
Integrating SUMO and OMDoc
Guided Research: Final Report

Dimitar Misev
Supervisor: Prof. Dr. Michael Kohlhase

Jacobs University

May 2010

Abstract

Ontologies promote and facilitate interoperability among informa-
tion systems, intelligent processing by agents and sharing and reuse of
knowledge among systems. They have recently become popular with
the advent of the Semantic Web, as an appropriate tool for developing
a common reference terminology and language in specific application
domains. The Suggested Upper Merged Ontology (SUMO) and its
domain ontologies form one of the largest formal public ontologies in
existence today. OMDoc is a markup format and data model for Open
Mathematical Documents, that serves as a semantics-oriented repre-
sentation format for mathematical knowledge. SUMO would benefit
from making use of the modularity and documentation infrastructure
that OMDoc offers, whereas OMDoc would benefit from having ac-
cess to such a large formal ontology. In this project we have started
an integration between the two projects, forming a solid foundation on
which to base further collaboration.

1 Introduction

Knowledge representation is the study of how knowledge about the world can
be represented and how to reason about that knowledge. Knowledge Engi-
neering is “the task of extracting knowledge from a human knowledge-holder
and incorporating that knowledge into computer programs” [16]. Knowledge
engineers perform this task by building knowledge-based systems, using on-
tologies as the most general component to organize terms, concepts, and
relationships that represent a field or domain.

Representing complex domains concentrating on general, abstract con-
cepts is called ontological engineering. Ontology engineering is related to
knowledge engineering, but operates on a grander scale [19]. An ontology
consists of a set of concepts, axioms, and relationships that describe a do-
main of interest. An upper ontology is limited to concepts that are meta,

1

generic, abstract and philosophical, and therefore are general enough to
address (at a high level) a broad range of domain areas. Ontologies have
recently become popular with the advent of the Semantic Web, a semantic-
aware version of the World Wide Web, as an appropriate tool for developing
a common reference terminology and language in specific application do-
mains.

Knowledge Management (KM) refers to a multi-disciplined approach to
achieving organizational objectives by making the best use of knowledge.
KM focuses on processes such as acquiring, creating and sharing knowledge
and the cultural and technical foundations that support them.

This project aims at integrating two projects closely related with these
concepts – the Suggested Upper Merged Ontology (SUMO), and OMDoc,
a markup format and data model for Open Mathematical Documents. We
look in more detail at these projects in the next two sections.

1.1 SUMO

The Suggested Upper Merged Ontology (SUMO) [18] and its domain on-
tologies form one of the largest formal public ontologies in existence today1

(with 20,000 terms and 70,000 axioms). It is developed by the IEEE Stan-
dard Upper Ontology Working Group, with the goal to develop a standard
ontology that will promote data interoperability, information search and
retrieval, automated inferencing, and natural language processing.

The SUMO itself is an ontology that consists of several interdependent
sections [22]: Structural Ontology, with definitions for relations that serve
as the framework for defining the ontology; Base Ontology, containing very
fundamental notions such as the distinction between objects and processes;
Set/Class Theory Ontology; Numeric section with basic arithmetic func-
tions; section on temporal relations; Mereotopology Ontology, containing
part/whole relations; Graph Theory section; and finally a Unit of Measure
section, which provides definitions of the SI and other unit systems. Many
domain ontologies which specify the concepts and axiomatic content of a
particular domain have been additionally developed, e.g., ontologies of ge-
ography, distributed computing, finance, transportation, etc. Finally, there
is the MILO (Mid-Level Ontology), an ontology developed as a bridge be-
tween the abstract content of the SUMO and the rich detail of the domain
ontologies.

SUMO is written in a variant of the Knowledge Interchange Format
(KIF) language [7] called Standard Upper Ontology Knowledge Interchange
Format (SUO-KIF) [20]. SUO-KIF is a language designed for use in au-
thoring and interchange of knowledge. It is logically comprehensive, provid-
ing for the expression of arbitrary logical sentences. Technically SUO-KIF

1Another open source ontology of comparable size is OpenCyc.

2

is a higher-order language, as it allows variables in the predicate position,
e.g. (?REL ?A ?B). In a practical reasoning system however, ?REL needs to
only range over the set of relations already defined in the knowledge base,
which is first-order. Most reasoning systems take the broader interpreta-
tion that ?REL ranges over the universe of all possible relations and disallow
variables in the predicate position. For this reason, in SigmaKEE all such
statements are pre-processed by adding a “dummy” relation, such as (holds
?REL ?A ?B), and then removing it in the proof output [21].

1.2 OMDoc

OMDoc [11] is a markup format and data model for Open Mathemati-
cal Documents. It serves as semantics-oriented representation format for
mathematical knowledge. The OMDoc format aims to

1. be ontologically uncommitted so that it serves as an integration format
for mathematical software systems;

2. provide a representation format for mathematical documents that com-
bine formal and informal views of all the mathematical knowledge
contained in them;

3. be based on structural/content markup to guarantee both 1. and 2;
4. support scalability and web-integration.

1.3 Statement and Motivation of Research

The goal of this project is to start an integration between SUMO and OM-
Doc, providing a solid foundation on which to base further collaboration.
SUMO is a comprehensive and quite stable2, richly axiomatized ontology,
based on a simple and clean language. It does have a couple of problems
however:

• SUMO does not have any modularity infrastructure. If we would want
to use the Transportation domain ontology for example, we would
have to work with all of SUMO, because it is not possible to determine
which other ontologies exactly it is built on. Modularization is a very
important issue, as it directly affects the scalability of an ontology.

• It lacks a good documentation infrastructure. Objects can be docu-
mented with the documentation relation, but what if we would want
to document an axiom for example? There is not much choice beyond
a comment in the code.

• It is not particularly compliant with the Semantic Web technologies3.
2Its structure has not changed much in the last couple of years.
3But there is a SUO-KIF↔OWL translator that already addresses this.

