepts across versions of the same
proof corpus combined with statement normalization and consistent name hashing
allowed discovering 39 symbols with equivalent definitions [KU15] in the Flyspeck
development [Hal+15b].

One such refactoring technique will be covered in Chapter 17.

Finding Alignments Even though we know that numerous alignments exist between li-
braries, not many alignments are known concretely or have been represented explicitly. There-
fore, a major initial investment is necessary to obtain a large library of interface theories and
alignments. There are three groups of alignment-finding approaches.

Human-based approaches examine libraries and manually identify alignments. This approach
has been pursued ad hoc in various contexts. For example, the library translation of [OS06b]
included some alignments for HOL Light and Isabelle/HOL, which were later expanded by
Kaliszyk. The Why3 and FoCaLiZe systems include alignments to various theorem provers
that they use as backends. Results from this approach will be discussed in Section 14.5.

The remaining two classes use machine learning methods.
Logical approaches align two concepts if they satisfy the same theorems. This cannot directly

appeal to logical equivalence because that would require a translation between the corpora.
Instead, they compare the theorems that are explicitly stated in the corpora. The theorems

159

should be normalized first to eliminate differences that do not affect logical equivalence. The
quality of the results depends on how completely those theorems characterize the respective
concepts. In well-curated libraries, this can be very high [MK15]. The Viewfinder presented in
Chapter 16 can be interpreted as implementing this approach.

Machine learning–based approaches are inherently based on statistical patterns and hence
naturally inexact. The main research in this direction is carried out by Kaliszyk and others
[GK14b].

Automatic Search for Alignments Finding alignments, preferably automatically, has
proved extremely difficult in general. There are three reasons for this: the conceptual differences
between logical corpora found in proof assistants, computational corpora containing algorithms
from computer algebra systems, narrative corpora that consist of semi-formal descriptions
from wiki-related tools; the diversity of the underlying formal languages and tools; and the
differences between the organization of the knowledge in the corpora.

While finding alignments automatically is promising for perfect alignments, where two
symbols only differ in name but are otherwise used identically, it is a different matter for
imperfect alignments. For example, consider binary division which yields undefined or 0 when
the divisor is zero, versus a strict division that requires an additional proof-argument that the
divisor is nonzero. Here automation becomes much more difficult, because the imperfections
often violate the conditions that an automatic approach uses to spot alignments.

I conjecture that the quality of artificial intelligence approaches will be massively improved
if they are applied on top of a large set of guaranteed-perfect alignments, besides their obvious
use as training data. This is based on two observations:

• The more alignments we know, the easier it is to find new ones. Consider a typical
formalization in system S1 that introduces a new concept c relative to some known ones.
If perfect alignments to system S2 for the known concepts have already been established,
it becomes relatively easy to find the formalization of c in S2, and add an alignment for
it.

• It is very difficult to get alignment-finding off-the-ground. Because the foundations of S1

and S2 are often very different, almost nothing looks particularly similar in the absence
of any alignments. Deeper alignments will become more apparent only when alignments
for fundamental concepts such as booleans, sets and numbers are established.

Recently, heuristic methods for automatically finding alignments were developed [GK14b],
targeted at integrating logical corpora, which were integrated into our developments in Sec-
tion 14.1. Independently, Deyan Ginev built a library [GC14] of about 50,000 alignments
between narrative corpora including Wikipedia, Wolfram Mathworld, PlanetMath and the
SMGloM semantic multilingual glossary for mathematics. For this, the NNexus system indexes
the corpora and applies clustering algorithms to discover concepts.

Related Work Alignments between computational corpora occur in bridges between the
run time systems of programming languages. Alignments between logical and computational
corpora are used in proof assistants with code generation such as Isabelle [WPN08] and Coq
[Coq15]. Here functions defined in the logic are aligned with their implementations in the
programming language in order to generate fast executable code from formalizations.

The dominant methods for integrating logical corpora so far have focused on truth-preserving
translations between the underlying knowledge representation languages. For example, [KS10]

160 CHAPTER 14. ALIGNMENTS

translates from Isabelle/HOL to Isabelle/ZF. [KW10] translates from HOL Light to Coq,
[OS06a] to Isabelle/HOL, and [NSM01] to Nuprl. Older versions of Matita [Asp+06a] were able
to read Coq compiled theory files. [Cod+11] build a library of translations between different
logics.

However, as mentioned in the introduction to this part, most translations are not alignment-
aware, i.e., it is not guaranteed that a1 will be translated to a2 even if the alignment is known.
This is because a1 and a2 may be subtly incompatible so that a direct translation may even lead
to inconsistency or ill-typed results. [OS06a] was — to my knowledge — the first that could be
parametrized by a set of alignments. The OpenTheory framework [Hur09] provides a number of
higher-order logic concept alignments. In [KR16a], the corpus integration problem is discussed
and concluded that alignments are of utmost practical importance. Indeed, corpus integration
can succeed with only alignment data even if no logic translation is possible. Conversely, logic
translations contribute little to corpus integration without alignment data.

14.1 Types of Alignments

Let us assume two corpora C1,C2 with underlying foundational logics F1, F2. We examine
examples for how two concepts ai from Ci can be aligned. Importantly, we allow for the case
where a1 and a2 represent the same abstract mathematical concept without there being a
direct, rigorous translation between them.

The types of alignments in this section are purely phenomenological in nature: they
exemplify the difficulty of the problem and provide benchmarks for rigorous definitions. While
some types are relatively straightforward, others are so difficult that giving a rigorous definitions
remains an open problem. This is because alignments ideally legitimize translations from
F1 to F2 that replace a1 with a2. But in many situations these translations, while possible
in principle, are much more difficult than simply replacing one symbol with another. The
alignment types below are roughly ordered by increasing difficulty of this translation.

Perfect Alignment If a1 and a2 are logically equivalent (modulo a translation ϕ between
F1 and F2 that is fixed in the context), we speak of a perfect alignment. More precisely, all
formal properties (type, definition, axioms) of a1 carry over to a2 and vice versa. Typical
examples are primitive types and their associated operations. Consider:

Nat1 ∶ Type Nat2 ∶ Type

then translations between C1 and C2 can simply interchange a1 and a2.
The above example is deceptively non-trivial for two reasons. Firstly, it hides the problem

that F1 and F2 do not necessarily share the symbol Type . Therefore, we need to assume
that there are symbols Type1 and Type2 , which have been already aligned (perfectly). Such
alignments (on the foundations of C1 and C2) are crucial for all fundamental constructors that
occur in the types and characteristic theorems of the symbols we want to align such as Type,
→, bool, ∧, etc. These alignments can be handled with the same methodology as discussed
here. Therefore, here and below, we assume we have such alignments and simply use the same
fundamental constructors for F1 and F2.

Secondly, it ignores that we usually want (and can reasonably expect) only certain formal
properties to carry over, namely those in the interface theory in the sense of [KR16a] — i.e.
those properties that are still meaningful after abstracting away from the specific foundational

14.1. TYPES OF ALIGNMENTS 161

logics Fi. We will look at some examples for perfect alignments between symbols that use
different but equivalent definitions in Section 14.2.

Alignment up to Argument Order Two function symbols can be perfectly aligned except
that their arguments must be reordered when translating.

The most common example is function composition, whose arguments may be given in
application order (g ○ f) or in diagram order (f ; g). Another example is given

contains1 ∶ (T ∶ Type)→ SubSetT→ T→ bool

in2 ∶ (T ∶ Type)→ T→ SubSetT→ bool

Here the expressions contains1(T,A,x) and in2(T,x,A) can be translated to each other.

Alignment up to Determined Arguments The perfect alignment of two function symbols
may be broken because they have different types even though they agree in most of their
properties. This often occurs when F1 uses a more fine-granular type system than F2, which
requires additional arguments.

Examples are untyped and typed (polymorphic, homogeneous) equality: The former is
binary, while the latter is ternary

eq1 ∶ Set→ Set→ bool

eq2 ∶ (T ∶ Type)→ T→ T→ bool
.

The types can be aligned, if we apply eq2 to ϕ(Set). Similar examples arise between simply-
and dependently-typed foundations, where symbols in the latter take additional arguments.

These additional arguments are uniquely determined by the values of the other arguments,
and a translation from C1 to C2 can drop them, whereas the reverse translations must infer
them – but F1 usually has functionality for that (e.g. the type parameter of polymorphic
equality is usually uniquely determined).

The additional arguments can also be proofs, used for example to represent partial functions
as total functions, such as a binary and a ternary division operator

div1 ∶ Real→ Real→ Real

div2 ∶ Real→ (d ∶ Real)→ DED d ≠ 0→ Real

Here inferring the third argument is undecidable in general, and it is unique only in the presence
of proof irrelevance.

Alignment up to Totality of Functions The functions a1 and a2 can be aligned every-
where where both are defined. This happens frequently since it is often convenient to represent
partial functions as total ones by assigning values to all arguments. The most common example
is division. Two implementations div1 and div2 might both have the type Real→ Real→ Real
with xdiv1 0 undefined and xdiv2 0 = 0.

Here a translation from C1 to C2 can always replace div1 with div2. The reverse translation
can usually replace div2 with div1 but not always. In translation-worthy data-expressions, it is
typically sound; in formulas, it can easily be unsound because theorems about div2 might not
require the restriction to non-zero denominators.

162 CHAPTER 14. ALIGNMENTS

Alignment for Certain Arguments Two function symbols may be aligned only for certain
arguments. This occurs if a1 has a smaller domain than a2.

The most fundamental case is the function type constructor → itself. For example, →1 may
be first-order in F1 and →2 higher-order in F2. Thus, a translation from C1 to C2 can replace
→1 with →2, whereas the reverse translation must be partial.

Another important class of examples is given by subtyping (or the lack thereof). For
example, we could have

plus1 ∶ Nat→ Nat→ Nat

plus2 ∶ Real→ Real→ Real
.

Alignment up to Associativity An associative binary function (either logically associative
or notationally right- or left-associative) can be defined as a flexary function, i.e., a function
taking an arbitrarily long sequence of arguments. In this case, translations must fold or unfold
the argument sequence. For example

plus1 ∶ Nat→ Nat→ Nat plus2 ∶ ListNat→ Nat .

All of the above types of alignments allow us to translate expressions between our corpora by
modifying the lists of arguments the respective symbols are applied to, even if not always in a
straight-forward way. The following types of alignments are more abstract, and any translation
along them might be more dependent on the specifics of the symbols under consideration.

Contextual Alignments Two symbols may be aligned only in certain contexts. For example,
the complex numbers are represented as pairs of real numbers in some proof assistant libraries
and as an inductive data type in others. Then only selected occurrences of pairs of real numbers
can be aligned with the complex numbers.

Alignment with a Set of Declarations Here a single declaration in C1 is aligned with
a set of declarations in C2. An example is a conjunction a1 in C1 of axioms aligned with a
set of single axioms in C2. More generally, the conjunction of a set of C1-statements may be
equivalent to the conjunction of a set of C2-statements.

Here translations are much more involved and may require aggregation or projection
operators.

Alignment between the Internal and External Perspective on Theories When rea-
soning about complex objects in a proof assistant (such as algebraic structures, or types with
comparison) it is convenient to express them as theories that combine the actual type with
operations on it or even properties of such operations. The different proof assistants often
have incompatible mechanisms of expressing such theories including type classes, records and
functors, with the additional distinction whether they are first-class objects or not. This
roughly corresponds to the distinction between stratified and integrated groupings in Chapter 8.

We define the crucial difference for alignments here only by example. We speak of the
internal perspective (≈ stratified grouping) if we use a theory like

theory Magma1 = {u1 ∶ Type, ○1 ∶ u1 → u1 → u1}

14.1. TYPES OF ALIGNMENTS 163

and of the external perspective (≈ integrated grouping) if we use operations like

Magma2 ∶ Type, u2 ∶ Magma2 → Type,

○2 ∶ (G ∶ Magma)→ u2 G→ u2 G→ u2 G

Here we have a non-trivial, systematic translation from C1 to C2. A reverse may also be
possible, depending on the details of F1.1

Corpus-Foundation Alignment Orthogonal to all of the above, we have to consider
alignments, where a symbol is primitive in one system but defined in another. More concretely,
a1 can be built-into F1 whereas a2 is defined in F2. This is common for corpora based on
significantly different foundations, as each foundation is likely to select different primitives.
Therefore, it mostly occurs for the most basic concepts. For example, the boolean connectives,
integers and strings are defined in some systems but primitive in others, as in some foundations
they may not be easy to define.

The corpus-foundation alignments can be reduced to previously considered cases if we
follow the approach generally followed in this thesis, where the foundations themselves are
represented in an appropriate logical framework. Then a1 is simply an identifier in the corpus
of foundations of the framework F1.

Opaque Alignments The above alignments focused on logical corpora, partially because
logical corpora allow for precise and mechanizable treatment of logical equivalence. Indeed,
alignments from a logical into a computational or narrative corpus tend to be opaque: Whether
and in what way the aligned symbols correspond to each other is not (or not easily) machine-
understandable. For example, if a2 refers to a function in a programming language library,
that function’s specification may be implicit or given only informally. Even worse, if a2 is a
wiki article, it may be subject to constant revision.

Nonetheless, such alignments are immensely useful in practice and should not be discarded.
Therefore, we speak of opaque alignments if a2 refers to a symbol whose semantics is unclear
to machines.

Probabilistic Alignments Orthogonal to all of the above, the correctness of an alignment
may be known only to some degree of certainty. In that case, we speak of probabilistic
alignments. These occur in particular when machine-learning techniques are used to find
large sets of alignments automatically. This is critical in practice to handle the existing large
corpora.

The problem of probabilistically estimating the similarity of concepts in different corpora
was studied before in [GK14b]. I briefly restate the relevant aspects in our setting, as described
by Thibault Gauthier in [Mül+17b].

Let Ti be the set of top level expressions occurring in Ci, e.g., the types of all constants
and the formulas of all theorems. We assume a fixed set F of alignments, covering in particular
the foundational concepts in F1 and F2.

1In Mmt, we can bridge these two representations using the Mod-types described in Chapter 8

164 CHAPTER 14. ALIGNMENTS

Definition 14.1:

The pattern P (f) of an expression f is obtained by normalizing f to N(f)
and abstracting over all occurrences of concepts that are not in F , resulting in
P (f) = λc1 . . . cn. N(f). If two formulas f ∈ T1 and g ∈ T2 have α-equivalent pat-
terns λd1 . . . dm. N(g) and λe1 . . . em. N(h), we define their induced alignments by
I(f, g) = {(d1, e1), . . . , (dm, em)}. We write J(p) for the union of all I(f, g) with
P (f) =α P (g) =α p.

Example 14.1:
For the formula ∀x. x = 2 ⋅ π ⇒ cos(x) = 0 with F not covering the concepts 2, π, 0, and
cos, and using a normal form N that exploits the symmetry of equality, we get the pattern
λc1 c2 c3 c4. ∀x. x = c1 ⋅ c2 ⇒ c3 = c4(x).

Let a1, . . . , an be the set of all alignments in any J(p). We first calculate an initial vector
containing the similarities simi for each ai by

simi = ∑
{p ∣ ai∈J(p)}

1

ln(2 + card { f ∣ P (f) = p })

Intuitively, an alignment has a high similarity value if it was produced by a large number of
rare patterns.

Secondly, we iteratively transform this vector until its values stabilize. The idea behind
this dynamical system is that the similarity score of an alignment should depend on the quality
of its co-induced alignments. Each iteration step consists of two parts: we multiply the vector
with the matrix

corkl = card { (f, g) ∣ ak ∈ I(f, g) ∧ al ∈ I(f, g) }

which measures the correlation between ak and al, and then (in order to ensure convergence
and squash all values into the interval [0; 1]) apply the function x↦ x

x+1 to each component.

14.2 Examples of Alignments

An essential requirement for relating logical corpora is standardizing the identifiers so that
each identifier in the corpus can be uniquely referenced. It is desirable to use a uniform naming
schema so that the syntax and semantics of identifiers can be understood and implemented
as generically as possible. Mmt URIs have been specifically designed for that purpose, and
Part III shows by example how to systematically generate URIs during importing a library.
Additionally, in [Mül+17c] we present URI schemas for a list of selected theorem provers.

Using these URIs with abbreviated proof assistant names, the following presents alignments
across proof assistants for two representative concepts. Also included are some alignments to
programming languages, which are relevant for code generation. Thousands of other alignments,
both perfect and imperfect, can be explored on mathhub [PRA].

Cartesian Product In constructive type theory, there are two common ways of expressing
the non-dependent Cartesian product. First, if the foundation has inductive types such as the
Calculus of Inductive Constructions, it can be an inductive type with one binary constructor.
This is the case for:

14.2. EXAMPLES OF ALIGNMENTS 165

• Coq ? Init/Datatypes ? prod.ind
• Matita ? datatypes/constructors ? Prod.ind

Second, if the foundation defines a dependent sum type, it is possible to express the Cartesian
product as its non-dependent special case:

• Isabelle ? CTT/CTT ? times
In higher-order logic, the only way to introduce types is by using the typedef construction,

which constructs a new type that is isomorphic to a certain subtype of an existing type. In
particular, most HOL-based systems introduce the Cartesian product A ×B by using a unary
predicate on A→ B → bool:

• HOLLight ? pair/type ? prod
• HOL4 ? pair/type ? prod
• Isabelle ? HOL/Product ? prod
In set theory, it is also possible to restrict dependent sum types to obtain the Cartesian

product. This approach is used in Isabelle/ZF:
• Isabelle ? ZF/ZF ? cart_prod
In Mizar the Cartesian product is defined as functor in first-order logic. The definition

invloves discharging the well-definedness condition. We defined functor is:
• Mizar ? ZFMISC_1 ? K2
In PVS, the product type constructor is part of the system foundation:
• PVS ? foundation.PVS ? tuple_tp
Cartesian products appear also in most programming languages and the code generators of

various proof assistants do use a number of these:
• OCaml ? core ? *
• Haskell ? core ? ,
• Scala ? core ? ,
• CPP ? std ? pair
Informal sources that can be aligned are e.g.:
• https://en.wikipedia.org/wiki/Cartesian_product
• https://en.wikipedia.org/wiki/Product_type
• http://mathworld.wolfram.com/CartesianProduct.html

Concatenation of Lists In constructive type theory (e.g. for Matita, Coq), the append
operation on lists can be defined as a fixed point. In higher-order logic, append for polymorphic
lists can be defined by primitive recursion, as done by HOL Light and HOL4. Isabelle/HOL
slightly differs from these two because it uses lists that were built with the co-datatype
package [Bla+14]. PVS and Isabelle/ZF also use primitive recursion for monomorphic lists. In
Mizar, lists are represented by finite sequences, which are functions from a finite subset of natural
numbers (one-based FINSEQ and zero-based XFINSEQ) with append provided. Concatenation
of lists is also common in programming languages.

