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Abstract

A long-term goal in mechanized mathematics is to create a system
that combines the declarative, deductive and computational aspects of
Mathematical Knowledge Representation.

Our approach towards this is to first create two subsystems: one that
combines the declarative and deductive aspects and one that combines the
declarative and computational aspects. The two subsystems share Mmt
as the declarative component, which allows us to later on connect the
deductive and computational components. Furthermore, Mmt can specify
arbitrary logics and programming languages, which makes our system
fully extensible. This is a major advantage over other Proof Assistants
and Computer Algebra systems, which fix the logic and the programming
language, respectively.

In this thesis, we focus on the subsystem that integrates the declara-
tive and computational components. We create a framework which uses
Mmt to declare the specifications and implementations of mathematical
concepts and a universal machine as a computational engine that collects
all the implementations and uses them to evaluate mathematical expres-
sions. As a case study, we select a representative set of concepts from the
OpenMath Content Dictionaries and we write implementations for them
in the Scala programming language.

1 Introduction

There exist three main aspects of Mathematical Knowledge Representation. The
declarative aspect is concerned with symbols, types, theories and relations be-
tween theories, such as theory morphisms and module systems. The deductive
aspect consists of axioms, rules of inference, theorems and proofs and the com-
putational aspect deals with numerical and symbolic computation.
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Existing systems integrate at most two of these aspects and they fall into
three categories:

• the declarative systems focus on the declarative aspect and are mini-
mally concerned with deduction or computation. Some declarative, logic
independent systems are OpenMath [BCC+04], OMDoc [Koh06] and
Mmt [Rab13]. They are extensible, which means that users can add new
symbols or theories to them.

• the declarative and deductive systems combine the declarative and
deductive aspects and are commonly known as proof assistants (PA).
They must provide a formal language or logic in which to write the axioms
and the rules of inference. They are only partially extensible, because the
logic is usually fixed (in order to optimize the derivations of the proofs),
but users can add new definitions and theorems. Examples of PAs are
the Mizar system[TB85] and Coq[BC04]. There also exist proof assis-
tants which declare multiple logics and are called logical frameworks.
Examples are LF[HHP93] and Isabelle[Wen09]. LF does not optimize
derivations in any of its logics, while Isabelle optimizes in only few of
them.

• the declarative and computational systems integrate the declarative
and computational aspects and are commonly known as Computer Al-
gebra Systems (CA). They usually provide a programming language in
which to write the implementations of mathematical operations. Simi-
lar to the PAs, they are only partially extensible since the programming
language is fixed, but users can add new operations and implementations.
Examples of CAs are Mathematica[Mat], Maple[Map] and Axiom[Axi].

The PAs and the CAs have different purposes and areas of application. PAs
are generally used in formalization of mathematics and software verification,
while CAs are used in engineering, mathematics, physics or statistics. A CA
typically performs numerical or symbolic computation, where the user enters
an expression and the CA (usually) returns a simplified version of it. CAs
are optimized for high-level mathematics and are very efficient in carrying out
computations. In contrast to PAs, CAs are neither fully precise nor reliable, and
are not able to express complex type systems and logics[HT98]. PAs are used for
defining and proving; users can declare mathematical theories, define properties
and do logical reasoning on them[Geu09]. In contrast to CAs, PAs are weaker
at numerical or symbolic computation, but guarantee their correctness[HT98].

We can see that the PAs and the CAs complement each other’s strengths
and, therefore, combining them has been a major research topic.

Goal An outstanding goal of mechanized mathematics is to design a system
that is able to compute efficiently and precisely, do proofs and verify theo-
rems. Such a system would be a declarative, deductive and computational
(DDC) system.
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Figure 1: Some of the currently available systems.

The most difficult part in creating a DDC system, however, is the integration
of deduction and computation. There exists a large body of research that aims to
do that, using different approaches. One of them is the combinational approach,
where a PA and a CA are combined or connected to obtain a DDC system.
For example, in [DM05], Maple computations are imported into Coq and
in [HT98], HOL and Maple are connected using a software bus. An obvious
drawback of the combinational approach is the fact that the resulting system
inherits all the weaknesses of its PA and CA, including their limited extensibility.
Another approach towards a DDC system is to design a specification language
powerful enough to support specifications of both a logic (for the deductive
part) and a programming language (for the computational part). A system that
employs this is FoCaLiZe[foc], where the environment is based on a functional
language with object-oriented features which allows the user to write formal
specifications and proofs. This system also fixes the programming language
(OCaml) and the PA (Coq).

Our Approach We contribute to the development of a DDC system by ini-
tially creating two subsystems. The first subsystem integrates the declarative
and deductive realms and the second subsystem integrates the declarative and
computational realms. The key idea here is to have the same declarative com-
ponent for both subsystems, so that the two can be connected at a later stage
and become a complete DDC system. Moreover, the declarative system that
we use, called Mmt, allows us to specify arbitrary logics and programming
languages, which makes our DDC system fully extensible. This is a major
advantage over other PAs and CAs which, as previously mentioned, are only
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partially extensible, since they fix the logic and the programming language.
In this thesis, we present the practical realization of one of the subsystems,

namely the one which integrates the declarative and computational realms. We
call this system Ddc-Lite.

Let us now briefly discuss how Ddc-Lite works. We use a language L to
represent the data that we are computing on (commonly known as specifica-
tion language) and a programming language P to implement the mathematical
operations. We implement L and P as Mmt meta-theories LMMT and PMMT,
respectively. These meta-theories introduce the primitive concepts of L and P
into Mmt. L and P primitives are declared as Mmt constants in LMMT and
PMMT, respectively.