3

We address these problems by translating SUMO to OMDoc. OMDoc has
been proven suitable as a translation target to and from other languages; in
fact, one of its original goals was to provide an exchange language for for-
malized mathematics. With its flexible mechanisms for importing theories
it supports modularity and scalability. OMDoc is especially suitable for
documenting ontologies as we can flexibly mix and interlink mathematical
formulae with natural language, and comes with an elaborate, adaptive pre-
sentation framework for creating human-readable documents from semantic
markup. We present a tool that supports this integration by automating
the process of translating between SUO-KIF and OMDoc. Additionally,
we show how a TNTBase repository with SUMO in OMDoc format can
help ontology engineers to further refine and adapt the ontology engineering
process to their needs. We do not see TNTBase as replacing but rather
complementing existing ontology engineering tools, so we have integrated it
into SigmaKEE, in order to make its usage transparent to the users.

1.4 Related Work

Most related to this project is the effort of integrating OMDoc and RDFS/
OWL. The semantic web ontology languages RDFS [9] and OWL [8] are
widely used but limited in both their expressivity and their support for mod-
ularity and integrated documentation. In [14] it was proposed embedding
the language concepts into OMDoc to make use of its modularity and doc-
umentation infrastructure, and two tools have been developed to support
this. The OMDoc→OWL translation, implemented as a module in the
Krextor XML→RDF extraction framework [13], allows one to use semantic
web reasoners on tractable/decidable fragments of ontologies in OMDoc.
The rdf2omdoc tool [12] on the other hand implements the OWL→OMDoc
translation, allowing to easily document existing web ontologies in RDFS or
OWL using the OMDoc documentation infrastructure. Similarly, there is
also a SUO-KIF↔OWL translation, which is implemented in SigmaKEE.

The translation of the Mizar Mathematical Library (MML) [26] to
OMDoc [1, 6, 17] is also related in that the Mizar language, similarly to
SUO-KIF is first-order in style, however it is not designed for ontologies and
the formalized mathematical content of the MML is quite different from the
ontological data in SUMO.

1.5 Outline

In this section we have given an introduction to the problem, stated the mo-
tivation behind this project and its goal, and presented work related to ours.
Next, we provide an introduction to the systems used in the later sections,
namely SigmaKEE, TNTBase and JOMDoc. Section 3 documents all of
the work that has been completed in the course of this project. Then in

4

Section 4 we evaluate the results from our work, and finally in Section 5 we
conclude and give an outlook on possible improvements and future work.

2 Technology Overview

Here we introduce the software systems inherent to this project, and tech-
nical terminology that is used later on in this paper.

2.1 SigmaKEE

The Sigma Knowledge Engineering Environment (SigmaKEE) [20] is a Knowl-
edge Based Reasoning (KBR) environment for developing and using logical
theories. It was created to support the development of the Suggested Upper
Merged Ontology (SUMO). SigmaKEE runs as an Apache Tomcat service,
providing a browser interface to the users. The main components are written
in Java, and the user interface is generated by JSP (Java Server Pages). The
SigmaKEE does not provide tools for editing ontologies; instead it serves as
an addition to an ontology editor (any text editor), supporting the ontol-
ogy engineering process with facilities for structured examination, project
management and debugging.

The most important functionality that can be directly accessed from
SigmaKEE’s main page includes:

Manifest Ontologies are organized in knowledge bases, that consist of one
or more constituent files. Constituent files are files uploaded by the
user which contain SUO-KIF statements. An uploaded knowledge
base (KB) is indexed for high performance browsing and searching [25].
The Manifest page shows the uploaded files contained in a knowledge
base.

Browse The fundamental part of the interface is the Browse page, which
given a term, displays the SUO-KIF statements in which it appears.
The terms in the result statements are interlinked, and allow to fur-
ther browse the statements in which they appear. For each statement,
an English paraphrase of it is additionally shown. The language para-
phrases are automatically generated from the format SUO-KIF state-
ments in the KB, which serve as templates for paraphrasing SUO-KIF
statements in a certain language.

Graph Given a relation, this page displays a graph of the terms connected
by it.

Ask/Tell The Vampire theorem prover [23] is tightly integrated into Sig-
maKEE, adding support for logical inference over the current KB. This
functionality is available in the Ask/Tell page, where a user can add

5

(“Tell”) new statements to the KB, or pose logical queries (“Ask”) to
the KB, in which case the inferred proof will be displayed as a result,
with the proof steps numbered and justified. When the experimental
Controlled English to Logic Translation (CELT) system is loaded, the
user can also enter assertions and queries in English.

SystemOnTPTP This experimental functionality is accessible from the
Ask/Tell page. It allows the user to pose queries to any of the several
theorem provers accessible via a service at the University of Miami.
When a query is submitted, both the query and the entire contents of
the KB are translated to TPTP format and sent to the selected prover
[25].

Since some parts of this project deal with directly modifying SigmaKEE’s
code, an analysis of its code including the most important classes is necessary
in order to get better insight on how it works internally.

KBManager The main class for Sigma, manages all loaded in-memory
knowledge bases (KB instances).

KB Each KB instance contains all the content of the constituent files of
that particular KB, as well as instances of the Vampire and CELT
processes.

KIF This class is used by KB for reading SUO-KIF statements from a given
file into Formula objects, as well as writing them to a file.

Formula A Formula is a representation of a SUO-KIF statement, pro-
viding methods for operating on individual formulas, formatting for
presentation, and pre-processing for use by the Vampire class.

Diagnostics Finds problems in a given KB.

LanguageFormatter Generate natural language from logic.

OWLTranslator SUO-KIF↔OWL translation.

WordNet Given an English term, this class returns the associated SUMO
concepts.

2.2 TNTBase

TNTBase [27] is an open-source versioned XML database obtained by
integrating the XML database Berkeley DB XML into the server-side part
of the Subversion revision control system. The system is intended as a basis
for collaborative editing and sharing XML-based documents. It integrates
versioning and fragment access needed for fine-granular document content
management. As described in [29], two different interfaces can be used to
communicate with TNTBase:

6

1. An XML-enabled SVN interface (xSVN), which works in the same was
as a normal SVN interface, except that commits containing ill-formed
XML files are automatically aborted.