• Coq ? Init/Datatypes ? app
• HOLLight ? lists/const ? APPEND
• HOL4 ? list/const ? APPEND
• Isabelle ? HOL/List ? append
• PVS?Prelude.list_props?append
• Isabelle ? ZF/List_ZF ? app
• Mizar ? ORDINAL4 / K1
• OCaml ? core ? @

https://en.wikipedia.org/wiki/Cartesian_product
https://en.wikipedia.org/wiki/Product_type
http://mathworld.wolfram.com/CartesianProduct.html

166 CHAPTER 14. ALIGNMENTS

• Haskell ? core ? ++
• Scala ? core ? ++

14.3 A Standard Syntax for Alignments

Based on the observations of the previous sections, we now define a standard for alignments.
Because many of the alignment types described in Section 14.1 are very difficult to handle
rigorously and additional alignment types may be discovered in the future, we opt for a very
simple and flexible definition.

Concretely, we use the following formal grammar for collections of alignments:

Collection ::= (Comment ∣ NSDef ∣ Alignment)∗

Comment ::= // String
NSDef ::= namespace String URI
Alignment ::= URI URI (String = ”String”)∗

Our definition aims at practicality, especially considering the typical case where researchers
exchange and manipulate large collections of alignments. Therefore, our grammar allows
for comments and for the introduction of short namespace definitions that abbreviate long
namespaces. Our grammar represents each individual alignment as a pair of two URIs with
arbitrary additional data stored as a list of key-value pairs.

The additional data in alignments makes our standard extensible: any user can standardize
individual keys in order to define specific types of alignments. For example, for alignments up
to argument order, we can add a key for giving the argument order. Moreover, this can be
used to annotate metadata such as provenance or system versions.

Below we standardize some individual keys and use them to implement the most important
alignment types from Section 14.1. In all definitions below, we assume that a1 and a2 are the
aligned symbols.

Definition 14.2:

The key direction has the possible values forward, backward, or both. Its presence
legitimizes, respectively, the translation that replaces every occurrence of a1 with a2,
its inverse, or both.

Alignments with direction key subsume the alignment types of perfect alignments (where the
direction is both) and the unidirectional types of alignment up to totality of functions or
up to associativity, and alignment for certain arguments. The absence of this key indicates
those alignment types where no symbol-to-symbol translation is possible, in particular opaque
alignments.

Definition 14.3:

The key arguments has values of the form (r1, s1) . . . (rk, sk) where the ri and si are nat-
ural numbers. Its presence legitimizes the translation of a1(x1, . . . , xm) to a2(y1, . . . , yn)
where each yk is defined by

• if k = si for some i: the recursive translation of xri
• otherwise: inferred from the context.

14.4. IMPLEMENTATION 167

Alignments with arguments key subsume the alignment types of alignments up to argument
order and of alignment up to determined arguments.

Example 14.2:
We obtain the following argument alignments for some of the examples from Section 14.1:

Nat1 Nat2 direction = ”both”
eq1 eq2 arguments = ”(1,2)(2,3)”

contains1 in2 arguments = ”(1,1)(2,3)(3,2)”

Finally, we standardize a key for probabilistic alignments:

Definition 14.4:

The key similarity has values that are real numbers in [0; 1]. If used together with other
keys like direction and arguments, it represents a certainty score for the correctness of
the corresponding translation. If absent, its value is 1 indicating perfect certainty.

14.4 Implementation

I have implemented alignments in the Mmt system. Moreover, I have created a public
repository [PRA] and seeded it with a number of alignments (currently ≈ 12000) including the
ones mentioned above and below in Section 14.5, the README of this repository furthermore
describes the syntax for alignments above as well as the URI schemata for several proof
assistants. The Mmt system can be used to parse and serve all these alignments, implement
the transitive closure, and (if possible) translate expressions according to alignments (see
Chapter 15 for the details). Available alignments are shown in the Mmt browser.

As an example service, I built a prototypical alignment-based math dictionary collecting
formal and informal resources.2 For this we extend the above grammar by the following:

Alignment ::= String URI (String = ”String”)∗

This assigns a mathematical concept (identified by the string) to a formal or informal resource
(identified by the URI). The dictionary uses the above public repository, so additions to the
latter will be added to the former. We have imported the ≈ 50,000 conceptual alignments
from [GC14], although we chose not to add them to the dictionary yet, since the majority of
them are (due to the different intention behind the conceptual mappings in Nnexus) dubious,
highly contextual or otherwise undesirable.

Each entry in the dictionary shows snippets from select online resources if available
(Figure 14.1), lists the associated formal statements (Figure 14.2) and available alignments
between them (Figure 14.3), and allows for conveniently adding new individual URIs to concept
entries as well as new formal alignments (Figures 14.1 and 14.4 respectively).

2Unfortunately, due to recent changes in the Mmt API, the original dictionary is no longer compatible with
the current code base and needs to be reimplemented at some point in the future.

168 CHAPTER 14. ALIGNMENTS

Figure 14.1: The Alignment-based Dictionary — External Resources

Figure 14.2: The Alignment-based Dictionary — Formal Resources

Figure 14.3: The Alignment-based Dictionary — Available Alignments

Figure 14.4: The Alignment based Dictionary - Field for Adding Alignments

14.5 Manually Curated Alignments

As an experiment,we hired two mathematics students at Jacobs University in Bremen – Colin
Rothgang and Yufei Liu – to manually comb through libraries of HOL Light, PVS, Mizar and
Coq to find alignments. Specifically, they picked the mathematical areas of numbers, sets (as
well as lists), abstract algebra, calculus, combinatorics, logic, topology, and graphs as a sample.
This produced around 900 declarations overall, from which they constructed interface theories,
as presented in Section 15.1. Notably neither of the two students had prior in-depth knowledge
about theorem prover systems or their libraries.

14.5. MANUALLY CURATED ALIGNMENTS 169

Concept PVS (Standard) HOL Light (Standard) Mizar (Standard) Coq (Standard)
N naturalnumbers?naturalnumber nums?nums ORDINAL1?modenot.6 Coq.Init.Datatypes?nat

successor function naturalnumbers?succ nums?SUC ORDINAL1?func.1 Coq.Init.Nat?succ
addition number_fields?+ arith?ADD ORDINAL2?func.10 Coq.Init.Nat?add

multiplication number_fields?* arith?MULT ORDINAL2?func.11 Coq.Init.Nat?mul
less than number_fields?<= arith?<= XXREAL_0?pred.1 Coq.Init.Nat?leb

Table 14.1: Alignments for NaturalNumbers (libraries in brackets)

Concept PVS (NASA3) HOL Light (Standard) Mizar (Standard) Coq (coq-topology4)
topology topology_prelim?topology topology?topology PRE_TOPC?modenot.1 TopologicalSpaces?TopologicalSpace
open topology?open? topology?open_in PRE_TOPC?attr.3 TopologicalSpaces?open
closed topology?closed? topology?closed_in PRE_TOPC?attr.4 TopologicalSpaces?closed
interior topology?interior topology?interior TOPS_1?func.1 InteriorsClosures?interior
closure topology?Cl topology?closure PRE_TOPC?func.2 InteriorsClosures?closure

Table 14.2: Alignments for Topology (libraries in brackets)

For example, Tables 14.1 and 14.2 show some of these alignments for natural numbers and
topology.

Alignments in topology pose some additional difficulties. Firstly, HOL Light defines a
topology on some subset of the universal set of a type, whereas PVS defines it on a type directly.
Thus, the alignment from HOL Light to the interface theory is unidirectional. Secondly,
Mizar does not define the notion of a topology, but instead the notion of a topological space.
Therefore, the students aligned all these symbols to two different symbols in an interface
theory (topology and topological_space) and defined topological_space based on
topology .

The set of all alignments they found can be inspected at https://gl.mathhub.info/
alignments/Public/tree/master/manual. Many of these alignments are by now outdated,
due to recent developments on Mmt, including an import for Coq (see [MRS]) which had us
rethink their Mmt URI schema, and changes in the surface syntax that require the archive of
interface theories (discussed in Section 15.1) to be cleaned up and partially reimplemented.
However, as an experiment, it shows that finding and implementing alignments manually is
surprisingly easy even with very little prior knowledge of the formal systems.

During the course of collecting alignments, Rothgang and Liu have identified the following
two aspects to be the most common causes for imperfect alignments:

• Subtyping In the PVS library, the arithmetic operations on all the number fields are
defined on a common supertype numfields . Therefore, a translation from PVS to the
other two languages may not be viable.

• Partiality The result of division by zero in the libraries of HOL Light and Mizar is defined
as zero; in PVS, however, the divisor must be nonzero. Therefore, certain theorems in
HOL Light and Mizar involving division no longer hold in PVS, and the translation is
unidirectional.

https://gl.mathhub.info/alignments/Public/tree/master/manual
https://gl.mathhub.info/alignments/Public/tree/master/manual

170 CHAPTER 14. ALIGNMENTS

Topic HOL Light PVS Mizar Coq
Algebra 0/0 18/1 17/0 14/0
Calculus 15/0 14/0 16/0 5/15
Categories 0/0 0/0 9/1 5/0

Combinatorics 24/0 15/0 1/0 1/0
Complex Numbers 9/2 4/6 7/2 11/2

Graphs 5/5 17/0 20/0 7/2
Integers 10/0 0/0 5/2 47/3
Lists 16/0 9/0 8/0 36/2
Logic 7/0 7/5 7/0 24/1

Natural Numbers 19/0 8/10 9/0 34/1
Polynomials 4/0 1/0 7/0 0/0

Rational Numbers 0/14 2/11 0/10 14/3
Real Numbers 13/2 3/10 7/4 12/2

Relations 4/0 16/5 18/3 1/12
Sets 23/0 28/0 18/0 19/0

Topology 15/0 10/0 9/0 17/1
Vectors 13/0 7/0 15/0 0/0
Sum 177/23 159/48 173/22 240/42

Table 14.3: Number of Bidirectional/Unidirectional Alignments per Library

Chapter 15

Alignment-based Translations Using
Interface Theories

Disclaimer:

A significant part of the contents of this chapter (except for Section 15.3) has been
previously published as [Mül+17a] with coauthors Florian Rabe, Colin Rothgang and
Yufei Liu. Both the writing as well as the theoretical results were developed in close
collaboration between the authors, hence it is impossible to precisely assign authorship
to individual authors. In particular, Section 15.1 is primarily the result of a student
experiment executed by Rothgang and Liu, under joint supervision by Rabe and me.
The writing has been reworked for this thesis.

My contribution in this chapter consists of the actual implementation presented
in Section 15.2, which I have rewritten from scratch for this thesis. Additionally, I
have implemented the alignments, interface theories and translators for the use case in
Section 15.3.

Using alignments, we can equivocate symbols from different libraries with each other.
Ideally, in the case of a perfect alignment we can then reduce translation to a one-to-one symbol
substitution. However, given a multitude of libraries in our framework, naively approaching
the task of aligning them in the first place still means sifting through two libraries in parallel,
implying n2 alignment tasks for n libraries.

In recent work, our research group has come to understand this problem more clearly and
suggested a systematic solution. Firstly, in [KRSC11] and [KR16b], Michael Kohlhase, Florian
Rabe and Claudio Sacerdoti Coen developed the idea of interface theories. Using an analogy
to software engineering, we can think of interface theories as specifications and of theorem
prover libraries as implementations of formal knowledge.

Secondly, in the OpenDreamKit project [Deh+16; ODK] (see Section 3.3) we pursue
the same approach (Math-in-the-Middle, see Section 3.4) in the context of computer algebra
systems. In this context, we have already developed some interface theories for basic logical
operations such as equality, with approximately 300 alignments to theorem prover libraries.

Not surprisingly, the methodology described in this chapter, while in theory originally
developed for fully formal libraries originating from theorem prover systems, has consequently
been used to realize the objectives of OpenDreamKit as well.

171

172CHAPTER 15. ALIGNMENT-BASED TRANSLATIONS USING INTERFACE THEORIES

PVS

HOL Light

Mizar

Coq

I

p
h

m
c

Figure 15.1: Aligning Libraries via Interface Theories

While alignments have the big advantage that they are cheap to find and implement,
they have the disadvantage of not being very expressive; in fact, the definition of alignment
itself is (somewhat intentionally) vague. In particular when a translation needs to consider
foundational aspects beyond the individual system dialects, alignments alone are insufficient.
This is where interface theories come into play: given different implementations of the same
mathematical concept, their interface theory contains only those symbols that are a) common
to all implementations and b) necessary to use the concept (as opposed to formalizing it in
detail) – which in practice turn out to be the same thing.

Libraries of interface theories hence must critically differ from typical theorem prover
libraries: they must follow the axiomatic method (as opposed to the method of definitional
extensions), be written with minimal foundational commitment, and largely not rely on
definitions or proofs in order to stay compatible with development approaches based on
alternative definitions.

Using interface theories and the Math-in-the-Middle approach, we can see two symbols
being aligned via a sequence of consecutive steps of abstraction:

1. We import the libraries of formal systems to a generic, foundationally neutral formal
language (namely OMDoc/Mmt) with the help of a formalization of the system’s
primitives (see Chapter 10).

2. We align the system specific symbols (which we collectively refer to as the system dialect)
with generic representations of the same concept. E.g. we align a symbol for HOL Light’s
function-application with a generic symbol for function application.

3. Ultimately, we (possibly after additional steps) end up with the same purely mathematical
concept expressed in a system- and foundationally neutral language.

Consider for a simple example the PVS symbol member and the HOL Light symbol IN ,
we capture this with

• a symbol for elementhood in a (new) interface theory for sets,
• two alignments of this new symbol with the symbols member and IN , respectively.
This yields a star-shaped network as in the diagram in Figure 15.1 with various formal

libraries on the outside, which are connected by alignments via representations of their system
dialects (lower-case letters) to the interface theory in the center. Note the very deliberate
similarity to Figure 3.4 – the primary difference is that we substituted OpenDreamKit
systems with OAF systems (see Section 3.5).

15.1. INTERFACE THEORIES 173

15.1 Interface Theories

As mentioned in Section 14.5, we had two students (Colin Rothgang and Yufei Liu) collect
alignments between various theorem prover libraries. In the course of this project, they also
developed interface theories for the symbols they aligned.

As a basis for this experiment, they used the foundational theory for the Math-in-the-Middle
archive, a simplified excerpt of which is shown in Listing 15.1, as an interface for basic logical
constants.

Listing 15.1: An Interface Theory for Logic in Mmt 1

theory Logic : lfx :/TypedHierarchy?LFHierarchy =
// the type of booleans, i . e., all formulas are represented as terms of LF−type $prop$ ∣∣∣∣
prop : type ∣∣ @ bool ∣∣∣∣
rule rules ?BooleanLiterals ∣∣∣∣

ded : prop → type ∣∣ # ⊢1 prec −500 ∣∣ role Judgment ∣∣∣∣

// Equality on terms. The type A is left implicit and can be inferred by MMT ∣∣∣∣
eq : {A:U 100} A → A → bool ∣∣ # 2 ≐ 3 prec −5 ∣∣ role Eq ∣∣∣∣

not : bool → bool ∣∣ # ¬1 prec −100 ∣∣∣∣
neq : {A: U 100} A → A → prop ∣∣ # 2 ≠ 3 prec −5 ∣∣∣∣
and : bool → bool → bool ∣∣ # 1 ∧2 prec −110 ∣∣∣∣
or : bool → bool → bool ∣∣ # 1 ∨2 prec −120 ∣∣∣∣
impl : bool → bool → bool ∣∣ # 1 ⇒2 prec −130 ∣∣∣∣
iff : bool → bool → bool ∣∣ # 1 ⇔2 prec −140 ∣∣∣∣

forall : {A : U 100} (A → bool) → bool ∣∣ # ∀2 prec −100∣∣∣∣
exists : {A : U 100} (A → bool) → bool ∣∣ # ∃2 prec −100 ∣∣∣∣

This theory actually includes most of the features presented in Part II, in order to be as
flexible as possible in formalizing content – although most of them were not yet available when
the experiment described in this section was originally done.

15.1.1 Example: Natural Numbers

Listing 15.2 shows an example of a simple theory of natural numbers, using the theory Logic

and the symbols declared therein. Note, that this theory is basically an implementation of
the Peano axioms, which can be seen as the interface theory for all possible definitions of a
concrete set (or type) of “the” natural numbers.

Listing 15.2: An (excerpt of an) interface theory for natural numbers with Logic as meta-
theory2

theory Naturals : fnd:? Logic =
zero : N ∣∣ = 0 ∣∣∣∣
successor : N→ N ∣∣ # S 1 ∣∣∣∣
plus : N→ N→ N ∣∣ # 1 + 2 ∣∣∣∣
times : N→ N→ N ∣∣ # 1 ⋅ 2 ∣∣∣∣
leq : N→ N→ bool ∣∣ # 1 ≤ 2 ∣∣∣∣

Induction : {P} ⊢P zero → ({n} ⊢P n → ⊢P (S n)) → ⊢∀ P ∣∣∣∣
Succ_inj : {n:N,m:N} ⊢(S n) ≐ (S m) ⊢n ≐ m ∣∣∣∣

plus_zero : {n} ⊢ (n + zero) ≐ n ∣∣ role Simplify ∣∣∣∣
plus_succ : {n,m} ⊢(n + (S m)) ≐S (n + m) ∣∣ role Simplify ∣∣∣∣

1https://gl.mathhub.info/MitM/Foundation/blob/master/source/math.mmt

https://gl.mathhub.info/MitM/Foundation/blob/master/source/math.mmt

174CHAPTER 15. ALIGNMENT-BASED TRANSLATIONS USING INTERFACE THEORIES

PVS

Nat

⋮

number_field

Interfaces

Ordinals
Numbers

N
Finite Ordinals

Peano Axioms

Mizar

Nat

Ordinals

Figure 15.2: A Graph Showing Different Theories for Natural Numbers

times_zero : {n} ⊢ (n ⋅ zero) ≐ zero ∣∣ role Simplify ∣∣∣∣
times_succ : {n,m} ⊢(n ⋅ (S m)) ≐ ((n ⋅ m) + n) ∣∣∣∣

In Mizar [Miz], which is based on Tarski-Grothendieck set theory, the set of natural numbers
NAT is defined as omega, the set of finite ordinals. Arithmetic operations are defined directly
on those.