We specify a concept c as an Mmt constant cMMT in a theory tMMT whose
meta-theory is LMMT. We implement c as an Mmt assignment in a morphism
TMMT : tMMT → PMMT, where we assign to cMMT a code snippet cimpl written in
P. Intuitively, the code snippet acts as the implementation of the computational
semantics of cMMT[IMR13]. A component of Ddc-Lite, called the Universal
OpenMath Machine, collects all the implementations and uses them to evaluate
L-expressions.

The design and implementation of Ddc-Lite are explained in more detail
in Sections 3 and 4 respectively, where, as a case study, we use OpenMath as
the specification language and Scala as the programming language.

DECLARATIVE
Mmt, OpenMath

DEDUCTIVE
COMPUTATIONAL

Scala

Ddc-Lite

last step

Figure 2: Our approach towards building a DDC system
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2 Preliminaries

2.1 MMT and OMDoc

Mmt [Rab13] is a modular and logic independent representation language for
mathematical knowledge. Mmt theories may contain symbol declarations for
constants, functions, predicates, inference rules, axioms and theorems.

Each Mmt constant can have a notation, which makes it easier for users to
write expressions using that constant. For example, constant minus has notation
1−2, which means that it takes two arguments, separated by ”−”. As a result,
we can write x − y instead of minus(x, y). The arity of a constant can be
determined from its notation (here, minus has arity 2).

Mmt theories can have a meta-theory which declares the primitive notions
of the language in which the theory is written. For example, the meta-theory
of a program is the specification of the programming language.

Mmt theories are related via theory morphisms, called Mmt views. A view
A : a → P must declare a definition cimpl for every undefined constant c ∈ a,
specified in terms of language P. The intuition is that cimpl implements c in P.

Mmt terms are OpenMath objects formed from the constants declared in
the currently active theory[KMR13].

The Mmt-API is the implementation of Mmt and Mmt-based knowledge
management systems, and is written in Scala [Rab13].

OMDoc [Koh06] is a semantic markup language able to represent mathe-
matical expressions, theories (corresponding to OpenMath CDs), definitions,
proofs, natural language and code. Moreover, OMDoc is logic-independent,
that is, any logic can be specified in it. Mmt is the formal core of OMDoc
in the sense that Mmt gives a formal specification to the fragment of OMDoc
concerned with theory development [RK13].

2.2 OpenMath

OpenMath [BCC+04] is a markup language which precisely describes the se-
mantics of mathematical expressions. Written in a standardized representation
(XML or binary encoding), OpenMath objects can be exchanged between com-
puter programs, stored in databases, displayed in a browser, verified as being
sound or published online. An OpenMath expression is constructed from an
abstract data type called OpenMath object and the concepts inside the ex-
pression, called symbols, are introduced by Content Dictionaries (CD).

OpenMath objects have several types, but for our Ddc-Lite system, we
only need the following:

5



• OMI(n) – integer n;

• OMF(f) – floating point number f ;

• OMS(c) – constant c;

• OMSTR(s) – string s;

• OMB(b) – byte array b;

• OMA(c, t1, . . . , tn) – application of c (called the head) on arguments t1, . . . , tn;

• OMBIND(c, V, t) – bind variables in list V (called the context) by c in t
(e.g. OMBIND(λ,OMV(x), times(x,OMS(y))) – x is bound by λ in x · y);

• OMV(x) – reference to a variable introduced by OMBIND;

For example, x · 2 corresponds to OMA(times,OMV(x),OMI(2)) (in prefix-
notation), and is encoded in XML as follows:

<OMOBJ>
<OMA>
<OMS cd=”arith1” name=”times”/>
<OMV name=”x”/>
<OMI>2</OMI>

</OMA>
</OMOBJ>

Figure 3: Encoding of a × 2 in OpenMath-XML, where arith1 refers to the
OpenMath CD introducing times.

2.3 Scala

Scala [Sca] is a programming language built on top of the Java Virtual Ma-
chine and is compatible with the Java programming language. Besides object-
oriented programming, Scala supports functional programming, which makes
it convenient to write implementations of mathematical functions. Further rea-
sons for our choice of Scala are discussed in Section 3. We do not give a formal
specification of Scala in this thesis, but we introduce it by examples, shown in
subsection 3.3.

3 The Design of DDC–Lite

3.1 Prerequisites

Abstractly speaking, there are three essential components in a declarative-
computational system:

• data – objects we compute on;

• algorithms – instructions which implement certain operations;

• engine – runs algorithms on data.

For our Ddc-Lite system, we instantiate:
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• the data with a representative set of the symbols declared in the Open-
Math CDs;

• the algorithms with Scala code snippets which implement the Open-
Math symbols;

• the engine with a module called the Universal OpenMath Machine, which
evaluates OpenMath expressions.

We chose OpenMath for several reasons. First, the OpenMath CDs con-
tain a very rich set of mathematical concepts (arithmetical operations, list and
set operations, elements of linear algebra, polynomials, transcendental functions,
relations, logical operators, units, dimensions etc). This makes OpenMath-
based computation useful in practice. Second, OpenMath is standardized and
people already use it extensively to mark up mathematical expressions within
documents. We could run the Universal OpenMath Machine on these documents
and evaluate the OpenMath expressions inside.

We chose Scala as the programming language in which we write the im-
plementations of the OpenMath objects. We could have chosen any other
programming language, but since both the Mmt API and the Universal Open-
Math Machine (which is a plugin of the API) are written in it, Scala’s choice
is natural. In addition, the object-oriented features of Scala allow straightfor-
ward translations from Mmt theories and views into Scala objects and traits
(this process is explained in Subsection 3.3).