2. A RESTful interface providing functionality for fragment access of
the versioned collection of documents, including querying (possibly
previous revisions) with XQuery [4] and modifying XML content with
XQuery Update [5], as well as Virtual Documents, which are the equiv-
alent to views in relational databases.

2.3 JOMDoc

JOMDoc [10] is a Java API for OMDoc documents, which facilitates the
parsing of OMDoc XML documents into a Java structure, allowing to
manipulate them conveniently, and serialize the result back to XML. Ad-
ditionally it provides several services on top of this functionality, includ-
ing context-sensitive conversion of OMDoc documents containing Content
MathML/OpenMath to XHTML + Presentation MathML, concretion
and abstraction of documents, validation for constraints that can not be
checked by validating against an XML schema, etc.

JOMDoc has been extensively used in the SUO-KIF↔OMDoc trans-
lation, more specifically in the implementation of the sumo2omdoc tool, and
the resolving of circular imports.

3 Work Documentation

This section documents all the work that has been completed in the course
of this project. We start with a theoretical overview of a mapping between
the SUO-KIF and OMDoc constructs, and then the tool the implements
this mapping and allows to automatically translate between the two formats
is presented. Next, we talk about two major problems that we had to solve
in order to have a complete and robust translation – the construction of
imports relations and elimination of circular imports. Finally, we show how
ontology engineers would benefit by using a TNTBase repository for storing
SUMO ontologies in OMDoc format.

3.1 Translating SUMO to OMDoc

SUMO consists of various ontologies written in the SUO-KIF language.
The first step towards the integration between SUMO and OMDoc is to
provide a way to translate between SUO-KIF and OMDoc. Here I outline
the mapping between the SUO-KIF and OMDoc concepts and how this
translation is carried out in theory.

7

Semantically there are four types of constants in SUO-KIF4:

1. Object constants, used to denote individual objects.
2. Function constants, denote functions on those objects.
3. Relations are expressed by relation constants.
4. Logical constants which express conditions about the world, and are

true or false.

SUO-KIF objects can be either classes or individuals. Relations and func-
tions can be defined as instances of the class of all relations and the class of
all functions. Terms can be combined into relational, logical and quantified
sentences, in order to express facts about the world. Let us look at the fol-
lowing example5 which defines the concept of Byte, in order to get a better
understanding of SUO-KIF.

(instance Byte UnitOfInformation)
(documentation Byte EnglishLanguage "One &%Byte of information.

A &%Byte is eight &%Bits.")
(=> (equal ?NUMBER (MultiplicationFn 1 ?NUMBER))

(equal (MeasureFn ?NUMBER Byte)
(MeasureFn (MultiplicationFn ?NUMBER 8) Bit)))

We distinguish the following constants in this example: UnitOfInformation,
Byte, Bit and EnglishLanguage are object constants; MultiplicationFn is
the multiplication function which returns the result of multiplying two num-
bers, and MeasureFn is a function that given a number n and a unit returns
n units, so these are function constants; instance is a relation constant that
denotes that an object belongs to a specific set or class, and documentation
documents an object in a specific language; the logical constants here are =>
for implication and equal for equality (other logical constants in SUO-KIF
are not, and, or and <=>). Variables in SUO-KIF are words in which the
first character is ? or @6, so ?NUMBER is a variable. Byte is an individual
and UnitOfInformation is a class, of which Byte is an instance. The first
and the second statements are relational sentences, whereas the third is a
logical sentence stating the rule that n Bytes equals to 8n Bits.

OMDoc is a three-layered semantic markup language for mathematical
knowledge, as described in [11]:

Objects comprise mathematical formulae, usually composed of symbols
and represented in content markup, using OpenMath [2] or MathML
[3].

Statements are assertions about objects, including definitions, theorems,
proofs and examples.

4There is no distinction in syntax however.
5Taken from the SUMO ontology.
6Called “row” or “sequence” variables, as they can hold a variable number of arguments.

8

Theories are a collection of symbol declarations, that describe mathemat-
ical objects specific to the theory, and statements which state the laws
about the properties of the theory. In other words, theories provide
context for symbols and statements.

Similarly to the OMDoc↔RDFS/OWL mapping presented in [14], a one-
to-one correspondence between the SUO-KIF constructs and the three lev-
els of markup supported by OMDoc can be easily derived:

Ontologies A SUO-KIF ontology corresponds to an OMDoc theory.

Objects Classes and individuals (including relations and functions) are
modelled as symbols. In case of an individual, a type element is
added with the class of which an individual is an instance. When a
documentation is specified for a concept, it is added to the metadata
of the corresponding symbol as a dc:description. Object constants
which occur in a documentation7 are substituted with term elements.

Statements All other SUO-KIF statements are modelled as OMDoc ax-
ioms. In an axiom, a SUO-KIF rule is formally represented as an
OpenMath expression.

Figure 1 illustrates these correspondences with a simple example. The gen-
erated example theory reuses concepts from three other theories: suo-kif
defines the basic language constructs of SUO-KIF, like logical and compar-
ison operators, quantifiers, and the root SUMO class, Entity; Merge is the
SUMO itself as translated to OMDoc, and Mid-level is the MILO.

3.1.1 sumo2omdoc

According to the mapping introduced in the previous section, I have im-
plemented the sumo2omdoc tool which automates the process of translating
between the SUO-KIF and OMDoc formats. It is based on the JOMDoc
and SigmaKEE Java libraries, so for the reason of easier integration it is
also implemented in the Java programming language. This also means that
the tool is cross-platform portable, and that it will work on every operating
system for which Java Runtime Environment 1.5 is available. sumo2omdoc
along with all of SUMO translated to OMDoc is publicly available at
http://alpha.tntbase.mathweb.org/repos/sumo/. The README file con-
tains a description of the directory structure and information on how to
build the code.

sumo2omdoc is designed to be both developer-friendly, allowing for easy
integration in other projects, and user-friendly, by providing a command-
line user interface. The code is heavily documented with Javadoc, so I will

7Denoted by prefixing a word with &%, e.g., &%Byte and &%Bits in the previous example.