In contrast, in PVS (see Chapter 10) natural numbers are defined as a specific subtype of
the integers, which in turn are a subtype of the rationals etc. up to an abstract type number

which serves as a maximal supertype to all number types. The arithmetic operations are
inherited from a subtype number_field of number .

These are two fundamentally different approaches to describe and implement an abstract
mathematical concept, but for all practical purposes the concept they describe is the same;
namely the natural numbers. The interface theory for both variants would thus only contain
the symbols that are relevant to the abstract concept itself, independent of their specific
implementation – hence, things like the type of naturals, the arithmetic operations and the
Peano axioms. The interface theory thus provides everything we need to work with natural
numbers, and at the same time everything we know about them independently of the logical
foundation or their specific implementation within any given formal system.

However, there is an additional layer of abstraction here, namely that in stating that the
natural numbers in Mizar are the finite ordinals we have already ignored the system dialect (in
the sense of item 2 in the introduction to this chapter). This step of abstraction (from the
concrete definition using only Mizar-specific symbols) yields another interface theory for finite
ordinals, which in turn can be aligned not just with Mizar natural numbers, but also e.g. with
MetaMath [MeMa], which is built on ZFC set theory.

Figure 15.2 illustrates this situation. Blue arrows point from more detailed theories to
their interfaces. The arrows from PVS or Mizar to interfaces merely strip away the system
dialects; the arrows within Interfaces abstract away more fundamental differences in definition
or implementation.

2https://gl.mathhub.info/MitM/interfaces/blob/master/source/Math/Numbers.mmt

https://gl.mathhub.info/MitM/interfaces/blob/master/source/Math/Numbers.mmt

15.1. INTERFACE THEORIES 175

Consider again Listing 15.2, a possible interface theory for natural numbers. Note, that
symbols such as leq could be defined, but don’t actually need to be. Since they are only
interfaces, all we need is for the symbols to exist.

In fact, the more abstract the interface, the less we want to define the symbols – given that
there’s usually more than one way to define symbols, definitions are just one more thing we
might want to abstract away from completely. There are exceptions to this – note that the
symbol zero is actually defined as the literal 0.3 This is because literals themselves are mere
Mmt terms, but not symbols with a stable Mmt-URI, which we need for alignments. On the
other hand, not having literals excludes those systems where literals are actually used. In this
case, providing a definition to the symbols enables aligning both systems with and without
literals.

The symbols in this interface theory can then be aligned either with symbols in other
formal systems directly, or with additional interfaces in between, such as a theory for Peano
arithmetic, or the intersection of all inductive subsets of the real numbers, or finite ordinals or
any other possible formalization of the natural numbers.

15.1.2 Additional Interface Theories

The foundation independent nature of Mmt allows us to implement interface theories with
almost arbitrary levels of detail and for vastly different foundational settings.

We have started a repository of interface theories specifically for translation purposes [Mitb]
and also aligned to already existing interfaces (as in the case of arithmetics, see below) in a
second and third MathHub repository [Mitc] and [Mita] extending them when necessary.

Crucially, this interface repository contains interface theories for basic type-related symbols
like the function type constructors (see Listing 15.34), that are aligned with the respective
symbols in HOL Light and PVS. These symbols are so basic as to be primitive in systems
based on type theory, and consequently they occur in the vast majority of expressions. To have
these symbols aligned is strictly necessary to get any further use of alignments off the ground.

Listing 15.3: Interface Theories for Type-Theoretical Foundations5

theory TypeSystem : ur:?LF =
tp : type ∣∣∣∣
tm : tp → type ∣∣∣∣

∣∣∣∣∣∣∣∣

theory SimpleFunctionTypes : ?TypeSystem =
Arrowtp : tp → tp → tp ∣∣ # 1 Ô⇒ 2 ∣∣∣∣
Applytp : {A,B} tm (A Ô⇒ B) → tm A → tm B ∣∣# 3 @ 4 ∣∣## 3 4 ∣∣∣∣
Lambdatp : {A,B} (tm A → tm B) → tm (A Ô⇒ B) ∣∣# λ3 ∣∣∣∣

∣∣∣∣∣∣∣∣

theory DependentFunctionTypes : ?TypeSystem =
Pitp : {A} (tm A → tp) → tp ∣∣# Π2 ∣∣∣∣
Applytp : {A,B} tm (Pitp A B) → {x: tm A} tm (B x) ∣∣# 3 @ 4 ∣∣ ## 3 4 ∣∣∣∣

3See Section 6.2.1 for more on Literals in Mmt.
4This interface theory, like most formalizations of foundations, uses types as terms (via the symbols tp and

tm), whereas the interface theories above (like NaturalNumbers) use the universe of types provided by the
logical framework directly. During translation, special higher-order abstract syntax rules take care of eliminating
or inserting the corresponding symbols appropriately to make aligning between the two formalization levels
possible (see Section 4.3.2).

176CHAPTER 15. ALIGNMENT-BASED TRANSLATIONS USING INTERFACE THEORIES

Lambdatp : {A,B} ({x: tm A} tm (B x)) → tm (Π B) ∣∣# λ3 ∣∣∣∣
structure simple : ?SimpleFunctionTypes =

Arrowtp = [A,B] Pitp A ([x]B) ∣∣∣∣
Applytp = [A,B][f][a] Applytp A ([x]B) f a ∣∣∣∣
Lambdatp = [A,B][f] Lambdatp A ([x]B) f ∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Here, a structure is used to include the theory for simple function types in the theory
for dependent function types, while providing definitions for the symbols in terms of the
latter. This automatically yields a translation from the simple to the dependent variant and
demonstrates the advantage of using interface theories for translations: The general problem of
converting between (systems using) simple and dependent function types is lifted to the level
of the interface theories, where we can use theory morphisms (such as structures) to specify
the appropriate translation once and for all; independent of any specific external system.

Table 14.3 shows the total number of alignments the students found for PVS, HOL Light
and Mizar. The following are some additional examples of mathematical areas covered by the
resulting interface theories. The numbers here reflect the result of the student experiment and
refer to the number of symbols actually used for alignments therein; the theories themselves
have been partially adapted and significantly extended by now:

Calculus contains the following 3 subinterfaces:

Limits contains 17 symbols related to sequences and limits, including metric_space
and complete (metric spaces and their completeness).

Differentiation contains 4 symbols, namely differentiability in a point and on a set and
the derivative in a point and as a function

Integration contains 6 symbols, namely integrability and the integral over a set for
Riemann, Lebesgue and Gauge-integration.

For Arithmetics we use the already existing theories from [Mitc]. It contains interfaces for
below number arithmetics (each split into two interfaces for the basic number type definitions
and the arithmetics on them).

Complex Numbers contains 11 symbols for complex numbers aligned to their coun-
terparts in HOL Light, PVS and Mizar. Besides the usual arithmetic operations similar
to NaturalNumbers , it contains i (the imaginary unit), abs (the modulus of a complex
number) and Re , Im (the real and imaginary parts of a complex number).

Integers contains 9 symbols for the usual arithmetic operations on integers and for
comparison between two integers.

Natural Numbers contains 21 symbols and is already described above.
5https://gl.mathhub.info/MitM/interfaces/blob/master/source/TypeSystem.mmt and https://gl.

mathhub.info/MitM/interfaces/blob/master/source/TypeConstructors.mmt

https://gl.mathhub.info/MitM/interfaces/blob/master/source/TypeSystem.mmt
https://gl.mathhub.info/MitM/interfaces/blob/master/source/TypeConstructors.mmt
https://gl.mathhub.info/MitM/interfaces/blob/master/source/TypeConstructors.mmt

15.2. IMPLEMENTATION 177

Real Numbers contains 15 symbols, again very similar in nature to the other number
spaces.

Lists contains the 13 most important symbols for lists, including head , tail , concat ,
length and filter (filter a list using another list) as well as some auxiliary definitions.
There are no lists in Mizar, instead finite sequences are used. These however deserve their own
interface.

For Logic we use the already existing theories in the [Mita] repository. It contains 9 symbols
for boolean algebra that are all perfectly aligned to HOL Light, PVS and Mizar, and sometimes
also to Coq.

Sets are also already existent in [Mitc], split into many subtheories. 28 of the contained
symbols have been aligned. sets contains symbols for typed sets as in a type theoretical setting,
including axioms and theorems. Here we have the most alignments so far. It also contains the
following two interfaces:

Relations contains 23 symbols for alignments to relations and their properties, including
orders.

Functions contains 7 symbols for alignments to functions and their relations, that are
not already contained in relations.

Topology contains 25 symbols for both general topological spaces as well as the standard
topology on Rn specifically.

In order to translate an expression from one library to another, the concepts in the expression
must at least exist in both libraries. This creates the need to inspect the intersection of the
concepts in these libraries. Table 15.1 gives an overview of the library intersection for various
interface theories.

Figure 15.3 shows a small part of the theory graph of the MitM libraries. The full MitM
theory graph can be explored on MathHub6.

15.2 Implementation

I have implemented a prototypical expression translator in the Mmt system that uses alignments,
theory morphisms and programmatic tactics to translate expressions in the form of Mmt terms.
The translation mechanism is already used in the OpenDreamKit project and is exposed via
the Mmt query language [Rab12].

Crucially, the algorithm returns partial translations when no full translation to a target
library can be found. These can be used for finding new alignments automatically by the
techniques described in Chapter 16.

6https://mathhub.info/mh/mmt/graphs/tgview.html?graphdata=MitM

https://mathhub.info/mh/mmt/graphs/tgview.html?graphdata=MitM

178CHAPTER 15. ALIGNMENT-BASED TRANSLATIONS USING INTERFACE THEORIES

Topic 1 System 2 Systems 3 Systems 4 Systems
Algebra 17 9 5 0
Calculus 35 7 8 0
Categories 4 5 0 0

Combinatorics 25 6 0 1
Complex Numbers 10 5 3 3

Graphs 72 6 3 0
Integers 52 2 7 0
Lists 28 8 9 0
Logic 18 0 2 5

Natural Numbers 53 2 10 2
Polynomials 12 0 0 0

Rational Numbers 11 4 2 7
Real Numbers 9 3 5 5

Relations 21 15 4 0
Sets 56 10 9 10

Topology 62 2 8 0
Vectors 25 5 0 0
Sum 510 91 79 33

Table 15.1: Number of Concepts Found in Exactly One, Two, Three or Four Systems

The Algorithm is parametric in

1. An Mmt term t,

2. A termination predicate Fin on Mmt terms indicating whether an Mmt term is finished
translating. In the case of across-library translation, this predicate can e.g. check that all
symbols occuring in a term are from a targeted Mmt archive or in a specific namespace.

3. an ordered list of individual translators T = {T1, . . . Tn},which are partial functions from
Mmt terms to Mmt terms.

We can obtain translators in several ways:

• For an alignment S1 S2 direction = ”both” , we obtain the translator T with T (S1) = S2

and T (S2) = S1. Analogously, the translator we obtain from alignments with direction
values forward or backward only maps S1 to S2 or, respectively, the other way around.

• For an alignment S1 S2 arguments = ”(i1, j1) . . . (in, jn)” , we obtain the translator T that
maps any term S1(x1, . . . , xm) to S2(y1, . . . , yn) according to the reordering from Def-
inition 14.3. As in the case above, T also maps the reverse case depending on the
direction-key.

• A theory morphism is already a partial function on Mmt terms, its defined domain being
the well-formed terms over the domain theory of the morphism.

• A Scala object of class AcrossLibraryTranslation, that implements two functions:

– applicable(tm: Term): Boolean that determines its domain (should be fast regarding
runtime) and

– apply(tm: Term):Term that computes the translation.

15.2. IMPLEMENTATION 179

Figure 15.3: A Small Part of the MitM Theory Graph

• As a last option, we choose definition expansion, which maps a symbol reference S for a
defined constant to its definiens.

The Algorithm Translate(t,Fin,T) ∶(Term,Boolean) then reduces to a simple tree search, iteratively
applying applicable translators in T to subterms of t until Fin is satisfied, or return a partial
translation if no full translation of t can be found.

This implementation is naive and potentially inefficient and should be considered prototyp-
ical, but suitably demonstrates the capabilities of the general approach.

Before we cover one example in detail, Table 15.2 lists three rather simple example
translations between PVS and HOL Light. We use the Pi-types of LF to bind variables on the
outside of the intended expressions.

Note that even something like the application of a function entails a translation from
function application in HOL Light to function application in PVS, since they belong to their
respective system dialects. Furthermore, the translation from simple function types in HOL
Light to the dependent Π-type in PVS is actually done on the level of interface theories,
where simple function types are defined as a special case of dependent function types (see
Section 15.1.2). Unlike the latter two, the first example uses only primitive symbols in both
systems that are not part of any external library. Meta-variables have been left out in the
third example for brevity.

Furthermore, an argument alignment was used in the third example, that switches the two
(non-implicit) arguments – namely the predicate and the list. Whereas this usually trips up
automated translation processes or needs to be manually implemented, in our case this is as
easy as adding (in this case) the key-value-pair arguments = “(2,3)(3,2)” to the alignment.

HOL Light PVS
{A:holtype, P:term AÔ⇒bool, a:term A}⊢P(a) {A:tp,P:expr Π_:Aboolean,a:expr A}⊢P(a)
{T:holtype,a:term T,A:term TÔ⇒bool}a IN A {T:tp, a:expr T, A:expr Π_:Tboolean}member(a,A)

FILTER (Abs x:bool. x) c :: b :: a :: NIL filter (c :: b :: a :: null) (λx : boolean. x)

Table 15.2: Three Expressions Translated

180CHAPTER 15. ALIGNMENT-BASED TRANSLATIONS USING INTERFACE THEORIES

15.3 Example

To exemplify the usefulness of such translations across libraries, we will examine one example
with computer algebra systems – which the OpenDreamKit research community has come to
call Jane’s Use Case [Koh+17a] – in detail. This example is interesting in that it was (chiefly)
developed by John Cremona as a real-world situation a computational group theorist might
find themself in, and where they would want to use a combination of computer algebra systems.

A user, Jane, wants to experiment with invariant theory of finite groups. She does so,
by considering some group G as acting on the variables X1, . . . ,Xn of the polynomial ring
Z[X1, . . . ,Xn] and studying the ideals generated by the orbit of some polynomial, since these
happen to be fixed by the group action. Naturally, in a computational setting one would want
to have the Gröbner bases of these ideas as well. GAP happens to be efficient in computing
orbits, whereas Singular is known to be very efficient in computing Gröbner bases. For the
purposes of this section (and in light of Chapter 12) we will substitute Singular by Sage.

Starting from the Math-in-the-Middle ontology (see Section 3.4), Jane wants to study
the dihedral group D4. So she declares a polynomial p – exemplary 3X1 + 2X2 – over
R = Z[X1,X2,X3,X4], and wants to compute the orbit O(Z,D4, p) in GAP, translate the
resulting ideal back to MitM as I, declare its Gröbner base G = Groebner(Z, I), translate this
to Sage in order to compute it and have the result presented to her back in MitM.

There are two things that make this example particularly non-trivial:

1. The terminologies employed by GAP and Sage differ: The dihedral group of order
8 is called D4 in Sage, and D8 in GAP; the conversion between the two is not easily
expressed in a single alignment.

2. The ways polynomials are constructed in GAP and Sage differ considerably.

The polynomial 3X1 + 2X2 is formally constructed in GAP using the (internal) syntax

PolyGAP(RationalFunctions(FamilyObject(1)), [[1,1],3, [2,1],2]) ,

where [. . .] represents lists, and [[k1, n1, . . . , km, nm], a] represents the monomial aXn1

k1
⋅

. . . ⋅Xnm
km

. The precise meaning of the FamilyObject and RationalFunctions symbols
is technical and largely irrelevant.

In Sage, the same polynomial is instead constructed as

PolySage(PolyRing(Z, [X1,X2,X3,X4]), [[[1,0,0,0],3], [[0,1,0,0],2]]) ,

where [[i1 . . . in], a] represents the monomial aXi1
1 ⋅ . . . ⋅Xin

n . Consequently, monomials
refer to the specific named variables of the polynomial ring Z[X1,X2,X3,X4] provided
as an argument.

In general and not surprisingly, there seems to be no universally agreed upon method to
formally represent polynomials.

The symbols for lists, integers, Gröbner bases, ideals (which in a computational setting can
be represented as a list of generators) and orbits can be easily expressed as typed constants
in an interface theory and connected via alignments, so we can focus on those aspects of the
translation that are non-trivial.

15.3. EXAMPLE 181

The discrepancy regarding dihedral groups is reflective of different notational conventions
used in the mathematical community, hence it makes sense to have both of them represented
in an interface. Correspondingly, for the interface theory in the Math-in-the-Middle library we
use both and simply use definitions to convert between them:

Listing 15.4: An Interface Theory for Dihedral Groups
theory Dihedral : base:?Logic =

dihedralD : N+ → group ∣∣∣∣
dihedral : N+ → group ∣∣= [z] dihedralD (2 ⋅ z) ∣∣∣∣

Which allows us to use simple alignments to translate from GAP/Sage to MitM and definition
expansion to translate from the second to the first variant. For the other direction, we need a
theory morphism, e.g. a view:

Listing 15.5: An View for Translating Dihedral Groups
view DihedralTranslation : ?Dihedral −> ?Dihedral =

dihedralD = [n] dihedral (n / 2) ∣∣∣∣

Regarding converting polynomials, we are stuck with using a programmatic translator
instead. For a MitM representation of polynomials, we use a more generic method that carries
the names of the variables:

Listing 15.6: An Interface Theory for Integer Polynomials7

theory Polynomials : base:?Logic =
polynomialRing : ring → type ∣∣∣∣
monomial : ring → type ∣∣ # monomial 1∣∣∣∣
multi_poly_con : {r : ring } List (monomial r) → multi_polynomial r ∣∣ # mpoly 2 ∣∣∣∣
monomial_con : {r: ring} (List (string × N)) × r . universe → monomial r ∣∣ # monomial_con 1 2∣∣∣∣

∣∣∣∣∣∣∣∣

theory IntegerPolynomials : base:?Logic =
include ?Polynomials ∣∣∣∣
include algebra ?IntegerRing ∣∣∣∣
int_polynomial : List (monomial Z) → multi_polynomial Z∣∣∣∣
int_monomial : (List (string × N)) × Z → monomial Z∣∣∣∣

∣∣∣∣∣∣∣∣

The polynomial 3X1 + 2X2 would then be represented as

int_polynomial([int_monomial(⟨[⟨ “X1” , 1⟩] , 3⟩),int_monomial(⟨[⟨ “X2” , 1⟩] , 2⟩)]) .