Now that we have settled upon the language of the data and the language of
the algorithms, we still need a language that connects them: we use Mmt for this
purpose. More precisely, we declare the OpenMath symbols and their Scala
implementations in Mmt (see Subsection 3.2 for details). As mentioned in the
introduction, one key benefit of using Mmt is that we will be able to connect
a deductive system to Ddc-Lite, obtaining a fully declarative, deductive and
computational system, which is the ultimate goal of our project.

We have now determined all components that are required for our Ddc-
Lite system, so let us explain how the system works in theory. We describe
in the next two subsections the declarative and the computational levels of
Ddc-Lite.

3.2 The Declarative Level of DDC–Lite – Translation of
OpenMath Content Dictionaries to MMT Theories

Arities Before we go on with our exposition, let us remark that OpenMath
symbols can have one of the following arities:

• arity n, where n ≥ 0 (e.g. set1.nil has arity 0, while arith1.minus has arity
2);

• arity n∗, meaning that it takes n ≥ 0 arguments and then a variable
number of arguments (e.g. arith1.plus has arity 0∗);

• arity binder, corresponding to symbols that form objects of type OMBIND.
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Meta-theories Meta-theory OpenMath declares the symbols that are used to
construct the types of OpenMath objects and meta-theory Scala declares the
symbols that are used to construct the types of Scala objects. The purpose of
these two meta-theories is to introduce the primitive concepts of OpenMath
and Scala into Mmt. Note that in the Scala theory, Term is the Scala type
of Mmt terms and Context is the Scala type of Mmt contexts (a context is
a list of variable declarations). Morphism Syntactic : OpenMath→ Scala shows
how to translate OpenMath theories into Scala programs.

theory OpenMath =
Object
FMP
mapsto
naryObject
binder

theory Scala =
Function # (1,...) => 2
Lambda # (1,...) => 2
List # List [1]
Term
Context

view Syntactic : OpenMath −> Scala =
Object = Term
mapsto = Function
naryObject = List[Term]
binder = (Context,Term) => Term
FMP = (x:Term) =>

”assert(x == OMS(logic1.true))”

Figure 4: Meta-theories OpenMath, Scala and morphism Syntactic.

Translations to MMT Let a be an OpenMath CD. We translate a to an
Mmt theory with the same name, aMMT, whose meta-theory is OpenMath. We
translate each OpenMath symbol c declared in a to an Mmt constant with
the same name, cMMT, in aMMT. We can also give a notation for cMMT, in order
to conveniently write OpenMath expressions. Note that in aMMT we do not
write any implementation for cMMT. Furthermore, we translate mathematical
properties given as formulas to a special Mmt constant, OMA(FMP, P ), which
asserts that P is true.

For each theory aMMT, we write one or more Mmt views AMMT : aMMT →
Scala. To implement a constant cMMT ∈ aMMT, we assign it a λ-expression
args ⇒ code which maps the arguments of cMMT to a Scala code snippet
written between Mmt escape characters[IMR13]. The code snippet acts as
the implementation of the computational semantics of c. The arguments args
depend on the arity of cMMT in the following way:

• for arity n, args = (x1 : Term, . . . , xn : Term)

• for arity n∗, args = (x1 : Term, . . . , xn : Term, L : List[Term])

• for arity binder, args = (V : Context, t : Term)

The following diagram illustrates the connections between the theory, the
view and their meta-theories.

OpenMath Scala

aMMT

Syntactic

AMMT

We are not yet using OpenMath to deter-
mine the types of OpenMath symbols, and
we assume that they all have type Term. As
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an immediate consequence, their arguments also have type Term. Since we are
not using OpenMath, we do not need to use Syntactic. We instead use the
notations in order to determine the arity of the symbols. This works only be-
cause OpenMath type system is actually an arity system. For more complex
languages, we would have to use the meta-theories and the morphism.

Example Let us illustrate the steps above with an example and put a :=
complex1 CD. The notation CC 1 2 means that complex cartesian takes two
arguments, the real and imaginary parts, e.g. 2 + 3i CC 2 3. Figure 5 shows
theory complex1, corresponding to the OpenMath CD with the same name.
Figure 6 shows the view Complex1 which corresponds to theory complex1. The
implementations are written between Mmt escape characters, shown here as
quotes. Note that we only show the full implementation for object real (the
other implementations are shown as ” ... Scala code ...”).

theory complex1 : OpenMath =
complex cartesian # CC 1 2
complex polar # CP 1 2
argument # Arg 1
real # Re 1
imaginary # Im 1
conjugate # Conj 1

Figure 5: Theory complex1

view Complex1 : complex1 −> ScalaOM =
complex cartesian = (re: Term, im: Term) ” ... Scala code ...”
complex polar = (r: Term, phi: Term) ” ... Scala code ...”
real = (z: Term) ”
z match {
case complex cartesian(re, ) => re
case complex polar(r, phi) => arith1.times(r, transc1.cos(phi))
case => real(z)
}

”
imaginary = (z: Term) ” ... Scala code ...”
argument = (z: Term) ” ... Scala code ...”
conjugate = (z: Term) ” ... Scala code ...”

Figure 6: View Complex1

3.3 The Computational Level of DDC–Lite – Translation
of MMT Theories to Scala Objects

Let us review what we have so far: an Mmt theory aMMT which declares Open-
Math objects as constants (with notations), and an Mmt view AMMT, which
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assigns a Scala implementation to each constant declared in aMMT.
In order to achieve computational power, the theory and the view are trans-

lated into Scala objects by a component of Ddc-Lite, called the Universal
OpenMath Machine. This is done in the following way.