9

http://alpha.tntbase.mathweb.org/repos/sumo/

(subclass Camera Device)

(documentation Camera EnglishLanguage
"A &%Device which is capable of &%Photographing.")

(=>
 (instance ?CAMERA Camera)
 (capability Photographing instrument ?CAMERA))

(instance SonyA200 Camera)

<theory name="example">
 <imports from="Merge.omdoc#Merge"/>
 <imports from="suo-kif.omdoc#suo-kif"/>
 <imports from="Mid-level.omdoc#Mid-level"/>
 <symbol name="Camera">
 <metadata>
 <dc:description xml:lang="en">
 A <term cd="Merge" name="Device">Device
 </term>which is capable of <term cd="Mid-
 Level" name="Photographing">Photographing
 </term></dc:description>
 </metadata>
 </symbol>
 <axiom xml:id="Camera-subclass" for="Camera">
 <FMP>
 <om:OMOBJ>
 <om:OMA>
 <om:OMS name="subclass" cd="Merge"/>
 <om:OMS name="Camera" cd="example"/>
 <om:OMS name="Device" cd="Merge"/>
 </om:OMA>
 </om:OMOBJ>
 </FMP>
 </axiom>
 <axiom xml:id="Camera-rule" for="Camera">
 <FMP>
 <om:OMOBJ>
 <om:OMA>
 <om:OMS name="implies" cd="suo-kif"/>
 <om:OMA>
 <om:OMS name="instance" cd="Merge"/>
 <om:OMV name="?CAMERA"/>
 <om:OMS name="Camera" cd="example"/>
 </om:OMA>
 <om:OMA>
 <om:OMS name="capability" cd="Merge"/>
 <om:OMS name="Photographing"
 cd="Mid-level"/>
 <om:OMS name="instrument" cd="Merge"/>
 <om:OMV name="?CAMERA"/>
 </om:OMA>
 </om:OMA>
 </om:OMOBJ>
 </FMP>
 </axiom>
 <symbol name="SonyA200">
 <type><om:OMOBJ><OMS cd="example"
 name="Camera"/></om:OMOBJ></type>
 </symbol>
</theory>

 example.kif example.omdoc

Figure 1: An example of mapping between SUO-KIF and OMDoc

omit the implementation details here. The command-line interface exposes
all functionality to the user, and can be accessed through the according
Windows or Linux/Mac scripts. For example, an ontology Example.kif
could be translated to an OMDoc document Example.omdoc by executing
./sumo2omdoc --sumo-to-omdoc Example.kif -o Example.omdoc. A list
of all available command-line options along with descriptions of them can
be printed with the --help option.

10

3.1.2 Identifying Imports Relations

In OMDoc, if a theory reuses concepts defined in another theory, it must
explicitly import the other theory. While implementing the SUO-KIF to
OMDoc translation, constructing the imports was a major problem, as
SUMO does not have any explicit notion of imports. Given only one SUMO
ontology and an undefined object in it, it is impossible to determine in which
ontology is this object defined. Some ontologies specify imports relations as
comments, but this is not respected in all ontologies and the translation
can not rely solely on it. sumo2omdoc tries to handle this problem by first
caching the terms defined in all of the ontologies that comprise SUMO, and
then reusing this knowledge to construct the right imports when translating
from SUMO to OMDoc.

3.1.3 Resolving Circular Imports

Many SUMO ontologies depend on each other in a circular fashion, e.g.,
an ontology O1 uses concepts defined in O2, and vice versa, O2 uses con-
cepts from O1. Circular dependencies are considered a software design anti-
pattern, for several reasons:

• There is a tight coupling of the involved modules, which reduces or
makes impossible the separate re-use and testing of a single module.

• They can cause a domino effect, when a small local change in one
module spreads over other modules causing unwanted global effects,
as well as infinite recursions and other unexpected failures.

• Higher system complexity with respect to connections of knowledge –
in a hierarchical system of N modules the complexity is bounded by
O((N(N−1))/2), whereas in a system containing circular dependencies
this complexity is O(N2).

This is no exception in OMDoc, so we would want to avoid the circular im-
ports that come up in the translation. One way to handle circular imports,
which I initially implemented in sumo2omdoc, is to use local imports. Local
imports only import the target theory, without further importing the theo-
ries imported by the target theory. sumo2omdoc recursively computes all the
required imports and adds them to the result as local imports. This is not a
particularly good solution because it introduces harder maintainability, e.g.,
suppose the imports in a theory τ have changed, then these changes must
be propagated to all theories that import τ in this way. Moreover, local
imports will become obsolete in later versions of OMDoc 1.3.

Circular imports can not be resolved by only reordering the direct im-
ports between theories (a trivial example would be two theories importing
on each other), and require moving concepts from one theory to another.

11

The method we describe here is based on refactoring common concepts to
a new “utility” theory. Given a set of N OMDoc documents, we could
represent them with two related graphs:

• GI(VI , EI) in which for each theory τv in the given documents, there
is a vertex v ∈ VI , and each edge (u, v) ∈ EI means that theory
τu imports theory τv. Thus, GI is a graph of the imports relations
between the given OMDoc theories.

• GD(VD, ED) in which the vertices are the theory constitutive elements
in the given theories (symbols, axioms and definitions), and an edge
(ui, vj) ∈ ED means that u from theory τi depends on v from τj . GD

therefore represents the dependencies of individual theory parts. We
additionally define SGi(VDi, EDi) as a subgraph of GD, which includes
all vertices in VD that belong to theory τi, and by the definition of a
subgraph all edges from ED that connect the vertices in VDi.