The only thing missing then are programmatic translators from GAP and Sage to MitM
and their inverses. As an example, Listing 15.7 shows the translator from MitM polynomials
to GAP polynomials, using helper objects (analogous to those described in Section 5.2.1).

Listing 15.7: A Translator from MitM Polynomials to GAP8

val toPolynomials = new AcrossLibraryTranslation {
def applicable(tm: Term): Boolean = tm match {
case MitM.MultiPolynomial(_,_) => true
case _ => false

}
def apply(tm: Term): Term = tm match {
case MitM.MultiPolynomial(_,ls) =>

7Adapted and simplified from https://gl.mathhub.info/MitM/smglom/blob/master/source/algebra/
polynomials.mmt

https://gl.mathhub.info/MitM/smglom/blob/master/source/algebra/polynomials.mmt
https://gl.mathhub.info/MitM/smglom/blob/master/source/algebra/polynomials.mmt

182CHAPTER 15. ALIGNMENT-BASED TRANSLATIONS USING INTERFACE THEORIES

Poly(ls.flatMap{
case (vars,coeff,_) =>
LFList(vars.flatMap(p => List(Integers(variables.get(p._1)),Integers(p._2)))) :: Integers(coeff) :: Nil

})
}

}

Given these translators, Jane’s Use Case can be realized as a sequence of applications of
the translation algorithm described in Section 15.2.

Figure 15.4 shows the realization of this use case in a Jupyter [Jup] notebook running an
Mmt kernel. Here, the expression Evaluate(S,t) is used to instruct the Mmt system to
translate the expression t to the ontology of system S and have the target system evaluate the
expression.

Figure 15.4: Jane’s Use Case in an Mmt Jupyter Notebook

8https://github.com/UniFormal/MMT/blob/master/src/mmt-odk/src/info/kwarc/mmt/odk/GAP/GAPSystem.scala

Chapter 16

Viewfinding

Disclaimer:

A significant part of the contents of this chapter has been previously published as
[MKR18] with coauthors Michael Kohlhase and Florian Rabe. The writing was developed
in close collaboration between the authors, hence it is impossible to precisely assign
authorship to individual authors.

My contribution in this chapter consists of developing the algorithm presented in this
chapter, its implementation and running and evaluating the case study in Section 16.3.

Theory morphisms underly the notion of theory graphs. They are one of the primary
structuring tools employed in Mmt and enable the kind of modularity we aimed for in this
thesis, most notably Part II. As they induce new theorems in the target theory for any of the
source theory, views (as opposed to includes and other trivial morphisms, see Section 4.1.1) in
particular are high-value elements of a modular formal library. Usually, these are manually
encoded, but this practice requires authors who are familiar with source and target theories at
the same time, which limits the scalability of the manual approach.

To remedy this problem, I have developed a view finder algorithm that automates theory
morphism discovery, and implemented it in Mmt. While this algorithm conceptually makes use
of the definitional property of theory morphisms that they are to preserve typing judgements,
it ultimately operates on the level of individual declarations after preprocessing which may
include translations as in Chapter 15 using alignments – as such, it can also be thought of as
an alignment finder across libraries, simultaneously utilizing and extending the set of possible
translations between them.

Here, we focus on one specific application of theory classification, where a user can check
whether a (part of a) formal theory already exists in some library, potentially avoiding
duplication of work or suggesting an opportunity for refactoring.

The basic use case is the following: Mary, a mathematician, becomes interested in a class
of mathematical objects, say – as a didactic example – something she initially calls “beautiful
subsets” of a base set B (or just “beautiful over B”). These have the following properties Q:

1. the empty set is beautiful over B
2. every subset of a beautiful set is beautiful over B
3. If A and B are beautiful over B and A has more elements than B, then there is an

183

184 CHAPTER 16. VIEWFINDING

x ∈ A/B, such that B ∪ {x} is beautiful over B.
To see what is known about beautiful subsets, she types these three conditions into a theory
classifier, which computes any theories in a library L that match these (after a suitable
renaming). In our case, Mary learns that her “beautiful sets” correspond to the well-known
structure of matroids [MWP], so she can directly apply matroid theory to her problems.

In extended use cases, a theory classifier may find theories that share significant structure
with Q, so that Mary can formalize Q modularly with minimal effort. Say Mary was interested
in “dazzling subsets”, i.e. beautiful subsets that obey a fourth condition, then she could just
contribute a theory that extends the theory matroid by a formalization of the fourth condition
– and maybe rethink the name.

Existing systems have so far only worked with explicitly given views, e.g., in IMPS [FGT93]
or Isabelle [Isa]. Automatically and systematically searching for new views was first undertaken
in [NK07] in 2006. However, at that time no large corpora of formalized mathematics were
available in standardized formats that would have allowed easily testing the ideas in practice.

This situation has changed since then as multiple such exports have become available. In
particular, we now have OMDoc/Mmt as a uniform representation language for such corpora.
Building on these developments, we are now able, for the first time, to apply generic methods
— i.e., methods that work at the Mmt level — to search for views in formal libraries.

While inspired by the ideas of [NK07], the design and implementation presented here are
completely novel. In particular, the theory makes use of the rigorous language-independent
definitions of theory and view provided by Mmt.

[GK14a] applies techniques related to ours to a related problem. Instead of views inside
a single corpus, they use machine learning to find similar constants in two different corpora.
Their results can roughly be seen as a single partial view from one corpus to the other.

16.1 The Viewfinder Algorithm

Let C be a corpus of theories with (for now) the same fixed meta-theoryM . We call the problem
of finding views between theories of C the view finding problem and an algorithm that
solves it a view finder. Note that a view finder is sufficient to solve the theory classification
use case above: Mary provides a M -theory Q of beautiful sets, the view finder computes all
(total) views from Q into C.

Efficiency Considerations The cost of this problem quickly explodes. First of all, it is
advisable to restrict attention to simple views (see Section 4.1.1). Eventually we want to search
for arbitrary views as well. But that problem is massively harder because it subsumes theorem
proving: a view from Σ to Σ′ maps Σ-axioms to Σ′-proofs, i.e., searching for a view requires
searching for proofs.

Secondly, if C has n theories, we have n2 pairs of theories between which to search. (It is
exactly n2 because the direction matters, and even views from a theory to itself are interesting.)
Moreover, for two theories with m and n constants, there are nm possible simple views (It
is exactly nm because views may map different constants to the same one.) Thus, we can
in principle enumerate and check all possible simple views in C. But for large C, it quickly
becomes important to do so in an efficient way that eliminates ill-typed or uninteresting views
early on.

16.1. THE VIEWFINDER ALGORITHM 185

Thirdly, it is desirable to search for partial views as well. In fact, identifying refactoring
potential in libraries is only possible if we find partial views: then we can refactor the involved
theories in a way that yields a total view (see Chapter 17). Moreover, many proof assistant
libraries do not follow the little theories paradigm or do not employ any theory-like structuring
mechanism at all. These can only be represented as a single huge theory, in which case we
have to search for partial views from this theory to itself – facilitating the aforementioned
refactoring technique. While partial views can be reduced to and then checked like total ones,
searching for partial views makes the number of possible views that must be checked much
larger.

Finally, even for a simple view, checking reduces to a set of equality constraints, namely the
constraints ⊢Σ′ σ(E) = E′ for the type-preservation condition (see Section 4.1.1). Depending
on M , this equality judgment may be undecidable and require theorem proving.

A central motivation for my algorithm is that equality in M can be soundly approximated
very efficiently by using a normalization function on M -expressions. This has the additional
benefit that relatively little meta-theory-specific knowledge is needed, and all such knowledge
is encapsulated in a single well-understood function. This way we can implement view–search
generically for arbitrary M .

The algorithm consists of two steps. First, we preprocess all constant declarations in C
with the goal of moving as much intelligence as possible into a step whose cost is linear in the
size of C. Then, we perform the view search on the optimized data structures produced by the
first step.

16.1.1 Preprocessing

The preprocessing phase computes for every constant declaration c ∶ E a normal form E′ and
then efficiently stores the abstract syntax tree (defined below) of E′. Both steps are described
below.

Normalization involves two steps: Mmt-level normalization performs generic transfor-
mations that do not depend on the meta-theory M . These include flattening and definition
expansion. Importantly, we do not fully eliminate defined constant declarations c ∶ E = e from a
theory Σ: instead, we replace them with primitive constants c ∶ E and replace every occurrence
of c in other declarations with e. If Σ is the domain theory, we can simply ignore c ∶ E (because
views do not have to provide an assignment to defined constants). But if the Σ is the codomain
theory, retaining c ∶ E increases the number of views we can find; in particular in situations
where E is a type of proofs, and hence c a theorem.

Meta-theory-level normalization applies an M -specific normalization function. In
general, we assume this normalization to be given as a black box. However, because many
practically important normalization steps are widely reusable, we provide a few building blocks,
from which specific normalization functions can be composed. Skipping the details, these
include:

1. Top-level universal quantifiers and implications are rewritten into the function space of
the logical framework using the Curry-Howard correspondence.

2. The order of curried domains of function types is normalized as follows: first all dependent
argument types are ordered by the first occurrence of the bound variables; then all non-
dependent argument types A are ordered by the abstract syntax tree of A.

186 CHAPTER 16. VIEWFINDING

3. Implicit arguments, whose value is determined by the values of the others are dropped,
e.g. the type argument of an equality. This has the additional benefit of shrinking the
abstract syntax trees and speeding up the search.

4. Equalities are normalized such that the left hand side has a smaller abstract syntax tree.
Above multiple normalization steps make use of a total order on abstract syntax trees. We
omit the details and only remark that we try to avoid using the names of constants in the
definition of the order — otherwise, declarations that could be matched by a view would be
normalized differently. Even when breaking ties between requires comparing two constants, we
can first try to recursively compare the syntax trees of their types.

Abstract Syntax Trees We define abstract syntax trees as pairs (t, s) where t is subject
to the grammar

t ∶∶= CNat ∣ VNat ∣ t [t
+
] (t+)

(where Nat is a non-terminal for natural numbers) and s is a list of constant names.
We obtain an abstract syntax tree from an MMT expression E by (i) switching to de-Bruijn

representation of bound variables and (ii) replacing all occurrences of constants with Ci in
such a way that every Ci refers to the i-th element of s.

Abstract syntax trees have the nice property that they commute with the application of
simple views σ: If (t, s) represents E, then σ(E) is represented by (t, s′) where s′ arises from
s by replacing every constant with its σ-assignment.

The above does not completely specify i and s yet, and there are several possible canonical
choices among the abstract syntax trees representing the same expression. The trade-off is
subtle because we want to make it easy to both identify and check views later on. We call
(t, s) the long abstract syntax tree for E if Ci replaces the i-th occurrence of a constant in E
when E is read in left-to-right order. In particular, the long tree does not merge duplicate
occurrences of the same constant into the same number. The short abstract syntax tree for E
arises from the long one by removing all duplicates from s and replacing the Ci accordingly.

Example 16.1:
Consider the axiom ∀x ∶ set, y ∶ set. beautiful(x) ∧ y ⊆ x ⇒ beautiful(y) with internal
representation

∀ [x ∶ set,y ∶ set] (⇒ (∧ (beautiful (x) ,⊆ (y,x)) ,beautiful (y))) .

The short syntax tree and list of constants associated with this term would be:

t = C1 [C2,C2] (C3 (C4 (C5 (V2) ,C6 (V1, V2)) ,C5 (V1)))

s = (∀, set,⇒,∧,beautiful,⊆)

The corresponding long syntax tree is :

t = C1 [C2,C3] (C4 (C5 (C6 (V2) ,C7 (V1, V2)) ,C8 (V1)))

s = (∀, set, set,⇒,∧,beautiful,⊆,beautiful)

For our algorithm, we pick the long abstract syntax tree, which may appear surprising.
The reason is that shortness is not preserved when applying a simple view: whenever a view

16.1. THE VIEWFINDER ALGORITHM 187

maps two different constants to the same constant, the resulting tree is not short anymore.
Length, on the other hand, is preserved. The disadvantage that long trees take more time to
traverse is outweighed by the advantage that we never have to renormalize the trees.

16.1.2 Search

Consider two constants c ∶ E and c′ ∶ E′, where E and E′ are preprocessed into long abstract
syntax trees (t, s) and (t′, s′). It is now straightforward to show the following Lemma:

Lemma 16.1:

The assignment c↦ c′ is well-typed in a view σ if t = t′ (in which case s and s′ must
have the same length l) and σ also contains si ↦ s′i for i = 1, . . . , l.

Proof. The claim is simply the typing-preservation condition of theory morphisms for
the special case of simple views; expressed using abstract syntax trees.

Of course, the condition about si ↦ s′i may be redundant if s contains duplicates; but because
s has to be traversed anyway, it is cheap to skip all duplicates. We call the set of assignments
si ↦ s′i the prerequisites of c↦ c′.

This lemma describes our search algorithm:

Lemma 16.2: Core Algorithm

Consider two constant declarations c and c′ with t = t′ in theories Σ and Σ′. We define
a view by starting with σ = {c↦ c′} and recursively adding all prerequisites to σ until

• either the recursion terminates
• or σ contains two different assignments for the same constant, in which case we
fail,

• or the recursion requires d↦ d′, where d and d′ have incompatible abstract syntax
trees, in which case we fail.

If the above algorithm succeeds, then σ is a well-typed partial simple view from Σ to
Σ′.

Proof. Note that the algorithm constructs a partial view by recursively ensuring that
the premises of Theorem 16.1 holds.

Example 16.2:
Consider two constants c and c′ with types ∀x ∶ set, y ∶ set. beautiful(x)∧y ⊆ x⇒ beautiful(y)
and ∀x ∶ powerset, y ∶ powerset. finite(x) ∧ y ⊆ x⇒ finite(y). Their syntax trees are

t = t′ = C1 [C2,C3] (C4 (C5 (C6 (V2) ,C7 (V1, V2)) ,C8 (V1)))

s = (∀, set, set,⇒,∧,beautiful,⊆,beautiful)

s′ = (∀,powerset,powerset,⇒,∧,finite,⊆,finite)

188 CHAPTER 16. VIEWFINDING

Since t = t′, we set c↦ c′ and compare s with s′, meaning we check (ignoring duplicates)
that ∀↦ ∀, set↦ powerset, ⇒ ↦ ⇒, ∧↦ ∧, beautiful↦ finite and ⊆ ↦ ⊆ are all valid.

To find all views from Σ to Σ′, we first run the core algorithm on every pair of Σ-constants
and Σ′-constants. This usually does not yield big views yet. For example, consider the typical
case where theories contain some symbol declarations and some axioms, in which the symbols
occur. Then the core algorithm will only find views that map at most one axiom.

Depending on what we intend to do with the results, we might prefer to consider them
individually (e.g. to yield alignments). But we can also use these small views as building
blocks to construct larger, possibly total ones:

Lemma 16.3: Amalgamating Views

We call two partial views compatible if they agree on all constants for which both
provide an assignment.

The union of compatible well-typed views is again well-typed.

Proof. Note that it is sufficient to show that for any constant c ∶ T in its domain, the
amalgamated view σ satisfies σ(c)⇐σ(T). Since the partial views amalgamated to σ are
assumed to be compatible and well-typed, this immediately follows from the assignment
c↦ σ(c) being in (at least) one of the constituent partial views.

Example 16.3:
Consider the partial view from Example 16.2 and imagine a second partial view for the
axioms beautiful(∅) and finite(∅). The former has the requirements

∀↦ ∀, set↦ powerset ⇒ ↦ ⇒ ∧↦ ∧ beautiful↦ finite ⊆ ↦ ⊆

The latter requires only set↦ powerset and ∅↦ ∅. Since both views agree on all assignments,
we can merge all of them into a single view, mapping both axioms and all requirements of
both.

16.1.3 Optimizations

The above presentation is intentionally simple to convey the general idea. We now consider a
few advanced features of the implementation to enhance scalability.

Caching Preprocessing Results Because the preprocessing performs normalization, it
can be time-consuming. Therefore, we allow for storing the preprocessing results to disk and
reloading them in a later run.

Fixing the Meta-Theory We improve the preprocessing in a way that exploits the common
meta-theory, which is meant to be fixed by every view. All we have to do is, when building the
abstract syntax trees (t, s), to retain all references to constants of the meta-theory in t instead
of replacing them with numbers. With this change, s will never contain meta-theory constants,

16.2. IMPLEMENTATION 189

and the core algorithm will only find views that fix all meta-theory constants. Because s is
much shorter now, the view search is much faster.

It is worth pointing out that the meta-theory is not always as fixed as one might think.
Often we want to consider certain constants, that are defined early on in the library and then
used widely, to be part of the meta-theory. In PVS (see Chapter 10), this makes sense, e.g.,
for all operations defined in the Prelude library. For across-library view finding, we might also
apply a partial translation (in the sense of Chapter 15) to the target library first and consider
all succesfully translated symbols as part of the meta-theory, ensuring that all morphisms
found are compatible with and predicated on already known alignments and morphisms.

Note that we still only have to cache one set of preprocessing results for each library:
changes to the meta-theory only require minor adjustments to the abstract syntax trees
without redoing the entire normalization.