Translation of theory aMMT Theory aMMT is translated to the Scala object
ascala and each constant cMMT declared in aMMT is translated to the Scala object
cscala in ascala. Object cscala defines apply/unapply methods and as a result, cscala
acts as the constructor and pattern-matcher of c [IMR13]. For example, instead
of writing e.g., OMA(OMS(”plus”), x1, x2), we can directly write plus(x1, x2) to
construct an Mmt Term in Scala. More precisely:

• for arity n, cscala(x1, . . . , xn)
apply
 OMA(OMS(c), x1, . . . , xn);

• for arity n∗, cscala(x1, . . . , xn, L)
apply
 OMA(OMS(c), x1, . . . , xn, L);

• for arity binder, cscala(V, t)
apply
 OMBIND(OMS(c), V, t).

Translation of view AMMT View AMMT is translated to the Scala trait
Ascala and the assignment cMMT = args ⇒ code declared in AMMT is translated
to the Scala function a c(args) = code. The a c() function is applied by the
Universal OpenMath Machine to those Mmt terms whose head is c. For example,
arith1 plus() is applied to terms of the form plus(x1, ...) (see Section 4.1 for more
details). In this way, we have a bijection from object cscala to function a c(),
which ultimately means that a c() implements the OpenMath symbol c.

Example We continue with the same example from the previous subsection,
namely the complex1 CD. The complex1 object is shown in Figure 7 (we only
show the apply/unapply methods for complex cartesian) and the Complex1 trait
is shown in Figure 8 (we only show the implementation of real). By calling
the declares method at the end, the Universal OpenMath Machine collects and
registers the implementation complex1 real(). This avoids reflection to obtain
the list of all implementations.
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object complex1 {
object complex cartesian {
def apply(x1: Term, x2: Term) = OMA(OMID(this.path), x1 :: x2:: Nil)
def unapply(t: Term): Option[(Term, Term)] = t match {
case OMA(OMID(this.path), x1 :: x2:: Nil) => Some((x1, x2))
case => None
}
}
object complex polar { ... }
object argument { ... }
object real {... }
object imaginary {... }
object conjugate {... }
}

Figure 7: Scala object complex1

trait Complex1 extends complex1 {
def complex1 complex cartesian(re: Term, im: Term) : Term = {... }
def complex1 complex polar(r: Term, phi: Term) : Term = {...}
def complex1 argument(z: Term) : Term = {... }
def complex1 real(z: Term) : Term = {
z match {

case complex cartesian(re, ) => re
case complex polar(r, phi) => arith1.times(r, transc1.cos(phi))
case => real(z)
}

}
def complex1 imaginary(z: Term) : Term = {...}
def complex1 conjugate(z: Term) : Term = {... }

declares(Implementation.A(complex1.real.path)(complex1 real ))
}

Figure 8: Scala object Complex1

3.4 Summary

We summarize the workflow of mechanizing the OpenMath CDs in Table 1.
We assume an OpenMath CD called a and a symbol c with arity 2 declared in a.
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Declarative level
Mmt

theory a: OpenMath
c # c 1 2

view A: a −> Scala
c = (Term, Term) ”
Scala implementation of c

”

Computational level
Scala

object a {
object c {
val name = ”c”
def apply(x1: Term, x2: Term) =
OMA(OMS(name), x1 :: x2 :: Nil)

}
}

trait A {
def a c(x1: Term, x2: Term) : Term = {
// Scala implementation of c
}
}

Table 1: Workflow summary

4 Implementation of DDC–Lite

Now that we discussed in section 3 how Ddc-Lite works in theory, in this sec-
tion we give an outline of how it is implemented.

The Ddc-Lite system is made up of two components. The first component is
a library of implemented OpenMath symbols. This is the data + pro-
grams part of Ddc-Lite. The second component is the Universal Open-
Math Machine (UOM) – the engine of the system. It extracts and registers
the implementations from the library, and exhaustively applies them to Open-
Math objects.

Since users’ contributions are more likely to be directed towards the library
than towards the Uom, we separated the two components, allowing them to be
developed independently. The Uom is a module within the Mmt-API and the
library is part of the oaff collection of archives.

4.1 The Universal OpenMath Machine

The main components of the Uom are:

• the extractor, which reads the Mmt files from the library, creates Scala
files from them and writes them back to the library;

• the simplification function, which takes an OpenMath object as ar-
gument and exhaustively applies the registered implementations on it;

• the synthesizer, which works the other way around as the extractor.
More precisely, it reads the Scala files from the library and creates OM-
Doc files from them. This is all it does at the moment, but the next step
would be to translate the OMDoc files to Mmt theories.

Let us now describe these components in more detail.
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Figure 9: Ddc-Lite framework

The extractor The theoretical process of obtaining Scala objects and traits
from the Mmt theories and views was also described in Section 3. Let us just
summarize the process here and use the same notations for theories, views,
objects and traits as in Section 3. The extractor works in the following way.

For each Mmt theory aMMT it creates a file with the same name. The file
contains a trait ascala which declares a function a c for each constant cMMT in
aMMT (e.g. for list1.map, it creates the function list1 map()). The arity of the
function is determined from the notation of the constant cMMT. The extractor
then creates an object ascala which declares object cscala for each constant cMMT ∈
aMMT, together with apply/unapply methods.

For each Mmt view AMMT, the extractor creates a file with the same name,
which contains a trait Ascala that extends trait ascala with the definition of the
a c function. In the end, an object Ascala that extends trait Ascala is declared.

Additionally, the extractor creates methods for registering the implementa-
tions. The Uom maintains these registered implementations in a store S.

The simplification function We now describe how the simplification func-
tion, called simplify, works. The function takes an OpenMath object t (all
objects are Mmt Terms in the Mmt-API) as argument and exhaustively applies
the registered implementations to it, returning result t’. Let us see how this is
done.

Recall that the Uom keeps a store S of registered implementations. When
the simplify function is applied to t, it traverses it and looks at its structure:

• if t is an OMA(OMS(c), args), the function recursively simplifies the argu-
ments args to args’ and then looks if there is any implementation of c in
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S. If it finds implementation a c, it returns simplify(a c(args’)). If it does
not find any implementation, it returns OMA(OMS(c), args’).