Eliminating the circular imports in a set of OMDoc documents is equivalent
to breaking the cycles in GI , i.e. transforming it to a Directed Acyclic Graph
(DAG). This could be done by running Algorithm 1 on GI . Identifying the

Algorithm 1 break cycles(GI , GD)
while true do
c := identify cycle(GI)
if c = ∅ then

return
end if
break cycle(c,GI , GD)

end while

circular imports is relatively easy, and can be done by running a Depth
First Search (DFS) algorithm modified to detect cycles on GI . The most
important part of the algorithm is break cycle(c,GI , GD) (outlined in Al-
gorithm 2). Given a cycle c = v . . . u v, it rearranges the vertices
GI that are part of c, so that they are no longer circularly dependent on
each other, while preserving the original dependency relations between them
in GD. The algorithm starts by choosing one edge (u, v) from c where the
cycle will be broken, removes it and adds a new vertex vuv to VI along with
a new edge (u, vuv) to EI . Now c is not a cycle any more, as it has been
transformed from v . . . u v to v . . . u vuv. Then it
moves to τuv all parts in theory τv on which parts in τu depend (set Vv), as
well as any vertices that are part of the cycle and on which each vertex in
Vv depends directly or indirectly (set Vw), by renaming the corresponding
vertices in GD and updating the imports in GI .

Figure 2 shows an example of breaking one edge. There are three doc-
uments – A, B and C, in which a, b, . . . , h, i are concepts, and x, y and z

12

Algorithm 2 break cycle(c,GI , GD)
(u, v) := choose edge(c)
Vv := {v|u ∈ VDu ∧ v ∈ VDv ∧ (u, v) ∈ ED} // concepts in v used by u
if Vv = ∅ then

return
end if
VI := VI ∪ {vuv} // create a new theory
// u imports the new theory now, instead of v
EI := (EI \ {(u, v)}) ∪ {(u, vuv)}
// get all concepts on the cycle
VC := {y|x ∈ VI ∧ contains(c, x) ∧ y ∈ VDx}
for wv ∈ Vv do

// Vw denotes all concepts that will be moved to vuv – wv itself, and
// all concepts on the cycle on which it depends directly or indirectly
Vw := {wv} ∪ {x|wv . . . x ∧ x ∈ VC}
for wi ∈ Vw do
Vd := {x|x ∈ GD ∧ (x,wi) ∈ ED} // all parts that depend on wi

for wd ∈ Vd do
// wd depends on wi, but wi will be moved to vuv, so an import
// from d to vuv is added (d ∈ VI corresponds to VDwd

)
EI := EI ∪ {d, vuv}

end for
wi := wuv // move wi to theory τuv

end for
end for

are axioms. In the context of the two graphs introduced earlier, A,B and
C make up VI and the thick arrows between them are the edges in EI (an
arrow from A to B means that A imports B). The concepts and axioms,
along with the thin arrows between them are part of GD. In the example
we assume the following scenario: a cycle A B C A has been iden-
tified, and using the strategy of choosing the first edge, the cycle is broken
at A B. After this the algorithm terminates, as there are no more cycles
left in the graph.

It is easy to see that the algorithm works correctly. When breaking a
cycle c at an edge (u, v), the edge is removed from c and a new vertex vuv

is introduced which does not depend on any vertex on the cycle, and on
which at least u depends. So we can conclude that break cycle breaks a
given cycle, but does not introduce any new cycles in the graph, therefore
break cycles removes all cycles from the graph in finite time. More specif-
ically, its time complexity is roughly8 O(KC(|VI | + |EI |)), where C is the

8It is hard to estimate an exact bound, since its behaviour largely depends on the
strategy used to choose an edge for breaking from the cycle.

13

a
b
c

x

d
e
f

y g
h
i

z

A B

C

b
c

x

d
f

y
g

A

B

C

h
i
a
e
z

AB

Figure 2: An example of resolving circular imports

number of identified cycles andK is some polynomial bound of break cycle.
The algorithm is not flawless however, and problems could arise in certain

cases. Since it involves moving of concepts between theories and renaming
them in cases of name clashes, all theories that depend on these concepts
need to be accordingly updated. This is not a problem in our case because
all of SUMO is available when running the algorithm, but often it will not
be the case.

An implementation of the algorithm is available in the JOMDoc library
(in the org.omdoc.jomdoc.transform.CircularImportsResolver class).
This functionality can be used by specifying the --resolve-circular op-
tion in sumo2omdoc, which takes a directory with OMDoc documents as an
argument, and optionally the --copy option can be used to specify that the
results should be copied in a different directory instead of overwriting the
original documents.

3.2 TNTBase and SUMO

Ontology engineering is a discipline that is closely related to software en-
gineering. Usually engineers work together on one project, thus support
for collaborative development, integrated testing and evaluation is essential.
Normally, a Subversion server or a similar revision control system would
suffice for this purpose. In our project however, we have decided to use
TNTBase, which is a versioned XML database. Since we have already
translated the SUMO ontologies to OMDoc XML format, we can make
use of the XML-specific functionality that TNTBase offers. Here we con-
centrate on Virtual Documents [29, 28], and how they could help ontology
engineers to further refine and customize the ontology engineering process
to their needs, beyond what tools with static functionality like SigmaKEE

14

already offer. VDs allow to integrate XQuery-based computational facili-
ties into XML documents. They are “XML database views” analogous to
views in relational databases, only that in TNTBase VDs are the result
of XQueries computed over the XML files in the TNTBase file-system,
instead of SQL queries computed over the database tables. Internally VDs
are quite different from usual documents in the repository, but otherwise
they appear as normal files in the TNTBase file-system, that the user can
browse, validate, query and transparently modify.

In [15] it was presented how Virtual Documents can be utilized in the
refactoring of ontologies, with examples for renaming entities, splitting or
merging modules, rewriting axioms, lowering expressivity and stripping ax-
iom annotations. Even though this paper is with focus on ontologies written
in the OWL 2 Web Ontology Language, the presented use cases are still
relevant in our case and could be easily adapted to SUMO ontologies in
OMDoc format. In this paper we illustrate how VDs could be used to help
the user focus on a particular subsection of a knowledge base. For example,
if we would be working on something related to Europe, then there is no
need to load the whole CountriesAndRegions ontology, but only the parts
relevant to Europe. The VD in Appendix A allows us to do exactly this
– given a document in the TNTBase repository and a particular class on
which we want to concentrate, it computes a view of all its subclasses and
instances, and related axioms.