Biasing the Core Algorithm The core algorithm starts with an assignment c↦ c′ and
then recurses into constant that occur in the declarations of c and c′. This occurs-in relation
typically splits the constants into layers. A typical theory declares types, which then occur in
the declarations of function symbols, which then occur in axioms. Because views that only map
type and function symbols are rarely interesting (because they do not allow transporting non-
trivial theorems), we always start with assignments where c is an axiom, but other conditions
for starting declarations are possible.

Exploiting Theory Structure Libraries are usually highly structured using imports be-
tween theories. If Σ is imported into Σ′, then the set of partial views out of Σ′ is a superset of
the set of partial views out of Σ. If implemented naively, that would yield a quadratic blow-up
in the number of views to consider.

Instead, when running our algorithm on an entire library, we only consider views between
theories that are not imported into other theories. In an additional postprocessing phase, the
domain and codomain of each found partial view σ are adjusted to the minimal theories that
make σ well-typed.

16.2 Implementation

Figure 16.1: “Beautiful Sets” in MMT Surface Syntax

190 CHAPTER 16. VIEWFINDING

I have implemented our view finder algorithm in the Mmt system and exposed it in Mmt’s
jEdit IDE. A screenshot of Jane’s theory of beautiful sets is given in Figure 16.1. Right-clicking
anywhere within the theory allows Jane to select MMT → Find Views to... → MitM/smglom.
The latter menu offers a choice of known libraries in which the view finder should look for
codomain theories; MitM/smglom is the Math-in-the-Middle library (see Section 3.4).
After choosing MitM/smglom, the view finder finds two views (within less than one second)
and shows them (Figure 16.2).

Figure 16.2: Views Found for “Beautiful Sets”

The first of these (View1) has a theory for matroids as its codomain, which is given in
Listing 16.1. Inspecting that theory and the assignments in the view, we see that it indeed
represents the well-known correspondence between beautiful sets and matroids.

Listing 16.1: The Theory of Matroids in the MitM Library1

theory Matroids : base:?Logic =
include ?Properties ∣∣∣∣
include typedsets ?FiniteCardinality ∣∣∣∣
include arithmetics ?NaturalArithmetics ∣∣∣∣

theory matroid_theory : base:?Logic > X : type ∣∣ =
include typedsets ?SetCollection /setColl_theory (X) ∣∣∣∣

axiom_finite : {s : set X} ⊢ s ∈ coll → ⊢s finite ∣∣∣∣
axiom_empty : ⊢prop_emptyInColl coll ∣∣∣∣
axiom_subset : ⊢ prop_subsetClosed coll ∣∣∣∣
axiom_augmentation : ⊢∀[A] ∀ [B] A ∈ coll ∧ B ∈ coll ∧ | B | ≤ | A |

⇒∃ [x] x ∈ (A \ B) ∧ (B ∪ (single x)) ∈ coll ∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

The latter uses predefined propositions in its axioms and uses a type coll for the collection
of sets, while the former has the statements of the axioms directly in the theory and uses
a predicate beautiful – since (typed) sets are defined as predicates, definition expansion is
required for matching. Additionally, the implication that beautiful sets (or sets in a matroid)
are finite is stated as a logical formula in the former, while the latter uses the Curry/Howard
correspondence.

1https://gl.mathhub.info/MitM/smglom/blob/master/source/collections/matroids.mmt

https://gl.mathhub.info/MitM/smglom/blob/master/source/collections/matroids.mmt

16.3. CROSS-LIBRARY VIEWFINDING 191

16.3 Cross-Library Viewfinding

We now generalize view finding to the situation where domain and codomain live in different
libraries written in different logics. Intuitively, the key idea is that we now have two fixed
meta-theories M and M ′ and a fixed meta-view m ∶ M→M ′. However, due to the various
idiosyncrasies of logics, tools’ library structuring features and individual library conventions,
this problem is significantly more difficult than intra-library view finding. For example, unless
the logics are closely related, meta-views usually do not even exist and must be approximated.
Therefore, a lot of tweaking is typically necessary, and it is possible that multiple runs with
different trade-offs give different interesting results.

As an example, we present a large case study where we find views from the MitM library
used in the running example so far into the PVS/NASA library (see Chapter 10).

Theory Structure Normalization PVS’s complex and prevalently used parametric theo-
ries critically affect view finding because they affect the structure of theories. For example, the
theory of groups group_def in the NASA library has three theory parameters (T,∗,one)

for the signature of groups, includes the theory monoid_def with the same parameters, and
then declares the axioms for a group in terms of these parameters. Without special treatment,
we could only find views from/into libraries that use the same theory structure.

We have investigated three approaches of handling parametric theories:
1. Simple treatment: We drop theory parameters and interpret references to them as free

variables that match anything. This is of course not sound so that all found views must
be double-checked. However, because practical search problems often do not require
exact results, even returning all potential views can be useful.

2. Covariant elimination: We treat theory parameters as if they were constants declared in
the body. In the above mentioned theory group_def , we would hence add three new
constants T, ∗ and one with their corresponding types. This works well in the common
case where a parametric theory is not used with two different instantiations in the same
context.

3. Contravariant elimination: The theory parameters are treated as if they were bound
separately for every constant in the body of the theory. In the above mentioned theory
group_def , we would change e.g. the unary predicate inverse_exists? with type
T → bool to a function with type (T ∶ pvstype) → (∗ ∶ T → T → T) → (one ∶ T) → (T →
bool). This is closest to the actual semantics of the PVS module system. But it makes
finding interesting views the least likely because it is the most sensitive to the modular
structure of individual theories.

I have implemented the first two approaches. The first is the most straightforward but it
leads to many false positives and false negatives. I have found the second approach to be the
most useful for inter-library search since it most closely corresponds to simple formalizations
of abstract theories in other libraries. The third approach will be our method of choice when
investigating intra-library views of PVS/NASA in future work.

Implementation Example

As a first use case, we can write down a theory for a commutative binary operator using the
MitM foundation, while targeting the PVS Prelude library – allowing us to find all commutative
operators, as in Figure 16.3 (using the simple approach to theory parameters).

192 CHAPTER 16. VIEWFINDING

Figure 16.3: Searching for Commutative Operators in PVS

This example also hints at a way to iteratively improve the results of the view finder: since
we can find properties like commutativity and associativity, we can use the results to in turn
inform a better normalization of the theory by exploiting these properties. This in turn would
potentially allow for finding more views.

To evaluate the approaches to theory parameters we used a simple theory of monoids in the
MitM foundation and the theory of monoids in the NASA library as domains for viewfinding
with the whole NASA library as target using simple and covariant approaches. The results are
summarized in Figure 16.4.

Domain Normalization Simple Views Aggregated
NASA/monoid simple 388 154
MitM/monoid simple 32 17
NASA/monoid covariant 1026 566
MitM/monoid covariant 22 6

Figure 16.4: Results of Inter- and Intra-Library View Finding in the PVS NASA Library

Most of the results in the simple MitM→NASA case are artifacts of the theory parameter
treatment and view amalgamation – in fact only two of the 17 results are meaningful (to
operations on sets and the theory of number fields). In the covariant case, the additional
requirements lead to fuller (one total) and less spurious views. With a theory from the NASA
library as domain, the results are already too many to be properly evaluated by hand. With
the simple approach to theory parameters, most results can be considered artifacts; in the
covariant case, the most promising results yield (partial) views into the theories of semigroups,
rings (both the multiplicative and additive parts) and most extensions thereof (due to the
duplication of theory parameters as constants).

16.4. APPLICATIONS FOR VIEWFINDING 193

16.4 Applications for Viewfinding

We have seen how a view finder can be used for theory classification and finding constants
with specific desired properties, but many other potential use cases are imaginable. The main
problems to solve with respect to these is less about the algorithm or software design challenges,
but user interfaces.

The theory classification use case described in Section 16.2 is mostly desirable in a setting
where a user is actively writing or editing a theory, so the integration in jEdit is sensible.
However, the across-library use case in Section 16.3 already would be a lot more useful in a
theory exploration setting, such as when browsing available archives on MathHub [Ian+14] or
in the graph viewer integrated in Mmt [RKM17]. Additional specialized user interfaces would
enable or improve the following use cases:

• Model-/Countermodel Finding: If the codomain of a view is a theory representing
a specific model, it would tell a user that those are examples of her abstract theory.

Furthermore, partial views – especially those that are total on some included theory –
could be insightful counterexamples.

• Library Refactoring: Given that the view finder looks for partial views, we can use it
to find natural extensions of a starting theory. Imagine Jane removing the last of her
axioms for “beautiful sets” – the other axioms (disregarding finitude of her sets) would
allow her to find e.g. both Matroids and Ideals, which would suggest to her to refactor
her library accordingly.

Additionally, surjective partial views would inform her, that her theory would probably
better be refactored as an extension of the codomain, which would allow her to use all
theorems and definitions therein.

• Theory Generalization: If we additionally consider views into and out of the theories
found, this can make theory classificationeven more attractive. For example, a view
from a theory of vector spaces intro matroids could inform Jane additionally, that her
beautiful sets, being matroids, form a generalization of the notion of linear independence
in linear algebra.

• Folklore-based Conjecture: If we were to keep book on our transfomations during
preprocessing and normalization, we could use the found views for translating both into
the codomain as well as back from there into our starting theory.

This would allow for e.g. discovering and importing theorems and useful definitions from
some other library – which on the basis of our encodings can be done directly by the
view finder.

A useful interface might specifically prioritize views into theories on top of which there
are many theorems and definitions that have been discovered.

For some of these use cases it would be advantageous to look for views into our working theory
instead.

Note that even though the algorithm is in principle symmetric, some aspects often depend
on the direction – e.g. how we preprocess the theories, which constants we use as starting
points or how we aggregate and evaluate the resulting (partial) views (see Sections 16.1.3 and
16.3).

Chapter 17

Refactoring and Theory Discovery via
Theory Intersections

Disclaimer:

A significant part of the contents of this chapter has been previously published as
Work-in-Progress as [MK15] with coauthor Michael Kohlhase. Both the writing as well
as the theoretical results were developed in close collaboration between the authors,
hence it is impossible to precisely assign authorship to individual authors.

My contribution in this chapter consists of all implementations described herein.

An important driver of mathematical development is the discovery of new mathematical
objects, concepts and theories. Even though there are many different situations that give
rise to a new theory, it seems that a common instance is the discovery of commonalities
between apparently different mathematical structures (if such exist). In fact, many of the
algebraic theories in Bourbaki naturally arise as the “common part” of two (or more) different
mathematical structures – for instance, one could interpret the theory of groups as the common
theory of (Z,+,0) and the set of symmetrical operations on e.g. a square.

In [Koh14], Kohlhase proposes a notion of theory intersection – elaborating an earlier
formalization from [Nor08] to Mmt [RK13b; HKR12b] that captures this phenomenon in a
formal setting: Let two theories S and T , a partial view σ ∶ S→T with domain D and codomain
C, and its partial inverse δ (as in Figure 17.1 on the left) be given. Then we can pass to a
more modular theory graph, where S′ ∶= S/D and T ′ ∶= T /C (as in Figure 17.1 on the right).
In this case we think of the isomorphic theories D and C as the intersection of theories S and
T along σ and δ.

Situation Theory Intersection

S
D

T
C

σ

S′ T ′

D C

σδ

σ

δ

Figure 17.1: Theory Intersection

195

196CHAPTER 17. REFACTORING AND THEORY DISCOVERY VIA THEORY INTERSECTIONS

17.1 Theory Intersection by Example

To fortify our intuitions, we examine a concrete mathematical example in detail.
We start out with a theory PosPlus of positive natural numbers with addition and

intersect it with StrConc of strings with concatenation (as in Figure 17.2). Note that we do
not start with modular developments; rather the modular structure is (going to be) the result
of intersecting with various examples. Also, note that the views k and l are both partial.

Positive Strings

theory PosPlus =
N : type ∣∣∣∣
+ : N→ N→ N
assoc : ...
comm : ...

theory StrConc =
A∗ : type ∣∣∣∣
:: : A∗ → A∗ → A∗ ∣∣∣∣
assoc : ...
ε : A∗ ∣∣∣∣
unit : ... ∣∣∣∣

view k : ?PosPlus −> ?StrConc =
N= A∗ ∣∣∣∣
+ = :: ∣∣∣∣
assoc = assoc ∣∣∣∣

view l : ?StrConc −> ?PosPlus =
A∗ = N∣∣∣∣
:: = + ∣∣∣∣
assoc = assoc ∣∣∣∣

Figure 17.2: Positive Integers and Strings
Now the intersection as proposed above yields Figure 17.3, which directly corresponds

to the schema in Figure 17.1. Note, that the new pair of (equivalent) theories is completely
determined by the partial morphism k; the only thing we have to invent are the names – and
we have not been very inventive here.

Positive Strings
theory A =

N : type ∣∣∣∣
+ : N→ N→ N∣∣∣∣
assoc : ...

∣∣∣∣∣∣∣∣
theory PosPlus =

include ?A ∣∣∣∣
comm : ...

∣∣∣∣∣∣∣∣

theory B =
A∗ : type ∣∣∣∣
:: : A∗ → A∗ → A∗ ∣∣∣∣
assoc : ... ∣∣∣∣

∣∣∣∣∣∣∣∣
theory StrConc =

include ?B ∣∣∣∣
ε : A∗ ∣∣∣∣
unit : ... ∣∣∣∣

∣∣∣∣∣∣∣∣

Figure 17.3: Positive Integers and Strings, Refactored
Intuitively, the intersection theory is the theory of semigroups which is traditionally written

down in Mmt as in Figure 17.4. And indeed, sg is a renaming of both A and B .

theory sg =
G : type ∣∣∣∣
○: G → G → G ∣∣∣∣

Figure 17.4: Semigroups

For this situation, we should have a variant theory intersection operator that takes a partial
morphism and returns one intersection theory.

17.2. REDUCING PARTIAL MORPHISMS TO RENAMINGS 197

In this situation, we want a theory intersection operator that follows the schema in
Figure 17.5.

S′ T ′

N
ρ2ρ1

Figure 17.5: Unary TI

Let us call this operation unary TI and the previous one binary TI. To compute it, we need
to specify a name N for the new theory and two renamings ρ1 ∶ N→Dom(σ) and ρ2 ∶ N→Img(σ).
Note that in this TI operator, the intersection is connected to the “rest theories” via Mmt
structures – rather than mere inclusions – which carry the assignments induced by the partial
morphisms suitably composed with the renamings (see next section).

In our example we can obtain the theory sg from Figure 17.4 via the renamings ρ1 ∶=

{G↦ N, ○↦ +, assoc↦ assoc} and ρ2 ∶= {G↦ A∗, ○↦ ∶∶, assoc↦ assoc}.
Unary TI is often the more useful operation on theory graphs, but needs direct user

supervision, whereas binary TI is fully automatic if we accept generated names for the
intersection theories.

17.2 Reducing Partial Morphisms to Renamings

In the previous example it is noteworthy, that the morphisms k and l are fully inverse to each
other. In fact, they are renamings. By a renaming, we mean a partial morphism σ ∶ S→T such,
that for every constant c declared in S, σ(c) is again a constant (as opposed to a complex
term).

Naturally, theory intersections are a lot simpler for renamings. In fact, we only need a
single renaming σ ∶ S→T to intersect along (since the inverse of a renaming is again a renaming
and uniquely determined). It turns out, that we can always reduce the situation in Figure 17.1
to the much easier case, where we have a single renaming σ ∶ S′→T ′, where S′ and T ′ are
conservative extensions of our original theories:

cδ ∶= δ(c),...
T ′

...T
c,...

S

δ1

δ

Figure 17.6: Obtaining a Renaming From a Morphism

Let δ ∶ S→T be a partial theory morphism and δ(c) = t for a complex term t. We can then
conservatively extend T to a theory T1 that contains a new defined constant cδ = t and adapt
δ to a new morphism δ1 with δ1(c) = cδ (and δ1 ↾ S ∖ {c} = δ ↾ S ∖ {c}), as in Figure 17.6. If
we repeat this process for every mapping δ(c) = t that is not already a simple renaming, we

198CHAPTER 17. REFACTORING AND THEORY DISCOVERY VIA THEORY INTERSECTIONS

yield a new conservative extension T ′ such, that the corresponding morphism δ′ (accordingly
adapted) is a renaming.

Doing the same with a partial inverse ρ ∶ T→S, we ultimately get a single renaming
σ ∶ S′→T ′ that is equivalent to the original pair of partial morphisms. We can therefore w.l.o.g.
reduce ourselves in every instance to this case.

17.3 Implementation

I have implemented a method for unary TI in an earlier version of the Mmt API.
The intersection method takes as parameters two theories, a name for the intersection

and a list of pairs of declarations, which can be obtained from a pair of morphisms, a single
morphism or use the view finder presented in Chapter 16. It returns the intersection theory
and the refactored versions of (conservative extensions of) the original theories, depending on
the original morphisms provided.

Both methods are integrated into a refactoring panel, which is part of the Mmt plugin for
jEdit. To intersect two theories, the user can either provide one or two morphisms between the
theories or allow the Viewfinder to pick for them. The declarations in the intersection theory
can optionally be named.

An annotated video demonstration of the refactoring panel and its components can be
found on Youtube [IntV15].

If we accept automatically generated names for the theory intersections, we can eliminate
user interaction and use the view finder to automate the intersection operation on a set of
theories without having to provide the morphisms to intersect along beforehand. This could be
used to refactor whole libraries in a more modular way (in concordance with the little theories
approach [FGT92b]). Additionally, by supplying the view finder with alignments and other
translators between libraries, our approach could be used to refactor a whole library along the
theory graph of an already modular library.

We do not yet have a heuristic to evaluate (the resulting) theories automatically with
respect to their interest; however, given a morphism between two interesting theories, we have
observed that the corresponding intersection tends to be interesting as well, as long as the
morphism is not meaningless itself.

Part V

Conclusion and Future Work

199

201

We have seen how we can take on the integration problem for formal libraries by representing
them in a unifying meta-framework (Part III), using a flexible logical framework to specify
their foundations (Part II), aligning their contents (Chapter 14) and implementing foundation-
independent alignment-aware algorithms for identifying overlap (Chapter 16) suggestive of
new alignments, translating expressions across libraries (Chapter 15) and modularize library
content by refactoring along theory intersections (Chapter 17).