• if t is an OMS(c), then again, simplify checks for any implementation a c
of c in S, returning simplify(a c()) if it finds one and t otherwise.

• in all other cases, simplify returns back t.

Since simplify recursively simplifies t, the result t’ and the terms inside, if any,
cannot be simplified anymore, using the implementations from S.

The synthesizer We use the same notations as in section 3. As mentioned,
the synthesizer does the reverse job of the extractor. For each Scala file con-
taining the trait Ascala, it creates an OMDoc view AOMDOC. For each function
a c(args) defined in Ascala, it extracts the code inside, creates an OMDoc con-
stant of the form cOMDOC = OMBIND(args, code) and adds it to AOMDOC.

The next step would be to extract Mmt theories and views from the OMDoc
files, such that constant cOMDOC ∈ AOMDOC is translated to constant cMMT ∈
aMMT with implementation cMMT = args ”code” in view AMMT. As a result, we
get back the original Mmt theories and views from the Scala files.

The synthesizer is useful when users want to write the implementations in
the Scala files rather than in the Mmt files, because most editors do not have
syntax highlighting for Scala code embedded into Mmt.

4.2 The Library Infrastructure

Let us now describe how the library is organized. We outline the directory struc-
ture here and we enumerate the OpenMath CDs that we chose to implement
in Section 5.

The library is located in the openmath repository, which contains the Mmt
and the Scala files used by the Universal OpenMath Machine. The top-level
files and directories are:

• source/ – Mmt theories and views;

• scala/ – corresponding Scala files, generated by the Uom;

• compiled/, content/, narration/, notation/, relational/ – OMDoc files pro-
duced by the Uom when building the archive as well as Mmt’s indexes
for the archive.

• bin/ – class files generated by compiling the scala directory;

• build.msl – script which runs the Uom extractor on the source/ directory
and produces Scala and OMDoc files;

• integrate.msl – script which runs the Uom synthesizer on the Scala files
and produces OMDoc files;

• interactive.msl – script which can be used to interactively test the Uom.

The source/ contains several directories and files:

14

http://tntbase.mathweb.org/repos/oaff/openmath/


• openmath.mmt – the OpenMath meta-theory;

• scala.mmt – the Scala meta-theory;

• bifoundations.mmt – the Syntactic view;

• cds/ – Mmt theories, one for each OpenMath CD;

• uom/ – Mmt views, one for each theory in cds/;

• test/ – unit test cases.

The scala/ files are arranged by namespace in accordance with Java conven-
tions:

• http..www.openmath.org/cd/ – the namespace of the OpenMath CDs, one
Scala trait file for each Mmt theory;

• http..oaff.kwarc.info/openmath/ – the namespace of the implementations,
contains two directories:

– test/ – test cases, translated to Scala;

– uom/ – Scala files with objects corresponding to the Mmt views;

Additionally, one file NAMESPACE.scala is generated for each directory.
These files contain code that allows the Uom to iterate and register all im-
plementations in the respective directory and run the test cases.

Any editor or IDE can be used to change the scala/ directory. For example,
the root folder is at the same time an Eclipse Scala project that can be
imported into an Eclipse workspace.

5 A Library for DDC–Lite

In this section we enumerate the OpenMath Content Dictionaries and the
symbols declared in them that we chose to implement in the openmath library.

After surveying all the CDs in the CD groups repository, we identified a
large set of symbols that are described in them. We implement most of the
official CDs, but also several experimental CDs, because they either comple-
ment the official ones (for example, the experimental linalg4 contains relevant
functions for matrices and vectors) or they contain fundamental mathematical
datatpyes (such as polynomials, which are defined under the experimental poly-
grp CD group). During the selection process, we discarded objects that do not
fit computation well, such as CD directives, the meta CD group or the func-
tional operators (such as range, function inverse) since they may be difficult to
represent and compute with.

In the next two subsections, we give an outline of all symbols currently
implemented in the library. Each of the items listed in the tables are linked to
a corresponding entry with the same name within the OpenMath CD.

OpenMath objects fall into two categories: basic and compound. The basic
objects are the ones that are directly represented by OpenMath literals and
the compound objects are built recursively using OMA, OMS and OMBIND.
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Also, note that all numerical types (such as integers, floats, rational num-
bers) have access to all arithmetical functions listed in sub-section 5.2.

5.1 Basic Objects

The OpenMath basic objects are integers, floats, strings and bytearrays. Be-
low, we list their constructors together with the functions defined for them.

• integers have constructor OMI(n). Functions on integers are declared in
the integer1 and combinat1 CDs and they are:

Object Description
OMA (factorof, a, b) true if a divides b
OMA (factorial, n) n! = 1 · 2 · . . . · n
OMA (quotient, a, b) a div b – integer division
OMA (remainder, a, b) a mod b

OMA (binomial, n, k
(
n
k

)
, n-choose-k

OMA (multinomial, n, k1, k2, . . . , kp)
(

n
k1,k2,...,kp

)
= n!

k1k2···kp , k1 + k2 + · · ·+ kp = n

OMA (Stirling1, n, k) Stirling numbers of the first kind
OMA (Stirling2, n, k) Stirling numbers of the second kind
OMA (Fibonacci, n) the n-th Fibonacci number, F0 = 0, F1 = 1, Fn =

Fn−1 + Fn−2
OMA (Bell, n) number of partitions of a set with n elements
OMA (permutation, a1, . . . , an) permutation, no arguments means identity permutation

All arithmetical functions apply to integers.

• floats have constructor OMF(x), where x is an IEEE double-precision
floating point number. All arithmetical functions apply to floats.