In order to make TNTBase easily accessible to SUMO users we have
added minimal but very essential support for it in SigmaKEE – loading
knowledge bases directly from a remote TNTBase repository. The user
can set a remote repository URL on the Preferences page in SigmaKEE.
Then, on the Manifest page, the user can also load a selected constituent
from the previously specified repository besides loading SUO-KIF files from
the file-system, (Figure 3). Virtual Documents in the repository can be also
selected, which results in loading the “view” they compute on a certain
ontology. Since the content in TNTBase is in OMDoc format, in order
to be understood by SigmaKEE it is automatically translated to SUO-
KIF format by sumo2omdoc after it has been retrieved from the repository.
With this we have achieved seamless integration, as loading files in OMDoc
format from a TNTBase repository is just as easy as loading constituents
from the file-system.

4 Evaluation

I have evaluated the translation between SUO-KIF and OMDoc on all
SUMO ontologies by quickly examining the results. For thoroughly testing
the translation, a simple control ontology that contained all SUO-KIF con-
structs was used. The sumo2omdoc tool is non-destructive, i.e., given an on-

15

Figure 3: Loading a KB from TNTBase

tologyO, it holds thatO = OMDoc→SUO-KIF(SUO-KIF→OMDoc(O)).
This has been verified with the diff Unix file comparison utility – for every
SUMO ontology O, O′ was computed by translating O to OMDoc format
and translating this intermediate file back to SUO-KIF format, and then
running diff O O′ has only revealed differences in indentation and new
lines. This is an important property of sumo2omdoc as it allows us to safely
translate back and forth between SUMO and OMDoc, which is essential in
scenarios like the previously discussed TNTBase integration, and it shows
that the OMDoc to SUO-KIF translation is correct. However, this does
not necessarily mean that the SUO-KIF to OMDoc translation is correct;
the correctness of this direction was checked by successfully validating the
generated OMDoc document against the OMDoc 1.3 RelaxNG schema.
Additionally this is supported by the fact that the JOMDoc library, which
is compatible to OMDoc 1.3, was used in the translation.

The circular imports resolving algorithm (cf. section 3.1.3) has been
evaluated on a set of manually created documents that cover many specific
cases. The extreme test for checking the performance and robustness of the
algorithm consisted of running it over all SUMO ontologies9, using a simple
strategy of always choosing to break the first edge of a cycle. Starting with
36 documents, the algorithm eliminated 21 cycles, which involved moving

9The SUMO, the MILO, and the domain ontologies.

16

2608610 symbols and axioms to newly created theories, resulting in 5411

documents at the end. Changing to a more intelligent strategy of choosing
an edge (u, v) such that v defines the least number of concepts with respect
to all theories on the cycle, lead to a much faster completion of the algorithm
as it involved moving only 4929 parts, but breaking more cycles (34), ending
with 58 documents. The result from the algorithm has been verified with
the imports validation functionality available in JOMDoc, which checks
for symbol visibility, circular and redundant imports. JOMDoc has only
reported redundant imports, which are not very critical. In order to solve
this problem we will add an option to automatically fix inconsistencies such
as redundant imports to JOMDoc, as currently it can only detect them.

5 Conclusion and Future Work

In this project a solid foundation for integration between SUMO, the Sug-
gested Upper Merged Ontology, and OMDoc, a markup format and data
model for Open Mathematical Documents, has been laid out. The SUMO
ontologies are written in the SUO-KIF language, which is different from the
OMDoc format, so we have first constructed a semantic-preserving mapping
between the two formats. This enables SUMO to make use of OMDoc’s
modularity and documentation infrastructure. OMDoc users on the other
hand will benefit from being able to use a large formal ontology. Based on
the discussed mapping a sumo2omdoc tool has been implemented, which al-
lows to automate the process of translating between SUMO and OMDoc.
After translating SUMO to OMDoc, the explicit modularization of the on-
tologies has revealed that many of the ontologies are circularly dependent on
each other. In order to handle this, an algorithm which automatically breaks
circular imports in a set of OMDoc documents has been implemented in
the JOMDoc Java library. With this the SUMO↔OMDoc translation is
complete and provides a robust foundation on which to base further work.
Finally, we have given some practical examples on how ontology engineers
working on SUMO would benefit from the possibility to translate to OM-
Doc. More specifically, we have focused on TNTBase, showing how it can
help ontology engineers to further refine and customize the ontology engi-
neering process to their needs, beyond what tools with static functionality
like SigmaKEE already offer. To make the usage of TNTBase as easy as
possible, basic support for directly loading ontologies and “views” generated
from Virtual Documents in OMDoc format has been added to SigmaKEE.

10Note that this does necessarily mean that 26086 distinct parts were moved, but that
parts were moved so many times.

11There are less than 36 + 21 = 57 theories, because it may happen that after breaking
an edge a document could end up with no content at all, in cases when two documents
are very tightly coupled.

17

It was beyond the scope of this project to develop something more than
a low-level basis for collaboration between SUMO and OMDoc, so there
is a lot of space for improvements and further work. One aspect that could
be further improved is modularization of SUMO, in terms of partitioning
of the big monolithic SUMO ontologies into smaller ones. Modularization
techniques are considered to be a key capability in the current efforts to-
wards scalable solutions that will enable ontologies to grow to the huge size
that we can foresee in real world future applications [24]. Given the modular
infrastructure that OMDoc provides, it would be relatively easy to imple-
ment an automated partitioning of big theories in JOMDoc based on some
of the methods described in [24], e.g., partitioning based on the structural
properties of an ontology.

In section 3.1.3 we presented an algorithm for eliminating circular im-
ports. Even though this algorithm is with focus on OMDoc documents, it
can be generalized to the dependencies between software modules/compo-
nents instead of imports relations between theories, and applied in any other
cases in software engineering where automated instead of manual elimina-
tion of circular dependencies would be preferred. A generic framework that
only expects specifications on what is a module, and when one module de-
pends on another, could be easily implemented and would allow to quickly
adapt it to any case. The algorithm itself could be further optimized, by
investigating what would be the optimal strategy for choosing which edge on
a cycle to break. The performance of the algorithm is largely dependent on
this strategy, as breaking a certain edge could lead to breaking many cycles
at once, whereas another could involve moving thousands of concepts.