The knowledge management techniques described in Part IV are certainly not exhaustive;
many more services are imaginable, but the ones presented in this thesis demonstrate the
effectiveness of the general approach to library integration described herein. Furthermore,
these facilitate the aims of the OAF (see Section 3.5) and OpenDreamKit (see Section 3.3)
projects, as demonstrated in Section 15.3. Additionally they represent steps towards a system
integrating all aspects of the tetrapod (see Chapter 1); demonstrably inference, computation,
tabulation and organization.

Naturally, this opens up many avenues for future research and improvements, which fall
broadly into three categories:

1. Fundamentals Many implementations described in this thesis are prototypical and can
be optimized or otherwise improved. In particular:

1. The implementation of alignments (see Chapter 14) is not deeply integrated into the
Mmt system and offers no change management facilities. As mentioned in Section 14.5,
many of the alignments we once had are by now outdated for various reasons, suggesting
that additional services are needed that e.g. keep track of (and adequately adapt) changes
in URIs, check for the existence (or maybe even adequacy) of aligned symbols, allow for
globally replacing URIs in multiple alignments, etc.

2. The current syntax for alignments is, while simple and convenient, not exhaustive for
many types of alignments, such as those that need simple arithmetic operations on
arguments (as the dihedral groups described in Section 15.3), or the cases where a
function f(x) is aligned with a function g(t, x) for a fixed expression t. Currently, this
introduces a need for programmatic translators, but a more expressive syntax could
obviate that need in many situations.

3. The implementation of alignment-based translation presented in Chapter 15 is naive and
potentially inefficient. While this does not show for the use cases that have occured in
practie so far, I strongly suspect that this might become inconvenient once the number
of available alignments and other translators grows, or the input expressions reach a
certain degree of complexity.

4. I mentioned in the introduction to Part II that it is desirable to not have inference
rules in a logical framework active that are not needed for some specific content – one
of the reasons why we prefer a modular approach to our logical frameworks. This is
also the reason we shied away from a naive implementation of declared subtyping in
Chapter 7. To expand on that claim, the reason is that naively applying inference rules
can be computationally expensive and slow down the solver. This is not just the case for
unnecessary inference rules, but also for more basic conflicting strategies for checking a

202

judgement (critical pairs). A simple example is the basic approach of a bi-directional
type checking algorithm:

To check a judgement t⇐T we have two strategies: We can either simplify T until we
find an applicable foundation-dependent typing rule specifically for (the head symbol
of) T , or we can try to infer the principal type T ′ of t and check T ′<∶T . In most cases,
the existence of a typing rule implies that the former strategy will quickly yield a result,
whereas inferring the type can be expensive, and hence the former strategy is attempted
first. However, imagine T being a single reference to a constant with a complex definiens,
and t being a function application f(a), where the return type of f is T . In this case,
inferring the principal type of t is fast and the subsequent check T<∶T trivial, whereas
simplifying T leads to definition expansion and subsequent further simplifications, which
will ultimately need to be repeated for the inferred type of t as well, since a function
application can only ever check against any type via the inference strategy. This kind of
situation seems to occur regularly in high-level formalizations, and is correspondingly
often encountered in the development of the Math-in-the-Middle library.

To remedy this problem, I am currently actively working on a reimplementation of the
Mmt solver algorithm using multithreading; not just to exploit multicore processors,
but to be able to compute conflicting checking strategies on separate threads in parallel,
such that if either strategy terminates quickly, the checking algorithm can return a result
just as quickly. This would obviate the current advantage of being cautious with adding
potentially slow inference rules.

2. Scaling Up Many of the implementations and approaches presented in this thesis scale
in usefulness and coverage depending on a certain amount of available data, features and
implementations. All of these can and should be scaled up in the future, such as:

1. extending our logical framework by more desirable features (Part II),

2. Importing more formal libraries and system ontologies into OMDoc/Mmt (Part III),

3. expanding the Math-in-the-Middle library by more content and interface theories (Chap-
ter 15),

4. collecting more alignments between libraries (Chapter 14),

5. covering more library contents with dedicated translators where needed (Chapter 15),

6. investigating both the available and additional libraries for more useful preprocessing
strategies to increase the coverage and usefulness of the view finder algorithm (Chap-
ter 16),

3. Workflows One of the major obstacles in using all of the techniques in this thesis is a
certain lack of tool support with respect to specific workflows for various use cases. Especially
the algorithms presented in Part IV are primarily usable by programmatically calling methods
in the Mmt API, or via commands in the Mmt shell. Exemplary, in Chapter 16 my coauthors
and I (on the original publication) already conjecture on possible applications for the view
finder algorithm, most of which are predicated on the existence of a bespoke user interface for

203

that particular use case. Designing such interfaces entails thinking deeply about realistic and
convenient workflows for different situations and users.

This also applies to Mmt’s surface syntax, which requires a very reasonable, but (for
example, for working mathematicians not familiar with formal systems) potentially prohibitive
amount of time and effort to get accustomed to.

I have written an Mmt plugin for IntelliJ IDEA1, a java-based IDE which offers a rich
plugin API, to experiment with integrating various generic services in a more flexible IDE
than the only previously supported one, jEdit. In the future, I would like to investigate the
possibility of using e.g. sTEX [Koh08] or possibly even plain LATEX as an alternative input
language for formal Mmt content, as well as designing a unifying online IDE on MathHub for
working with Mmt and its connected systems and libraries, obviating the need to set up and
use Mmt (and the multitude of systems with which Mmt can interact) locally – a process
which (even using docker images, jupyter notebooks and similar solutions) can be prohibitively
complicated for non-experts, especially when lacking a unifying user interface.

1https://www.jetbrains.com/idea/, the plugin itself is available at https://github.com/UniFormal/
IntelliJ-MMT

https://www.jetbrains.com/idea/
https://github.com/UniFormal/IntelliJ-MMT
https://github.com/UniFormal/IntelliJ-MMT

Chapter 18

Bibliography

Online Source References

[LFX] MathHub MMT/LFX Git Repository. url: http://gl.mathhub.info/MMT/LFX (visited
on 05/15/2015).

[Mita] MitM/Foundation. url: https://gl.mathhub.info/MitM/Foundation (visited on
09/01/2017).

[Mitb] MitM/Interfaces. url: https : / / mathhub . info / MitM / interfaces (visited on
06/21/2017).

[Mitc] MitM/smglom. url: https://gl.mathhub.info/MitM/smglom (visited on 02/01/2018).

[MMT] UniFormal/MMT – The MMT Language and System. url: https://github.com/
UniFormal/MMT (visited on 10/24/2017).

[OMU] OMDoc/MMT Urtheories. url: https://gl.mathhub.info/MMT/urtheories (visited
on 06/02/2017).

[PRA] Public Repository for Alignments. https://gl.mathhub.info/alignments/Public.
(Visited on 05/21/2017).

Publications by the Author

[Con+] A. Condoluci, M. Kohlhase, D. Müller, F. Rabe, C. S. Coen, and M. Wenzel. “Relational
Data Across Mathematical Libraries”. Accepted for CICM 2019. url: https://kwarc.
info/kohlhase/submit/cicm19-ulo.pdf.

[Deh+16] P.-O. Dehaye et al. “Interoperability in the OpenDreamKit Project: The Math-in-the-
Middle Approach”. In: Intelligent Computer Mathematics 2016. Conferences on Intelligent
Computer Mathematics. (Bialystok, Poland, July 25–29, 2016). Ed. by M. Kohlhase,
M. Johansson, B. Miller, L. de Moura, and F. Tompa. LNAI 9791. Springer, 2016. url:
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/
published.pdf.

[IntV15] D. Müller. Theory Intersections in MMT. url: https://www.youtube.com/watch?v=
qXKaGuV7kLY (visited on 06/29/2015).

[Kal+16] C. Kaliszyk, M. Kohlhase, D. Müller, and F. Rabe. “A Standard for Aligning Mathematical
Concepts”. In: Work in Progress at CICM 2016. Ed. by A. Kohlhase, M. Kohlhase, P.
Libbrecht, B. Miller, F. Tompa, A. Naummowicz, W. Neuper, P. Quaresma, and M. Suda.
CEUR-WS.org, 2016, pp. 229–244.

205

http://gl.mathhub.info/MMT/LFX
https://gl.mathhub.info/MitM/Foundation
https://mathhub.info/MitM/interfaces
https://gl.mathhub.info/MitM/smglom
https://github.com/UniFormal/MMT
https://github.com/UniFormal/MMT
https://gl.mathhub.info/MMT/urtheories
https://gl.mathhub.info/alignments/Public
https://kwarc.info/kohlhase/submit/cicm19-ulo.pdf
https://kwarc.info/kohlhase/submit/cicm19-ulo.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://www.youtube.com/watch?v=qXKaGuV7kLY
https://www.youtube.com/watch?v=qXKaGuV7kLY

206 CHAPTER 18. BIBLIOGRAPHY

[Koh+17a] M. Kohlhase, D. Müller, M. Pfeiffer, F. Rabe, N. Thiéry, V. Vasilyev, and T. Wiesing.
“Knowledge-Based Interoperability for Mathematical Software Systems”. In: Mathematical
Aspects of Computer and Information Sciences. Ed. by J. Blömer, I. Kotsireas, T. Kutsia,
and D. Simos. Springer, 2017, pp. 195–210.

[Koh+17b] M. Kohlhase, D. Müller, S. Owre, and F. Rabe. “Making PVS Accessible to Generic
Services by Interpretation in a Universal Format”. In: Interactive Theorem Proving.
Ed. by M. Ayala-Rincón and C. A. Muñoz. Vol. 10499. LNCS. Springer, 2017. url:
http://kwarc.info/kohlhase/submit/itp17-pvs.pdf.

[Koh+17c] M. Kohlhase, T. Koprucki, D. Müller, and K. Tabelow. “Mathematical models as research
data via flexiformal theory graphs”. In: Intelligent Computer Mathematics (CICM) 2017.
Conferences on Intelligent Computer Mathematics. Ed. by H. Geuvers, M. England,
O. Hasan, F. Rabe, and O. Teschke. LNAI 10383. Springer, 2017. doi: 10.1007/978-3-
319-62075-6. url: http://kwarc.info/kohlhase/papers/cicm17-models.pdf.

[Kop+18] T. Koprucki, M. Kohlhase, K. Tabelow, D. Müller, and F. Rabe. “Model pathway diagrams
for the representation of mathematical models”. In: Journal of Optical and Quantum
Electronics 50.2 (2018), p. 70. doi: 10.1007/s11082-018-1321-7.

[MK15] D. Müller and M. Kohlhase. “Understanding Mathematical Theory Formation via Theory
Intersections in MMT”. 2015. url: http://cicm-conference.org/2015/fm4m/FMM_
2015_paper_2.pdf.

[MKR18] D. Müller, M. Kohlhase, and F. Rabe. “Automatically Finding Theory Morphisms for
Knowledge Management”. In: Intelligent Computer Mathematics (CICM) 2018. Confer-
ences on Intelligent Computer Mathematics. Ed. by F. Rabe, W. Farmer, A. Youssef,
and . . . LNAI. in press. Springer, 2018. url: http://kwarc.info/kohlhase/papers/
cicm18-viewfinder.pdf.

[MR19] D. Müller and F. Rabe. “Rapid Prototyping Formal Systems in MMT: 5 Case Studies”.
Accepted for LFMTP 2019. 2019. url: https://kwarc.info/people/dmueller/pubs/
RapidPrototyping.pdf.

[MRK] D. Müller, F. Rabe, and M. Kohlhase. Theories as Types. url: http://kwarc.info/
kohlhase/submit/tatreport.pdf.

[MRK18] D. Müller, F. Rabe, and M. Kohlhase. “Theories as Types”. In: ed. by D. Galmiche, S.
Schulz, and R. Sebastiani. Springer Verlag, 2018. url: http://kwarc.info/kohlhase/
papers/ijcar18-records.pdf.

[MRS] D. Müller, F. Rabe, and C. Sacerdoti Coen. “The Coq Library as a Theory Graph”.
Submitted to CICM 2019. url: https://kwarc.info/kohlhase/submit/cicm19-
coq.pdf.

[Mül+17a] D. Müller, C. Rothgang, Y. Liu, and F. Rabe. “Alignment-based Translations Across
Formal Systems Using Interface Theories”. In: Proof eXchange for Theorem Proving. Ed.
by C. Dubois and B. Woltzenlogel Paleo. Open Publishing Association, 2017, pp. 77–93.

[Mül+17b] D. Müller, T. Gauthier, C. Kaliszyk, M. Kohlhase, and F. Rabe. “Classification of
Alignments between Concepts of Formal Mathematical Systems”. In: Intelligent Computer
Mathematics (CICM) 2017. Conferences on Intelligent Computer Mathematics. Ed. by H.
Geuvers, M. England, O. Hasan, F. Rabe, and O. Teschke. LNAI 10383. Springer, 2017.
doi: 10.1007/978-3-319-62075-6. url: http://kwarc.info/kohlhase/papers/
cicm17-alignments.pdf.

[Mül+17c] D. Müller, T. Gauthier, C. Kaliszyk, M. Kohlhase, and F. Rabe. Classification of
Alignments between Concepts of Formal Mathematical Systems. Tech. rep. 2017. url:
https://gl.mathhub.info/alignments/Public/tree/master/doc/report.pdf
(visited on 05/21/2017).

http://kwarc.info/kohlhase/submit/itp17-pvs.pdf
https://doi.org/10.1007/978-3-319-62075-6
https://doi.org/10.1007/978-3-319-62075-6
http://kwarc.info/kohlhase/papers/cicm17-models.pdf
https://doi.org/10.1007/s11082-018-1321-7
http://cicm-conference.org/2015/fm4m/FMM_2015_paper_2.pdf
http://cicm-conference.org/2015/fm4m/FMM_2015_paper_2.pdf
http://kwarc.info/kohlhase/papers/cicm18-viewfinder.pdf
http://kwarc.info/kohlhase/papers/cicm18-viewfinder.pdf
https://kwarc.info/people/dmueller/pubs/RapidPrototyping.pdf
https://kwarc.info/people/dmueller/pubs/RapidPrototyping.pdf
http://kwarc.info/kohlhase/submit/tatreport.pdf
http://kwarc.info/kohlhase/submit/tatreport.pdf
http://kwarc.info/kohlhase/papers/ijcar18-records.pdf
http://kwarc.info/kohlhase/papers/ijcar18-records.pdf
https://kwarc.info/kohlhase/submit/cicm19-coq.pdf
https://kwarc.info/kohlhase/submit/cicm19-coq.pdf
https://doi.org/10.1007/978-3-319-62075-6
http://kwarc.info/kohlhase/papers/cicm17-alignments.pdf
http://kwarc.info/kohlhase/papers/cicm17-alignments.pdf
https://gl.mathhub.info/alignments/Public/tree/master/doc/report.pdf

REFERENCES FOR SYSTEMS, LANGUAGES AND LIBRARIES 207

[RKM16] D. Rochau, M. Kohlhase, and D. Müller. “FrameIT Reloaded: Serious Math Games from
Modular Math Ontologies”. In: Intelligent Computer Mathematics – Work in Progress
Papers. Ed. by M. Kohlhase, A. Kohlhase, P. Libbrecht, B. Miller, A. Naumowicz, W.
Neuper, P. Quaresma, F. Tompa, and M. Suda. 2016. url: http://ceur-ws.org/Vol-
1785/W50.pdf.

[RKM17] M. Rupprecht, M. Kohlhase, and D. Müller. “A Flexible, Interactive Theory-Graph
Viewer”. In: MathUI 2017: The 12th Workshop on Mathematical User Interfaces. Ed. by
A. Kohlhase and M. Pollanen. 2017. url: http://kwarc.info/kohlhase/papers/
mathui17-tgview.pdf.

[RM18] F. Rabe and D. Müller. “Structuring Theories with Implicit Morphisms”. In: 24th In-
ternational Workshop on Algebraic Development Techniques 2018. 2018. url: https:
//kwarc.info/people/frabe/Research/RM_implicit_18.pdf.

References for Systems, Languages and Libraries

[AFP] AFP. Archive of Formal Proofs. url: http://afp.sf.net (visited on 12/20/2011).

[Art] R. Arthan. ProofPower. http://www.lemma-one.com/ProofPower/.

[Asp+06a] A. Asperti, C. S. Coen, E. Tassi, and S. Zacchiroli. “Crafting a Proof Assistant”. In:
TYPES. Ed. by T. Altenkirch and C. McBride. Springer, 2006, pp. 18–32.

[Aus+03] R. Ausbrooks et al. “Mathematical Markup Language (MathML) v. 2.0.” In: World Wide
Web Consortium recommendation (2003).

[BCH12] M. Boespflug, Q. Carbonneaux, and O. Hermant. “The λΠ-calculus modulo as a universal
proof language”. In: Proceedings of PxTP2012: Proof Exchange for Theorem Proving.
Ed. by D. Pichardie and T. Weber. 2012, pp. 28–43.

[Bra13] E. Brady. “Idris, a general-purpose dependently typed programming language: Design
and implementation”. In: Journal of Functional Programming 23.5 (2013), pp. 552–593.

[Bus+04] S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaetano, and M. Kohlhase. The
Open Math standard. Tech. rep. Version 2.0. The Open Math Society, 2004.

[CC] CoCalc: Collaborative Calculation in the Cloud. url: https://cocalc.com (visited on
01/28/2019).

[CFO10] J. Carette, W. Farmer, and R. O’Connor. The MathScheme Project. http://www.cas.
mcmaster.ca/research/mathscheme. 2010.

[Con+86] R. Constable et al. Implementing Mathematics with the Nuprl Development System.
Prentice-Hall, 1986.

[Dev16] T. S. Developers. SageMath, the Sage Mathematics Software System (Version 7.0). 2016.
url: http://www.sagemath.org.

[DT] G. Dowek and F. Thiré. “Logipedia: a multi-system encyclopedia of formal proofs”. url:
http://www.lsv.fr/~dowek/Publi/logipedia.pdf.

[Dun+15] C. Dunchev, F. Guidi, C. S. Coen, and E. Tassi. “ELPI: Fast, Embeddable, lambda-Prolog
Interpreter”. In: Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by
M. Davis, A. Fehnker, A. McIver, and A. Voronkov. 2015, pp. 460–468.

[FGT] W. M. Farmer, J. Guttman, and J. Thayer. The IMPS online theory library. url:
http://imps.mcmaster.ca/theories/theory-library.html (visited on 12/17/2014).