• strings have constructor OMSTR(s) where s is a Unicode Character
string. Unfortunately, none of the standard OpenMath CDs define func-
tions on strings. Instead, we define some ourselves:

Object Description
OMA (strlen, s) length of s
OMA (strcat, s, p) concatenate s and p
OMA (substr, s, p) returns true if s is a substring of p

• bytearrays have constructor OMB(b), where b is a sequence of bytes.

5.2 Compound Objects

Compound objects contain fundamental datatypes such as lists, sets, booleans,
polynomials, vectors and matrices. As mentioned, they are built recursively
using the OMA, OMS and OMBIND.
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After exploring the OpenMath CDs, we have come up with the following
list of constructed objects.

• booleans are defined in the logic1 CD: They are OMS (true) and OMS
(false) and the following functions apply to them.

Function Description
OMA (equivalent, A,B) equivalence, A⇔ B
OMA (implies, A,B) implication, A⇒ B
OMA (not, A) negation, ¬A
OMA (and, A1, . . . , An) n-ary conjunction, A1 ∧ . . . ∧An
OMA (or, A1, . . . , An) n-ary disjunction, A1 ∨ . . . ∨An
OMA (xor, A1, . . . , An) n-ary exclusive disjunction, A1 ⊕ . . .⊕An

• inductive natural numbers are defined in the indNat CD inductively,
using OMS (zero) as the induction base and OMA (succ, n) as n+ 1, the
successor of n. All arithmetical functions apply to them.

• rational numbers are constructed as OMA (rational, a, b). We assume a
and b to be integers. All arithmetical functions apply to them.

• complex numbers are constructed as OMA (complex cartesian, a, b) which
stands for a + ib, or as OMA (complex polar, r, θ), which stands for reiθ.
There are several functions for them. Note that we have shown the im-
plementation of real in section 3.

Function Description
OMA (real, z) Re(z) – the real part of z = a+ ib is a
OMA (imaginary, z) Im(z) – the imaginary part of z = a+ ib is b
OMA (argument, z) Arg(z) – the argument of z = reiθ is θ
OMA (conjugate, z) the conjugate of z = a+ ib is z̄ = a− ib

All arithmetical functions apply.

• lists. Since we cannot compute with infinite lists, our implementation
assumes all lists are finite. List are constructed as OMA (list, a1, . . . , an),
representing the list [a1, a2, . . . , an] and have the following functions de-
fined on them:

17

http://www.openmath.org/cd/logic1.xhtml
http://www.openmath.org/cd/logic1.xhtml#true
http://www.openmath.org/cd/logic1.xhtml#true
http://www.openmath.org/cd/logic1.xhtml#equivalent
http://www.openmath.org/cd/logic1.xhtml#implies
http://www.openmath.org/cd/logic1.xhtml#not
http://www.openmath.org/cd/logic1.xhtml#and
http://www.openmath.org/cd/logic1.xhtml#or
http://www.openmath.org/cd/logic1.xhtml#xor
http://www.openmath.org/cd/indnat.xhtml#indNat
http://www.openmath.org/cd/indnat.xhtml#zero
http://www.openmath.org/cd/indnat.xhtml#succ
http://www.openmath.org/cd/nums1.xhtml#rational
http://www.openmath.org/cd/complex1.xhtml#complex_cartesian
http://www.openmath.org/cd/complex1.xhtml#complex_polar
http://www.openmath.org/cd/complex1.xhtml#real
http://www.openmath.org/cd/complex1.xhtml#imaginary
http://www.openmath.org/cd/complex1.xhtml#argument
http://www.openmath.org/cd/complex1.xhtml#conjugate
http://www.openmath.org/cd/list1.xhtml#list


Function Description
OMA (map, f , L) representing the list [f(x)|x ∈ L]
OMA (suchthat, S, p) representing the list [x ∈ S|p(x) = true]
OMA (list selector, i, L) represents L[i]
OMA (first, L) represents L[1], the head of L
OMA (rest, L) represents L[2 :], the tail of L
OMA (cons, x, L) represents x :: L
OMS (nil) the empty list
OMA (reverse, L) reverses L
OMA (size, L) returns the size of L
OMA (in, x, L) means that x ∈ L

• sets As with lists, we assume all sets are finite. They are constructed as
OMA (set, a1, . . . , an), representing the set {a1, a2, . . . , an} and they have
the following functions defined on them:

Function Description
OMA (cartesian product, A1, A2, . . . , An) cartesian product
OMS (emptyset) the empty set
OMA (map, f , S) represents the set {f(x)|x ∈ S}
OMA (size, S) returns the size of S
OMA (suchthat, S, p) represents the set {x ∈ S|p(x) = true}
OMA (intersect, A1, A2, . . . , An) set intersection A1 ∩A2 ∩ · · · ∩An
OMA (union, A1, A2, . . . , An) set union A1 ∪A2 ∪ · · · ∪An
OMA (setdiff, A,B) set difference A \B
OMA (subset, A,B) means that A ⊆ B
OMA (prsubset, A,B) means that A ( B
OMA (notsubset, A,B) means that A 6⊆ B
OMA (notprsubset, A,B) means that A 6( B
OMA (in, x, S) means that x ∈ S
OMA (notin, x, S) means that x /∈ S
OMA (lift binary, op, A,B) returns {x op y|x ∈ A, y ∈ B}