Further effort could be also put in the integration with TNTBase in
order to make it even more transparent to the users. Ontology engineers
would most likely edit the ontologies in SUO-KIF format instead of OM-
Doc, as it is more human-readable. Thus in their working copy of the
remote TNTBase repository, the ontologies would be in SUO-KIF format,
and the translation to OMDoc and back would be automatically done by
sumo2omdoc on the server when committing or updating.

6 Acknowledgements

I would like to thank Michael Kohlhase, Christoph Lange, Florian Rabe and
Vyacheslav Zholudev for the great guidance and direct support throughout
this guided research. It would have been impossible without their help.

18

References

[1] Grzegorz Bancerek and Michael Kohlhase. Towards a Mizar Mathe-
matical Library in OMDoc Format. In Roman Matuszewski and Anna
Zalewska, editors, From Insight to Proof – Festschrift in Honour of
Andrzej Trybulec, volume 10(23) of Studies in Logic, Grammar, and
Rhetoric. The University of Bialystok, Polen, 2007.

[2] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar,
Marc Gaetano, and Michael Kohlhase. The Open Math standard, ver-
sion 2.0. Technical report, The Open Math Society, 2004.

[3] David Carlisle, Robert Miner, and Patrick Ion. Mathemati-
cal markup language (MathML) version 3.0. Candidate recom-
mendation, W3C, December 2009. http://www.w3.org/TR/2009/
CR-MathML3-20091215/.

[4] Don Chamberlin, Jonathan Robie, Daniela Florescu, Scott Boag,
Jérôme Siméon, and Mary F. Fernández. XQuery 1.0: An XML
query language. W3C recommendation, W3C, January 2007. http:
//www.w3.org/TR/2007/REC-xquery-20070123/.

[5] Don Chamberlin, Jonathan Robie, Daniela Florescu, Jim Melton,
Jérôme Siméon, and Michael Dyck. XQuery update facility 1.0. Can-
didate recommendation, W3C, June 2009. http://www.w3.org/TR/
2009/CR-xquery-update-10-20090609/.

[6] Elena Digor. An OMDoc representation of Mizar library. Bachelor’s
thesis, Computer Science, Jacobs University, Bremen, 2008.

[7] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format,
Version 3.0 Reference Manual. Technical Report Logic-92-1, Stanford
University, Stanford, CA, USA, 1992.

[8] W3C OWL Working Group. OWL 2 Web Ontology Language Docu-
ment Overview. W3C recommendation, W3C, October 2009. http:
//www.w3.org/TR/2009/REC-owl2-overview-20091027/.

[9] Ramanathan V. Guha and Dan Brickley. RDF Vocabulary Description
Language 1.0: RDF Schema. W3C recommendation, W3C, February
2004. http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[10] JOMDoc project — Java library for OMDoc documents. http://
jomdoc.omdoc.org, 2010. seen May.

[11] Michael Kohlhase. OMDoc – An open markup format for mathemat-
ical documents [Version 1.2]. Number 4180 in LNAI. Springer Verlag,
August 2006.

19

http://www.w3.org/TR/2009/CR-MathML3-20091215/
http://www.w3.org/TR/2009/CR-MathML3-20091215/
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2009/CR-xquery-update-10-20090609/
http://www.w3.org/TR/2009/CR-xquery-update-10-20090609/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://jomdoc.omdoc.org
http://jomdoc.omdoc.org

[12] Siarhei Kuryla. OMDoc as an ontology language: OWL→OMDoc
translation implementation, 2009.

[13] Christoph Lange. Krextor – an extensible XML→RDF extraction
framework. In Chris Bizer, Sören Auer, and Gunnar Aastrand Grimnes,
editors, Scripting and Development for the Semantic Web (SFSW2009),
May 2009.

[14] Christoph Lange and Michael Kohlhase. A Mathematical Approach
to Ontology Authoring and Documentation. In Jacques Carette, Lucas
Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt, editors, MKM/-
Calculemus 2009 Proceedings, number 5625 in LNAI, pages 389–404.
Springer Verlag, July 2009.

[15] Christoph Lange and Vyacheslav Zholudev. Previewing OWL Changes
and Refactorings Using a Flexible XML Database. In Mathieu d’Aquin,
Alexander Garćıa Castro, Christoph Lange, and Kim Viljanen, editors,
1st Workshop on Ontology Repositories and Editors, CEUR Workshop
Proceedings, Hersonissos, Greece, May 2010.

[16] A. Lopez and J. Donlon. Knowledge Engineering and Education. Ed-
ucational Technology, 41(2):45–50, July 2001.

[17] Ankur Modi. Translating Mizar Mathematical Library to OMDoc.
Bachelor’s thesis, Computer Science, Jacobs University, Bremen, 2009.

[18] Ian Niles and Adam Pease. Towards a Standard Upper Ontology. In
Chris Welty and Barry Smith, editors, 2nd International Conference
on Formal Ontology in Information Systems (FOIS-2001), pages 2–9,
Ogunquit, Maine, USA, October 2001. ACM Press.

[19] Peter Norvig and Stuart Russel. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, second edition, 2003.

[20] Adam Pease. The Sigma Ontology Development Environment. In
Working Notes of the IJCAI-2003 Workshop on Ontology and Dis-
tributed Systems, volume 71 of CEUR Workshop Proceeding series, Aca-
pulco, Mexico, August 2003.

[21] Adam Pease. Standard Upper Ontology Knowledge Interchange
Format. Language manual, available at http://sigmakee.cvs.
sourceforge.net/*checkout*/sigmakee/sigma/suo-kif.pdf, 2009.

[22] Adam Pease, Ian Niles, and John Li. The Suggested Upper Merged
Ontology: A Large Ontology for the Semantic Web and its Applications.
In In Working Notes of the AAAI-2002 Workshop on Ontologies and
the Semantic Web, page 2002, 2002.

20

http://sigmakee.cvs.sourceforge.net/*checkout*/sigmakee/sigma/suo-kif.pdf
http://sigmakee.cvs.sourceforge.net/*checkout*/sigmakee/sigma/suo-kif.pdf

[23] Alexandre Riazanov and Andrei Voronkov. The design and implemen-
tation of VAMPIRE. AI Communications, 15(2,3):91–110, 2002.