[FGT93] W. Farmer, J. Guttman, and F. Thayer. “IMPS: An Interactive Mathematical Proof
System”. In: Journal of Automated Reasoning 11.2 (1993), pp. 213–248.

http://ceur-ws.org/Vol-1785/W50.pdf
http://ceur-ws.org/Vol-1785/W50.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
https://kwarc.info/people/frabe/Research/RM_implicit_18.pdf
https://kwarc.info/people/frabe/Research/RM_implicit_18.pdf
http://afp.sf.net
http://www.lemma-one.com/ProofPower/
https://cocalc.com
http://www.cas.mcmaster.ca/research/mathscheme
http://www.cas.mcmaster.ca/research/mathscheme
http://www.sagemath.org
http://www.lsv.fr/~dowek/Publi/logipedia.pdf
http://imps.mcmaster.ca/theories/theory-library.html

208 CHAPTER 18. BIBLIOGRAPHY

[Gap] GAP – Groups, Algorithms, and Programming, Version 4.8.2. The GAP Group. 2016.
url: http://www.gap-system.org.

[GC14] D. Ginev and J. Corneli. “NNexus Reloaded”. In: Intelligent Computer Mathematics 2014.
Conferences on Intelligent Computer Mathematics. (Coimbra, Portugal, July 7–11, 2014).
Ed. by S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban. LNCS 8543. Springer,
2014, pp. 423–426. url: http://arxiv.org/abs/1404.6548.

[Gog+93] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud. “Introducing OBJ”.
In: Applications of Algebraic Specification using OBJ. Ed. by J. Goguen, D. Coleman,
and R. Gallimore. Cambridge, 1993.

[Gro16] T. G. Group. GAP – Groups, Algorithms, and Programming. http://www.gap-system.
org. [Online; accessed 30 August 2016]. 2016. url: http://www.gap-system.org.

[Har+12] T. Hardin et al. The FoCaLiZe Essential. http://focalize.inria.fr/. 2012.

[Har96] J. Harrison. “HOL Light: A Tutorial Introduction”. In: Proceedings of the First Inter-
national Conference on Formal Methods in Computer-Aided Design. Springer, 1996,
pp. 265–269.

[HHP93a] R. Harper, F. Honsell, and G. Plotkin. “A framework for defining logics”. In: Journal of
the Association for Computing Machinery 40.1 (1993), pp. 143–184.

[HOL4] The HOL4 development team. HOL4. url: http://hol.sourceforge.net/ (visited on
12/17/2014).

[Hur09] J. Hurd. “OpenTheory: Package Management for Higher Order Logic Theories”. In:
Programming Languages for Mechanized Mathematics Systems. Ed. by G. D. Reis and
L. Théry. ACM, 2009, pp. 31–37.

[Isa] Isabelle. Mar. 9, 2013. url: http://isabelle.in.tum.de (visited on 03/27/2013).

[Jup] Project Jupyter. url: http://www.jupyter.org (visited on 08/22/2017).

[KMM00] M. Kaufmann, P. Manolios, and J Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, 2000.

[Lmfa] LMFDB Knowledge Database. url: http://lmfdb.org/knowledge/.

[Lmfb] LMFDB Knowledge Database entry for Minimal Weierstrass equation over the rationals.
url: http://lmfdb.org/knowledge/show/ec.q.minimal_weierstrass_equation.

[LN12] F. Lübeck and M. Neunhöffer. GAPDoc, A Meta Package for GAP Documentation,
Version 1.5.1. 2012. url: http://www.math.rwth- aachen.de/~Frank.Luebeck/
GAPDoc.

[Mat] Mathematical Components. url: http://www.msr-inria.fr/projects/mathematical-
components-2/.

[MC] Mathematical Components. url: http://www.msr-inria.fr/projects/mathematical-
components-2/ (visited on 12/17/2014).

[MeMa] Metamath Home page. url: http://us.metamath.org.

[Mil+97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML,
Revised edition. MIT Press, 1997.

[Miz] Mizar. http://www.mizar.org. 1973–2006. url: http://www.mizar.org.

[MizLib] Mizar Mathematical Library. url: http : / / www . mizar . org / library (visited on
09/27/2012).

[MN86] D. Miller and G. Nadathur. “Higher-order logic programming”. In: Proceedings of the
Third International Conference on Logic Programming. Ed. by E. Shapiro. Springer, 1986,
pp. 448–462.

http://www.gap-system.org
http://arxiv.org/abs/1404.6548
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://focalize.inria.fr/
http://hol.sourceforge.net/
http://isabelle.in.tum.de
http://www.jupyter.org
http://lmfdb.org/knowledge/
http://lmfdb.org/knowledge/show/ec.q.minimal_weierstrass_equation
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
http://www.msr-inria.fr/projects/mathematical-components-2/
http://www.msr-inria.fr/projects/mathematical-components-2/
http://www.msr-inria.fr/projects/mathematical-components-2/
http://www.msr-inria.fr/projects/mathematical-components-2/
http://us.metamath.org
http://www.mizar.org
http://www.mizar.org
http://www.mizar.org/library

REFERENCES FOR SYSTEMS, LANGUAGES AND LIBRARIES 209

[Nor05] U. Norell. The Agda WiKi. http://wiki.portal.chalmers.se/agda. 2005.

[NPW02] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. Springer, 2002.

[OAF] The OAF Project & System. url: http://oaf.mathhub.info (visited on 04/23/2015).

[ODK] OpenDreamKit Open Digital Research Environment Toolkit for the Advancement of
Mathematics. url: http://opendreamkit.org (visited on 05/21/2015).

[ORS92] S. Owre, J. Rushby, and N. Shankar. “PVS: A Prototype Verification System”. In: 11th
International Conference on Automated Deduction (CADE). Ed. by D. Kapur. Springer,
1992, pp. 748–752.

[PC93] L. Paulson and M. Coen. Zermelo-Fraenkel Set Theory. Isabelle distribution, ZF/ZF.thy.
1993.

[PS99] F. Pfenning and C. Schürmann. “System Description: Twelf - A Meta-Logical Framework
for Deductive Systems”. In: Automated Deduction. Ed. by H. Ganzinger. 1999, pp. 202–
206.

[PVS] NASA PVS Library. url: http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-
library/ (visited on 12/17/2014).

[Qed] The QED Project. http://www-unix.mcs.anl.gov/qed/. 1996. url: http://www-
unix.mcs.anl.gov/qed/.

[Ran04] A. Ranta. “Grammatical Framework — A Type-Theoretical Grammar Formalism”. In:
Journal of Functional Programming 14.2 (2004), pp. 145–189.

[RK13a] F. Rabe and M. Kohlhase. “A Scalable Module System”. In: Information and Computation
230.1 (2013), pp. 1–54.

[SC] N. M. T. et al. Elements, parents, and categories in Sage: a primer. url: http://
combinat.sagemath.org/doc/reference/categories/sage/categories/primer.
html.

[SNG] Singular. url: https://www.singular.uni-kl.de/ (visited on 08/22/2017).

[Sut09] G. Sutcliffe. “The TPTP Problem Library and Associated Infrastructure: The FOF and
CNF Parts, v3.5.0”. In: Journal of Automated Reasoning 43.4 (2009), pp. 337–362.

[SW83] D. Sannella and M. Wirsing. “A Kernel Language for Algebraic Specification and Imple-
mentation”. In: Fundamentals of Computation Theory. Ed. by M. Karpinski. Springer,
1983, pp. 413–427.

[Tea03] T. C. D. Team. The Coq proof assistant reference manual (version 7.4). Tech. rep. INRIA,
Rocquencourt, France, 2003.

[Wen09] M. Wenzel. The Isabelle/Isar Reference Manual. http://isabelle.in.tum.de/
documentation.html, Dec 3, 2009. 2009.

[WPN08] M. Wenzel, L. C. Paulson, and T. Nipkow. “The Isabelle Framework”. In: Theorem
Proving in Higher Order Logics (TPHOLs 2008). Ed. by A. Mohamed, Munoz, and
Tahar. LNCS 5170. Springer, 2008, pp. 33–38.

[Coq15] Coq Development Team. The Coq Proof Assistant: Reference Manual. Tech. rep. INRIA,
2015.

[LMF] T. LMFDB Collaboration. The L-functions and Modular Forms Database. http://www.
lmfdb.org. [Online; accessed 27 August 2016].

http://wiki.portal.chalmers.se/agda
http://oaf.mathhub.info
http://opendreamkit.org
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
http://www-unix.mcs.anl.gov/qed/
http://www-unix.mcs.anl.gov/qed/
http://www-unix.mcs.anl.gov/qed/
http://combinat.sagemath.org/doc/reference/categories/sage/categories/primer.html
http://combinat.sagemath.org/doc/reference/categories/sage/categories/primer.html
http://combinat.sagemath.org/doc/reference/categories/sage/categories/primer.html
https://www.singular.uni-kl.de/
http://isabelle.in.tum.de/documentation.html
http://isabelle.in.tum.de/documentation.html
http://www.lmfdb.org
http://www.lmfdb.org

210 CHAPTER 18. BIBLIOGRAPHY

Other References

[AH15] S. Autexier and D. Hutter. “Structure Formation in Large Theories”. In: Intelligent
Computer Mathematics 2015. Conferences on Intelligent Computer Mathematics. (Wash-
ington DC, USA, July 13–17, 2015). Ed. by M. Kerber, J. Carette, C. Kaliszyk, F. Rabe,
and V. Sorge. LNCS 9150. Springer, 2015, pp. 155–170.

[Arx] arXiv.org e-print archive. http://www.arxiv.org. 1994.

[Asp+06b] A. Asperti, F. Guidi, C. S. Coen, E. Tassi, and S. Zacchiroli. “A Content Based Mathemat-
ical Search Engine: Whelp”. In: Types for Proofs and Programs, International Workshop,
TYPES 2004, revised selected papers. Ed. by J.-C. Filliâtre, C. Paulin-Mohring, and
B. Werner. LNCS 3839. Springer Verlag, 2006, pp. 17–32.

[Bet18] J. Betzendahl. “Translating the IMPS Theory Library to MMT / OMDoc”. Master’s
Thesis. Informatik, Universität Bielefeld, Apr. 2018. url: https://gl.kwarc.info/
supervision/MSc-archive/blob/master/2018/jbetzendahl/thesis_imps2omdoc.
pdf.

[BKR] K. Berčič, M. Kohlhase, and F. Rabe. “Towards a Unified Mathematical Data Infras-
tructure: Database and Interface Generation”. submitted to CICM 2019. url: https:
//kwarc.info/kohlhase/submit/cicm19-MDH.pdf.

[BL] T. Breuer and S. Linton. “The GAP 4 Type System: Organising Algebraic Algorithms”. In:
Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation.
ISSAC ’98. ACM, pp. 38–45.

[Bla+14] J. C. Blanchette et al. “Truly Modular (Co)datatypes for Isabelle/HOL”. In: ITP. Ed. by G.
Klein and R. Gamboa. Vol. 8558. LNCS. Springer, 2014, pp. 93–110. doi: 10.1007/978-
3-319-08970-6.

[Bob+11] F. Bobot, J. Filliâtre, C. Marché, and A. Paskevich. “Why3: Shepherd Your Herd of
Provers”. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. 2011, pp. 53–64.

[Bou64] N. Bourbaki. “Univers”. In: Séminaire de Géométrie Algébrique du Bois Marie - Théorie
des topos et cohomologie étale des schémas. Springer, 1964, pp. 185–217.

[Car+19] J. Carette, W. M. Farmer, M. Kohlhase, and F. Rabe. “Big Math and the One-Brain
Barrier – A Position Paper and Architecture Proposal”. submitted to Mathematical
Intelligencer. 2019. url: https://arxiv.org/abs/1904.10405.

[CF58] H. Curry and R. Feys. Combinatory Logic. Amsterdam: North-Holland, 1958.

[CH88] T. Coquand and G. Huet. “The Calculus of Constructions”. In: Information and Compu-
tation 76.2/3 (1988), pp. 95–120.

[Chu40] A. Church. “A Formulation of the Simple Theory of Types”. In: Journal of Symbolic
Logic 5.1 (1940), pp. 56–68.

[Cod+11] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe. “Project Abstract:
Logic Atlas and Integrator (LATIN)”. In: Intelligent Computer Mathematics. Ed. by
J. Davenport, W. Farmer, F. Rabe, and J. Urban. Springer, 2011, pp. 289–291.

[Dyb97] P. Dybjer. “Representing Inductively Defined Sets by Wellorderings in Martin-LÖF’s Type
Theory”. In: Theor. Comput. Sci. 176.1-2 (Apr. 1997), pp. 329–335. doi: 10.1016/S0304-
3975(96)00145-4. url: http://dx.doi.org/10.1016/S0304-3975(96)00145-4.

[EI] EINFRA-9: e-Infrastructure for Virtual Research Environment. url: http://ec.europa.
eu/research/participants/portal/desktop/en/opportunities/h2020/topics/
2144-einfra-9-2015.html.

[ESC07] J. Euzenat, P. Shvaiko, and E. Corporation. Ontology matching. Springer, 2007.

http://www.arxiv.org
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2018/jbetzendahl/thesis_imps2omdoc.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2018/jbetzendahl/thesis_imps2omdoc.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2018/jbetzendahl/thesis_imps2omdoc.pdf
https://kwarc.info/kohlhase/submit/cicm19-MDH.pdf
https://kwarc.info/kohlhase/submit/cicm19-MDH.pdf
https://doi.org/10.1007/978-3-319-08970-6
https://doi.org/10.1007/978-3-319-08970-6
https://arxiv.org/abs/1904.10405
https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/10.1016/S0304-3975(96)00145-4
http://dx.doi.org/10.1016/S0304-3975(96)00145-4
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2144-einfra-9-2015.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2144-einfra-9-2015.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2144-einfra-9-2015.html

OTHER REFERENCES 211

[FGT92a] W. Farmer, J. Guttman, and F. Thayer. “Little Theories”. In: Conference on Automated
Deduction. Ed. by D. Kapur. 1992, pp. 467–581.

[FGT92b] W. M. Farmer, J. Guttman, and J. Thayer. “Little Theories”. In: Proceedings of the 11th

Conference on Automated Deduction. Ed. by D. Kapur. LNCS 607. Saratoga Springs,
NY, USA: Springer Verlag, 1992, pp. 467–581.

[Geu+17] H. Geuvers, M. England, O. Hasan, F. Rabe, and O. Teschke, eds. Intelligent Computer
Mathematics. Conferences on Intelligent Computer Mathematics. LNAI 10383. Springer,
2017. doi: 10.1007/978-3-319-62075-6.

[Gin+16] D. Ginev et al. “The SMGloM Project and System. Towards a Terminology and Ontology
for Mathematics”. In: Mathematical Software - ICMS 2016 - 5th International Congress.
Ed. by G.-M. Greuel, T. Koch, P. Paule, and A. Sommese. Vol. 9725. LNCS. Springer,
2016. doi: 10.1007/978- 3- 319- 42432- 3. url: http://kwarc.info/kohlhase/
papers/icms16-smglom.pdf.

[GK14a] T. Gauthier and C. Kaliszyk. “Matching concepts across HOL libraries”. In: Intelligent
Computer Mathematics. Ed. by S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban.
Springer, 2014, pp. 267–281.

[GK14b] T. Gauthier and C. Kaliszyk. “Matching concepts across HOL libraries”. In: CICM. Ed. by
S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban. Vol. 8543. LNCS. Springer
Verlag, 2014, pp. 267–281. doi: 10.1007/978-3-319-08434-3_20.

[GK15] T. Gauthier and C. Kaliszyk. “Sharing HOL4 and HOL Light Proof Knowledge”. In:
LPAR. Ed. by M. Davis, A. Fehnker, A. McIver, and A. Voronkov. Vol. 9450. LNCS.
Springer, 2015, pp. 372–386. doi: 10.1007/978-3-662-48899-7.

[GKU16] T. Gauthier, C. Kaliszyk, and J. Urban. “Initial Experiments with Statistical Conjecturing
over Large Formal Corpora”. In: Work in Progress at CICM 2016. Ed. by A. Kohlhase et
al. Vol. 1785. CEUR. CEUR-WS.org, 2016, pp. 219–228.

[Gon+13] G. Gonthier et al. “A Machine-Checked Proof of the Odd Order Theorem”. In: Interactive
Theorem Proving. Ed. by S. Blazy, C. Paulin-Mohring, and D. Pichardie. 2013, pp. 163–
179.

[Hal+15a] T. Hales et al. A formal proof of the Kepler conjecture. 2015. url: http://arxiv.org/
abs/1501.02155.

[Hal+15b] T. C. Hales et al. “A formal proof of the Kepler conjecture”. In: CoRR abs/1501.02155
(2015). url: http://arxiv.org/abs/1501.02155.

[HHP93b] R. Harper, F. Honsell, and G. Plotkin. “A framework for defining logics”. In: Journal of
the Association for Computing Machinery 40.1 (1993), pp. 143–184.

[HKR12a] F. Horozal, M. Kohlhase, and F. Rabe. “Extending MKM Formats at the Statement
Level”. In: Intelligent Computer Mathematics. Ed. by J. Campbell, J. Carette, G. Dos
Reis, J. Jeuring, P. Sojka, V. Sorge, and M. Wenzel. Springer, 2012, pp. 64–79.

[HKR12b] F. Horozal, M. Kohlhase, and F. Rabe. “Extending MKM Formats at the Statement
Level”. In: Intelligent Computer Mathematics. Conferences on Intelligent Computer
Mathematics (CICM). (Bremen, Germany, July 9–14, 2012). Ed. by J. Jeuring, J. A.
Campbell, J. Carette, G. Dos Reis, P. Sojka, M. Wenzel, and V. Sorge. LNAI 7362. Berlin
and Heidelberg: Springer Verlag, 2012, pp. 65–80. url: http://kwarc.info/kohlhase/
papers/mkm12-p2s.pdf.