• vectors are constructed as OMA (vector, a1, . . . , an), representing the
row vector (a1, a2, . . . , an) and matrices are constructed as OMA (ma-
trix, v1, . . . , vn), representing the matrix made from row vectors v1, . . . , vn.
The matrix construction is slightly different from the one OpenMath
proposes, which is that a matrix is constructed from matrixrows. Since
a matrixrow is the same as a vector anyway, we do not implement ma-
trixrows and use vectors instead. Now, here are the functions for vectors
and matrices:
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Function Description
OMA (vectorproduct, v1, v2) v1 × v2, where v1, v2 are 3-dimensional vectors
OMA (scalarproduct, v1, v2) v1 · v2, the dot product of v1, v2
OMA (outerproduct, v1, v2) v1 ⊗ v2, the outer product of v1, v2
OMA (transpose, M) M t, the transpose of matrix M
OMA (determinant, M) the determinant of matrix M
OMA (vector selector, i, V ) returns V [i], where V is a vector
OMA (matrix selector, r, c, M) returns M [r][c], where M is a matrix
OMA (eigenvalue, M , i) the i-th eigenvalue of M , ordered by modulus
OMA (eigenvector, M , i) the eigenvector of eigenvalue λi
OMA (characteristic eqn, M) the characteristic equation of M
OMA (size, v) the size of vector v
OMA (rank, M) the rank of matrix M
OMA (rowcount, M) number of rows
OMA (columncount, M) number of columns
OMA (identity, n) In, the n× n identity matrix
OMA (zero, m, n) Omn, the m× n zero matrix
OMA (diagonal matrix, d1, . . . , dn) diagonal matrix with d1, . . . , dn as diagonal
OMA (scalar, n, s) the matrix s · In

• constants are infinity, e, i, pi, gamma, NaN.

• physical quantities are constructed using times. For example a length
of 10 kilometers is written as times(10, prefix(kilo,metre));

– dimensions: there exists an OpenMath object for every dimen-
sion. They are: length, area, volume, speed, displacement, velocity,
acceleration, time, mass, force, temperature, pressure, charge, current,
voltage, resistance, density, energy, concentration, momentum;

– metric units: metre, metre sqrd, litre, metres per second, metres per second sqrd;
second, gramme, Newton, Joule, Watt, degree Kelvin, Pascal, Coulomb,
amp, volt, second, minute, hour, day, week, calendar month, calen-
dar year;

– imperial and US units: foot, yard, mile, acre, pint, miles per hr,
miles per hr sqrd, pound mass, pound force, bar, foot us survey, yard us survey,
mile us survey, acre us survey, pint us dry, pint us liquid;

– SI prefixes take a unit as argument and return a unit. They are
manipulated using prefix and they are: yotta, zetta, exa, peta, tera,
giga, mega, kilo, hecto, deka, deci, centi, milli, micro, nano, pico, femto,
atto, zepto, yocto;

We did not include degree Celsius and degree Fahrenheit, since they do not
form quantities via times, in the sense that e.g. 2◦ C is not twice as much
as 1◦ C.

• polynomials are either univariate or multivariate.
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1. Univariate polynomials are defined using four constructors:

– OMA (term, n, c) – monomial constructor, n is a non-negative
integer and c is a coefficient;

– OMA (poly u rep, X,m1, . . . ,mn) –X is the variable andm1, . . . ,mn

are the monomials. For example, X4 + 3X2−2 is represented as
poly u rep(X, term(4, 1), term(2, 3), term(0,−2));

– OMA (polynomial ring u, R, X) – constructs a univariate poly-
nomial ring R[X];

– OMA (polynomial u, R, p) – constructs a univariate polynomial,
R is a polynomial ring u and p is a poly u rep;

2. Multivariate polynomials are defined similarly to the univariate
polynomials:

– OMA (term, n, c) – n is a non-negative integer and c is a coeffi-
cient;

– OMA (poly r rep,X, m1, . . . ,mn), where X is a variable and
m1, . . . ,mn are monomials. For example, X2Y 3 + X is repre-
sented as
poly r rep(X, term(2, poly r rep(Y, term(3, 1))), term(1, 1));

– OMA (polynomial ring r, R, X1, . . . , Xn) – constructs a multivari-
ate polynomial ring;

– OMA (polynomial r, R, p) – constructs a multivariate polynomial,
R is a polynomial ring r and p is a poly r rep;

There exists several constructors and functions for dealing with various
kinds of polynomials:

– constructors:

∗ OMA (power, p, n) – formal power, p is a polynomial and n is a
non-negative integer;

∗ OMA (factored, p1, . . . , pn) – factorization constructor, pi are ir-
reducible polynomials;

∗ OMA (squarefreed, p1, . . . , pn) – square-free factorization con-
structor, pi are square-free polynomials;

∗ OMA (partially factored, p1, . . . , pn) – factorization constructor,
nothing is assumed about pi;

– functions:

20

http://www.openmath.org/cd/polyu.xhtml#term
http://www.openmath.org/cd/polyu.xhtml#poly_u_rep
http://www.openmath.org/cd/polyu.xhtml#polynomial_ring_u
http://www.openmath.org/cd/polyu.xhtml#polynomial_u
http://www.openmath.org/cd/polyr.xhtml#term
http://www.openmath.org/cd/polyr.xhtml#poly_r_rep
http://www.openmath.org/cd/polyr.xhtml#polynomial_ring_r
http://www.openmath.org/cd/polyr.xhtml#polynomial_r
http://www.openmath.org/cd/poly.xhtml#power
http://www.openmath.org/cd/poly.xhtml#factored
http://www.openmath.org/cd/poly.xhtml#squarefreed
http://www.openmath.org/cd/poly.xhtml#partially_factored


Operator Description
OMA (expand, f) expands f into a polynomial
OMA (degree, p) degree of polynomial p
OMA (degree wrt, p,X) degree of p with respect to variable X
OMA (leading coefficient, p,X) leading coefficient of p with respect to X
OMA (coefficient, p, [X1, . . . , Xm], [α1, . . . , αm]) the coefficient of Xα1

1 · · ·Xαm
m in p

OMA (coefficient ring, p) the coefficient ring
OMA (evaluate, p, x1, . . . , xn) evaluate p(x1, . . . , xn)
OMA (factor, p) decomposes p into irreducible factors
OMA (squarefree decomposes p into square-free factors
OMA (gcd, p1, . . . , pn) the greatest common divisor of the polynomials
OMA (lcm, p1, . . . , pn) the least common multiple of the polynomials
OMA (discriminant, p,X) the discriminant of p with respect to X
OMA (resultant, p, q,X) the resultant of p and q with respect to X
OMA (convert, p,R) converts p into a polynomial over ring R

• arithmetical functions hold for all numerical types.