[24] Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra,
editors. Modular Ontologies: Concepts, Theories and Techniques for
Knowledge Modularization. Springer-Verlag, Berlin, Heidelberg, 2009.

[25] Steven Trac, Geoff Sutcliffe, and Adam Pease. Integration of the TPT-
PWorld into SigmaKEE. 2008.

[26] Andrzej Trybulec and Howard Blair. Computer assisted reasoning with
MIZAR. In IJCAI’85: Proceedings of the 9th international joint con-
ference on Artificial intelligence, pages 26–28, San Francisco, CA, USA,
1985. Morgan Kaufmann Publishers Inc.

[27] Vyacheslav Zholudev and Michael Kohlhase. TNTBase: a versioned
storage for XML. In Proceedings of Balisage: The Markup Conference
2009, Balisage Series on Markup Technologies. Mulberry Technolo-
gies, Inc., 2009. available at http://kwarc.info/vzholudev/pubs/
balisage.pdf.

[28] Vyacheslav Zholudev and Michael Kohlhase. Scripting Documents with
XQuery: Virtual Documents in TNTBase. available at http://kwarc.
info/kohlhase/papers/balisage10.pdf, 2010.

[29] Vyacheslav Zholudev, Michael Kohlhase, and Florian Rabe. A [insert
XML Format] Database for [insert cool application]. In Proceedings of
XML Prague 2010, 2010.

21

http://kwarc.info/vzholudev/pubs/balisage.pdf
http://kwarc.info/vzholudev/pubs/balisage.pdf
http://kwarc.info/kohlhase/papers/balisage10.pdf
http://kwarc.info/kohlhase/papers/balisage10.pdf

A Computing KB Subsections

Given a class name ($name in the code), and a specific document in the
repository ($file), the XQuery code in Listing 1 computes a “view” that
contains the parts of the document related to the class. Note that in order
to keep the example simple and concise, we do not consider the imports
relations.

Listing 1: Compute a subsection of a KB
declare d e f a u l t element namespace "http://omdoc.org/ns" ;
declare namespace om = "http://www.openmath.org/OpenMath" ;

(: r e turn a l l s u b c l a s s e s o f a c l a s s :)
declare function l o c a l : s u b c l a s s e s ($d as element (omdoc) ,

$name as xs : s t r i n g) as element (symbol)∗ {
let $names := $d//axiom/FMP/om:OMOBJ/om:OMA[

c h i l d : : om:OMS[1] [@name=’ subc la s s ’] and
c h i l d : : om:OMS[3] [@name=$name]] / om:OMS[2] / @name/ s t r i n g ()

return
for $n in $names return $d// symbol [@name=$n]

} ;
(: r e turn a l l i n s t a n c e s o f a c l a s s :)
declare function l o c a l : i n s t a n c e s ($d as element (omdoc) ,

$name as xs : s t r i n g) as element (symbol)∗ {
$d// symbol [c h i l d : : type /om:OMOBJ/om:OMS[@name=$name]]

} ;
(: r e turn a l l axioms in which a c l a s s / in s t anc e i s used :)
declare function l o c a l : axioms ($d as element (omdoc) ,

$name as xs : s t r i n g) as element (axiom)∗ {
$d//axiom [descendant : : om:OMS[@name=$name]]

} ;
(: compute a subse c t i on o f a KB $d :)
declare function l o c a l : subkb ($d as element (omdoc) ,

$s as element (symbol)) as element ()∗ {
let $name := $s /@name/ s t r i n g ()
let $ s u b c l a s s e s := l o c a l : s u b c l a s s e s ($d , $name)
let $ i n s t a n c e s := l o c a l : i n s t a n c e s ($d , $name)
let $axioms := l o c a l : axioms ($d , $name)
return $s | $axioms | (

for $ob j e c t in ($ s u b c l a s s e s | $ i n s t a n c e s)
return l o c a l : subkb ($d , $ob j e c t))

} ;

<theory name="{tnt:doc($file)/omdoc/theory/@name/string()}">{
l o c a l : subkb (tnt : doc ($ f i l e)/omdoc ,

tnt : doc ($ f i l e)// symbol [@name = $ c l a s s])
}</theory>
</omdoc>

In Listing 2 the corresponding VD Specification is shown. A VD Spec is a
document template with XQuery inclusions, that TNTBase uses in order
to figure out how to execute a particular XQuery and populate the query

22

results. In the VD Spec we set the parameters that the XQuery expects,
namely Europe as a class for which we want to compute a subsection of the
CountriesAndRegions.omdoc ontology.

Listing 2: VD Specification
<tn t :v i r tua ldocument xmlns : tnt="http://tntbase.mathweb.org/ns">

<t n t : s k e l e t o n xml : id="subkb">
<omdoc xmlns="http://omdoc.org/ns"

xmlns:om="http://www.openmath.org/OpenMath"

xmlns:dc="http://purl.org/dc/elements /1.1/">
<t n t : x q i n c l u d e query="tntbase:/docs/example/subkb.xq">

<t n t : r e t u r n>< t n t : r e s u l t /></ t n t : r e t u r n>
</ t n t : x q i n c l u d e>

</omdoc>
</ t n t : s k e l e t o n>
<tnt :params>

<tnt:param name="class">
<t n t : v a l u e>Camera</ t n t : v a l u e>

</ tnt:param>
<tnt:param name="file">

<t n t : v a l u e>/ docs /example/ Al l . omdoc</ t n t : v a l u e>
</ tnt:param>

</ tnt :params>
</ tnt :v i r tua ldocument>

23

	Introduction
	SUMO
	OMDoc
	Statement and Motivation of Research
	Related Work
	Outline

	Technology Overview
	SigmaKEE
	TNTBase
	JOMDoc

	Work Documentation
	Translating SUMO to OMDoc
	sumo2omdoc
	Identifying Imports Relations
	Resolving Circular Imports

	TNTBase and SUMO

	Evaluation
	Conclusion and Future Work
	Acknowledgements
	Computing KB Subsections