[HKR14] F. Horozal, M. Kohlhase, and F. Rabe. “Flexary Operators for Formalized Mathemat-
ics”. In: Intelligent Computer Mathematics 2014. Conferences on Intelligent Computer
Mathematics. (Coimbra, Portugal, July 7–11, 2014). Ed. by S. Watt, J. Davenport,
A. Sexton, P. Sojka, and J. Urban. LNCS 8543. Springer, 2014, pp. 312–327. url:
http://kwarc.info/kohlhase/papers/cicm14-lfs.pdf.

https://doi.org/10.1007/978-3-319-62075-6
https://doi.org/10.1007/978-3-319-42432-3
http://kwarc.info/kohlhase/papers/icms16-smglom.pdf
http://kwarc.info/kohlhase/papers/icms16-smglom.pdf
https://doi.org/10.1007/978-3-319-08434-3_20
https://doi.org/10.1007/978-3-662-48899-7
http://arxiv.org/abs/1501.02155
http://arxiv.org/abs/1501.02155
http://arxiv.org/abs/1501.02155
http://kwarc.info/kohlhase/papers/mkm12-p2s.pdf
http://kwarc.info/kohlhase/papers/mkm12-p2s.pdf
http://kwarc.info/kohlhase/papers/cicm14-lfs.pdf

212 CHAPTER 18. BIBLIOGRAPHY

[Hor14] F. Horozal. “A Framework for Defining Declarative Languages”. PhD thesis. Jacobs
University Bremen, Nov. 2014. url: https://svn.kwarc.info/repos/fhorozal/pubs/
phd-thesis.pdf.

[How80] W. Howard. “The formulas-as-types notion of construction”. In: To H.B. Curry: Essays on
Combinatory Logic, Lambda-Calculus and Formalism. Academic Press, 1980, pp. 479–490.

[HS02] M. Hofmann and T. Streicher. “The Groupoid Interpretation of Type Theory”. In: (Apr.
2002).

[Ian+13] M. Iancu, M. Kohlhase, F. Rabe, and J. Urban. “The Mizar Mathematical Library in
OMDoc: Translation and Applications”. In: Journal of Automated Reasoning 50.2 (2013),
pp. 191–202.

[Ian+14] M. Iancu, C. Jucovschi, M. Kohlhase, and T. Wiesing. “System Description: Math-
Hub.info”. In: Intelligent Computer Mathematics. Ed. by S. Watt, J. Davenport, A.
Sexton, P. Sojka, and J. Urban. Springer, 2014, pp. 431–434.

[Ian17] M. Iancu. “Towards Flexiformal Mathematics”. PhD thesis. Bremen, Germany: Jacobs
University, 2017. url: https://opus.jacobs-university.de/frontdoor/index/
index/docId/721.

[Jeu+12] J. Jeuring, J. A. Campbell, J. Carette, G. Dos Reis, P. Sojka, M. Wenzel, and V.
Sorge, eds. Intelligent Computer Mathematics. Conferences on Intelligent Computer
Mathematics (CICM). (Bremen, Germany, July 9–14, 2012). LNAI 7362. Berlin and
Heidelberg: Springer Verlag, 2012.

[KK13a] C. Kaliszyk and A. Krauss. “Scalable LCF-style proof translation”. In: Interactive Theorem
Proving. Ed. by S. Blazy, C. Paulin-Mohring, and D. Pichardie. Springer, 2013, pp. 51–66.

[KK13b] C. Kaliszyk and A. Krauss. “Scalable LCF-style proof translation”. In: ITP. Ed. by S.
Blazy, C. Paulin-Mohring, and D. Pichardie. Vol. 7998. LNCS. Springer Verlag, 2013,
pp. 51–66.

[Koh08] M. Kohlhase. “Using LATEX as a Semantic Markup Format”. In: Mathematics in Computer
Science 2.2 (2008), pp. 279–304.

[Koh13a] M. Kohlhase. “The Flexiformalist Manifesto”. In: 14th International Workshop on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC 2012). Ed. by A. Voronkov,
V. Negru, T. Ida, T. Jebelean, D. Petcu, S. M. Watt, and D. Zaharie. Timisoara, Romania:
IEEE Press, 2013, pp. 30–36. url: http://kwarc.info/kohlhase/papers/synasc13.
pdf.

[Koh13b] M. Kohlhase. “The OMDoc2 Language Design”. KWARC Blue Note. 2013. url: http:
//gl.kwarc.info/omdoc/blue/raw/master/design/note.pdf.

[Koh14] M. Kohlhase. “Mathematical Knowledge Management: Transcending the One-Brain-
Barrier with Theory Graphs”. In: EMS Newsletter (June 2014), pp. 22–27. url: https:
//kwarc.info/people/mkohlhase/papers/ems13.pdf.

[KP93] M. Kohlhase and F. Pfenning. “Unification in a λ-Calculus with Intersection Types”.
In: Proceedings of the International Logic Programming Symposion ILPS’93. Ed. by
D. Miller. MIT Press, 1993, pp. 488–505. url: Http://kwarc.info/kohlhase/papers/
ilps93.pdf.

[KR14] C. Kaliszyk and F. Rabe. “Towards Knowledge Management for HOL Light”. In: Intelligent
Computer Mathematics. Ed. by S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban.
Springer, 2014, pp. 357–372.

[KR16a] M. Kohlhase and F. Rabe. “QED Reloaded: Towards a Pluralistic Formal Library of
Mathematical Knowledge”. In: Journal of Formalized Reasoning 9.1 (2016), pp. 201–234.

https://svn.kwarc.info/repos/fhorozal/pubs/phd-thesis.pdf
https://svn.kwarc.info/repos/fhorozal/pubs/phd-thesis.pdf
https://opus.jacobs-university.de/frontdoor/index/index/docId/721
https://opus.jacobs-university.de/frontdoor/index/index/docId/721
http://kwarc.info/kohlhase/papers/synasc13.pdf
http://kwarc.info/kohlhase/papers/synasc13.pdf
http://gl.kwarc.info/omdoc/blue/raw/master/design/note.pdf
http://gl.kwarc.info/omdoc/blue/raw/master/design/note.pdf
https://kwarc.info/people/mkohlhase/papers/ems13.pdf
https://kwarc.info/people/mkohlhase/papers/ems13.pdf
Http://kwarc.info/kohlhase/papers/ilps93.pdf
Http://kwarc.info/kohlhase/papers/ilps93.pdf

OTHER REFERENCES 213

[KR16b] M. Kohlhase and F. Rabe. “QED Reloaded: Towards a Pluralistic Formal Library of
Mathematical Knowledge”. In: Journal of Formalized Reasoning 9.1 (2016), pp. 201–234.
url: http://jfr.unibo.it/article/download/4570/5733.

[KRSC11] M. Kohlhase, F. Rabe, and C. Sacerdoti Coen. “A Foundational View on Integration
Problems”. In: Intelligent Computer Mathematics. Ed. by J. Davenport, W. Farmer,
F. Rabe, and J. Urban. LNAI 6824. Springer Verlag, 2011, pp. 107–122. url: http:
//kwarc.info/kohlhase/papers/cicm11-integration.pdf.

[KS10] A. Krauss and A. Schropp. “A Mechanized Translation from Higher-Order Logic to Set
Theory”. In: Interactive Theorem Proving. Ed. by M. Kaufmann and L. Paulson. Springer,
2010, pp. 323–338.

[KU15] C. Kaliszyk and J. Urban. “HOL(y)Hammer: Online ATP Service for HOL Light”. In:
Mathematics in Computer Science 9.1 (2015), pp. 5–22.

[KW03] H. Kanayama and H. Watanabe. “Multilingual translation via annotated hub language”.
In: MT-Summit IX. 2003, pp. 202–207.

[KW10] C. Keller and B. Werner. “Importing HOL Light into Coq”. In: Interactive Theorem
Proving. Ed. by M. Kaufmann and L. Paulson. Springer, 2010, pp. 307–322.

[KŞ06] M. Kohlhase and I. Şucan. “A Search Engine for Mathematical Formulae”. In: Artificial
Intelligence and Symbolic Computation. Ed. by T. Ida, J. Calmet, and D. Wang. Springer,
2006, pp. 241–253.

[Luo09] Z. Luo. “Manifest Fields and Module Mechanisms in Intensional Type Theory”. In: Types
for Proofs and Programs. Ed. by S. Berardi, F. Damiani, and U. de’Liguoro. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 237–255.

[MH] MathHub.info: Active Mathematics. url: http://mathhub.info (visited on 01/28/2014).

[ML74] P. Martin-Löf. “An Intuitionistic Theory of Types: Predicative Part”. In: Proceedings of
the ’73 Logic Colloquium. North-Holland, 1974, pp. 73–118.

[ML94] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1994.

[MWP] Matroid — Wikipedia, The Free Encyclopedia. url: https://en.wikipedia.org/w/
index.php?title=Matroid (visited on 04/04/2018).

[NK07] I. Normann and M. Kohlhase. “Extended Formula Normalization for ε-Retrieval and
Sharing of Mathematical Knowledge”. In: Towards Mechanized Mathematical Assistants.
MKM/Calculemus. Ed. by M. Kauers, M. Kerber, R. Miner, and W. Windsteiger. LNAI
4573. Springer Verlag, 2007, pp. 266–279.

[Nor08] I. Normann. “Automated Theory Interpretation”. PhD thesis. Bremen, Germany: Jacobs
University, 2008. url: https://kwarc.info/people/archive/pubs/phd- 2008/
normann.pdf.

[NSM01] P. Naumov, M. Stehr, and J. Meseguer. “The HOL/NuPRL proof translator - a practical
approach to formal interoperability”. In: 14th International Conference on Theorem
Proving in Higher Order Logics. Ed. by R. Boulton and P. Jackson. Springer, 2001.

[OS06a] S. Obua and S. Skalberg. “Importing HOL into Isabelle/HOL”. In: Automated Reasoning.
Ed. by N. Shankar and U. Furbach. Vol. 4130. Springer, 2006.

[OS06b] S. Obua and S. Skalberg. “Importing HOL into Isabelle/HOL”. In: Automated Reasoning:
Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20,
2006. Proceedings. Ed. by U. Furbach and N. Shankar. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 298–302. doi: 10.1007/11814771_27.

[Pfe+03] F. Pfenning, C. Schürmann, M. Kohlhase, N. Shankar, and S. Owre. The Logosphere
Project. http://www.logosphere.org/. 2003.

http://jfr.unibo.it/article/download/4570/5733
http://kwarc.info/kohlhase/papers/cicm11-integration.pdf
http://kwarc.info/kohlhase/papers/cicm11-integration.pdf
http://mathhub.info
https://en.wikipedia.org/w/index.php?title=Matroid
https://en.wikipedia.org/w/index.php?title=Matroid
https://kwarc.info/people/archive/pubs/phd-2008/normann.pdf
https://kwarc.info/people/archive/pubs/phd-2008/normann.pdf
https://doi.org/10.1007/11814771_27
http://www.logosphere.org/

214 CHAPTER 18. BIBLIOGRAPHY

[Pfe01] F. Pfenning. “Logical frameworks”. In: Handbook of automated reasoning. Ed. by J.
Robinson and A. Voronkov. Elsevier, 2001, pp. 1063–1147.

[Pfe93] F. Pfenning. “Refinement Types for Logical Frameworks”. In: Informal Proceedings of
the 1993 Workshop on Types for Proofs and Programs. Ed. by H. Geuvers. Nijmegen,
The Netherlands: University of Nijmegen, May 1993, pp. 285–301.

[Rab12] F. Rabe. “A Query Language for Formal Mathematical Libraries”. In: Intelligent Computer
Mathematics. Conferences on Intelligent Computer Mathematics (CICM). (Bremen,
Germany, July 9–14, 2012). Ed. by J. Jeuring, J. A. Campbell, J. Carette, G. Dos Reis,
P. Sojka, M. Wenzel, and V. Sorge. LNAI 7362. Berlin and Heidelberg: Springer Verlag,
2012, pp. 142–157. arXiv: 1204.4685 [cs.LO].

[Rab17a] F. Rabe. “A Modular Type Reconstruction Algorithm”. In: ACM Transactions on Com-
putational Logic (2017). accepted pending minor revision; see https://kwarc.info/
people/frabe/Research/rabe_recon_17.pdf.

[Rab17b] F. Rabe. “How to Identify, Translate, and Combine Logics?” In: Journal of Logic and
Computation 27.6 (2017), pp. 1753–1798.

[RK13b] F. Rabe and M. Kohlhase. “A Scalable Module System”. In: Information & Computation
0.230 (2013), pp. 1–54. url: http://kwarc.info/frabe/Research/mmt.pdf.

[RKS11] F. Rabe, M. Kohlhase, and C. Sacerdoti Coen. “A Foundational View on Integration
Problems”. In: Intelligent Computer Mathematics. Ed. by J. Davenport, W. Farmer,
F. Rabe, and J. Urban. Springer, 2011, pp. 107–122.

[Sol95] R. Solomon. “On Finite Simple Groups and Their Classification”. In: Notices of the AMS
(Feb. 1995), pp. 231–239.

[SS89] M. Schmidt-Schauß. Computational Aspects of an Order-Sorted Logic with Term Decla-
rations. LNAI 395. Springer Verlag, 1989.

[Sto+17] C. Stolze, L. Liquori, F. Honsell, and I. Scagnetto. “Towards a Logical Framework with
Intersection and Union Types”. In: 11th International Workshop on Logical Frameworks
and Meta-languages, LFMTP. Oxford, United Kingdom, Sept. 2017, pp. 1 –9. url:
https://hal.inria.fr/hal-01534035.

[SW11] B. Spitters and E. van der Weegen. “Type Classes for Mathematics in Type Theory”.
In: CoRR abs/1102.1323 (2011). arXiv: 1102.1323. url: http://arxiv.org/abs/1102.
1323.

[VJS] vis.js - A dynamic, browser based visualization library. url: http://visjs.org
(visited on 06/04/2017).

[Wat+14] S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban, eds. Intelligent Computer
Mathematics. Conferences on Intelligent Computer Mathematics. (Coimbra, Portugal,
July 7–11, 2014). LNCS 8543. Springer, 2014.

[Wie06] F. Wiedijk. The Seventeen Provers of the World. Springer, 2006.

[Wie92] G. Wiederhold. “Mediators in the architecture of future information systems”. In: Com-
puter 25.3 (1992), pp. 38–49.

[WKR17] T. Wiesing, M. Kohlhase, and F. Rabe. “Virtual Theories – A Uniform Interface to
Mathematical Knowledge Bases”. In: MACIS 2017: Seventh International Conference
on Mathematical Aspects of Computer and Information Sciences. Ed. by J. Blömer, T.
Kutsia, and D. Simos. LNCS 10693. Springer Verlag, 2017, pp. 243–257. url: https://
github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-vt/crc.pdf.

[WR13] A. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 1913.

http://arxiv.org/abs/1204.4685
https://kwarc.info/people/frabe/Research/rabe_recon_17.pdf
https://kwarc.info/people/frabe/Research/rabe_recon_17.pdf
http://kwarc.info/frabe/Research/mmt.pdf
https://hal.inria.fr/hal-01534035
http://arxiv.org/abs/1102.1323
http://arxiv.org/abs/1102.1323
http://arxiv.org/abs/1102.1323
http://visjs.org
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-vt/crc.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-vt/crc.pdf

OTHER REFERENCES 215

[Uni13] T. Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: http://homotopytypetheory.org/book,
2013.

http://homotopytypetheory.org/book

	I Introduction
	Motivation
	State of the Art
	Foundations
	Formal Libraries
	Logical Frameworks

	Context and Contribution
	LATIN
	The OAF Project
	OpenDreamKit
	The Math-in-the-Middle Approach and Library
	A Common Meaning Space for Interoperability

	Objectives
	Contribution and Overview

	Preliminaries
	OMDoc/Mmt
	Mmt Syntax
	MathHub

	The Mmt API
	Judgments

	Typing Rules and LF
	Judgments-as-Types
	Higher-Order Abstract Syntax

	Mmt/LF Surface Syntax

	II Modular Design of Logical Frameworks
	Implementing Rules in Mmt (e.g. -Types)
	The Rules for -Types
	Implementing Rule Systems in Mmt
	Mmt Symbols in Scala
	Solver Judgments
	Inference Rules
	Checking Rules
	Equality Rules
	Computation Rules
	Subtyping Rules

	Using -Types

	LFX
	Coproducts
	Subtyping Behavior of Coproducts
	Implementation

	Finite Types
	Generic Literals in Mmt
	Implementation and Irrelevance Rules

	`39`42`"613A``45`47`"603AwtypeW-Types
	Implementation
	Structural Features

	Cumulative Universe Hierarchies
	Implementation and Universe Rules

	A Logical Framework Based on Homotopy Type Theory
	Identity Types
	Equivalences and Univalence
	Implementation

	Subtyping
	Issues with Subtyping in Mmt
	Declared Subtypes and Rule Generators
	Intersection Types
	Predicate Subtypes

	Record Types and Models
	Groupings in Formal Languages
	Analysis

	Record Types with Defined Fields
	Internalizing Theories
	Implementation

	Conclusion and Additional Features

	III Translating Mathematical Libraries into a Universal Format
	Integrating Theorem Prover Libraries - PVS
	Introduction and Preliminaries
	Formalizing Foundations
	Importing Libraries

	Integrating External Databases (LMFDB)
	LMFDB Knowledge and Interoperability
	Introduction

	Integrating the LMFDB with Math-in-the-Middle

	Integrating Generic Ontologies
	Distributed Collaboration with GAP/Sage
	Representing the GAP Ontology in OMDoc/Mmt
	Representing the Sage Ontology in OMDoc/Mmt

	Conclusion
	Enabled Applications
	Browsing and Interaction
	Graph Viewer
	Search
	Querying Across Libraries

	IV Cross-Library Knowledge Management
	Alignments
	Types of Alignments
	Examples of Alignments
	A Standard Syntax for Alignments
	Implementation
	Manually Curated Alignments

	Alignment-based Translations Using Interface Theories
	Interface Theories
	Example: Natural Numbers
	Additional Interface Theories

	Implementation
	Example

	Viewfinding
	The Viewfinder Algorithm
	Preprocessing
	Search
	Optimizations

	Implementation
	Cross-Library Viewfinding
	Applications for Viewfinding

	Refactoring and Theory Discovery via Theory Intersections
	Theory Intersection by Example
	Reducing Partial Morphisms to Renamings
	Implementation

	V Conclusion and Future Work
	Bibliography
	Online Source References
	Publications by the Author
	References for Systems, Languages and Libraries
	Other References