Function Description
OMA (lcm, a1, . . . , an) the least common multiple of a1, . . . , an
OMA (gcd, a1, . . . , an) the greatest common divisor of a1, . . . , an
OMA (plus, a1, . . . , an) n-ary commutative plus, a1 + · · ·+ an
OMA (unary minus, a) unary minus, the additive inverse −a
OMA (minus, a, b) binary minus, a− b
OMA (times, a1, . . . , an) n-ary multiplication, a1a2 · · · an
OMA (divide, a, b) binary division, a/b, b 6= 0
OMA (power, a, x) power, ax

OMA (root, x, n) root, n
√
x

OMA (abs, a) |a|, the absolute value, or modulus in C
OMA (sum, I, f) summation over interval,

∑
x∈I f(x)

OMA (product, I, f) multiplication over interval,
∏
x∈I f(x)

OMA (times, a1, . . . , an) n-ary commutative multiplication, arith2 CD
OMA (inverse, a) inverse of an element, a−1

• transcendental functions are: log, ln, exp, sin, cos, tan, sec, csc, cot,
sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, arcsec, arccsc, arccot,
arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth;

• miscellaneous functions:
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Function Description
OMA (eq, a, b) equality, a = b
OMA (neq, a, b) inequality, a 6= b
OMA (lt, a, b) less than, a < b
OMA (leq, a, b) less than or equal to, a ≤ b
OMA (gt, a, b) greater than, a > b
OMA (geq, a, b) greater than or equal to, a ≥ b
OMA (approx, a, b) approximately equal, a ≈ b
OMA (max, S) the maximum element in set S
OMA (min, S) the minimum element in set S
OMA (ceiling, x) ceiling function, dxe
OMA (floor, x) floor function, bxc
OMA (trunc, x) round x towards 0, e.g. trunc(3.5) = 3, trunc(−3.5) = −3
OMA (round, x) round to nearest integer

6 User Interface

In this section we describe a simple user interface of Ddc-Lite and how to
use it to evaluate expressions. We have seen in Section 4 that users send an
expression E to the Universal OpenMath Machine, which uses the registered
implementations to return a result E′ (usually E′ is a simplified version of E).

To run the Universal OpenMath Machine, we execute the interactive.msl script
in the openmath folder. This opens the Scala shell (with all the implementa-
tions registered) where users can enter expressions to be evaluated.

An expression is written as a Scala processed string which is interpolated
into a Scala expression.

Processed strings A processed string [Ode12] is of the form

id”text0 ${ expr0 } text1 · · · ${ exprn } textn ”

where id is an interpolation function, texti are strings and $ escapes into
Scala: $var for variables and ${expr} for more complex expressions. The
interpolation function processes the string and also performs type-checking for
the typed expressions expri.

Integration with the Universal OpenMath Machine Integers and floats
are implicitly converted by the Uom into OMI’s and OMF’s, respectively[IMR13].
We also implement two additional interpolation functions:

• mmt – calls the Mmt parser to interpolate the string into an Mmt Term;

• uom – first uses mmt and then calls the Uom simplification function on the
Mmt Term.

For example, we can write
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> var x = mmt”2 + 3”
x: Term = plus(OMI(2), OMI(3))

Integers 2 and 3 were implicitly converted into OMI(2) and OMI(3) and the
+ was recognized as the notation for the Mmt constant plus. As discussed in
3.3, the result is equivalent to OMA(OMS(plus),OMI(2),OMI(3)).

Now, in order to evaluate the expression 2 + 3 we use the uom function. We
can either escape variable x:

> uom”$x”
res1: Term = OMI(5)

or we can write the whole expression:

> uom”2 + 3”
res2: Term = OMI(5)

We can further use the result in a new computation:

> uom”5 ∗ $res2”
res3: Term = OMI(25)

We can also escape back and forth between Mmt and Scala. For example, we
can run OpenMath computations for all elements in a Scala list:

> List(1,2,3).map(x => uom”x ˆ 2”)
res4: Term = List(OMI(1), OMI(2), OMI(3))

The fact that we can combine Scala and OpenMath computations essentially
means that we can efficiently integrate object-oriented and rule-based compu-
tation into an extremely simple user interface.

7 Conclusion and Future Work

We described a novel approach towards creating a declarative, deductive and
computational system. By using Mmt as a common declarative component for
two subsystems, one which combines the declarative and deductive aspects and
another one which combines the declarative and computational aspects, we can
later on also combine the deductive and computational aspects. The fact that
Mmt is logic-independent allows us to specify arbitrary logics and programming
languages, which makes our system fully extensible. This is a major advantage
over other systems which try to combine computation and deduction.

Additional work on Ddc-Lite may include providing support for program-
ming languages other than Scala, creating concrete applications such as the
ones described in [Zam11] (unit conversion and web-based education) and also
designing an improved graphical user interface (as opposed to the current com-
mand line interface). With regards to the whole DDC system, future work
should be concentrated on creating the other subsystem and after this is com-
pleted, our goal will be to connect the deductive and computational components.
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