
Towards Flexiformal Mathematics
by

Mihnea Iancu

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy
in Computer Science

Approved Dissertation Committee

Prof. Dr. Michael Kohlhase

Jacobs University Bremen, Germany

Prof. Dr. Herbert Jaeger

Jacobs University Bremen, Germany

Prof. Dr. William M. Farmer

McMaster University, Canada

Priv.-Doz. Dr. Florian Rabe

Jacobs University Bremen, Germany

Date of defense: Jan 5, 2017

Computer Science & Electrical Engineering

Statutory Declaration
(Declaration on Authorship of a Dissertation)

I, Mihnea Iancu, hereby declare, under penalty of perjury, that I am aware of the consequences of
a deliberately or negligently wrongly submitted affidavit, in particular the punitive provisions of
§156 and §161 of the Criminal Code (up to 1 year imprisonment or a fine at delivering a negligent
or 3 years or a fine at a knowingly false affidavit).

Furthermore I declare that I have written this PhD thesis independently, unless where clearly
stated otherwise. I have used only the sources, the data and the support that I have clearly
mentioned.

This PhD thesis has not been submitted for the conferral of a degree elsewhere.

Place Date

Signature

ii

Parts of this thesis are based on or closely related to previously published material or material that
is prepared for publication at the time of this writing. These are [IKR], [IK15b], [IK15a], [KI14],
[IKP14], [IJKW14], [GIJ+16], [IKRU13] and [IKR11]. Parts of this work are collaborations
with other researchers: For Part I with Michael Kohlhase, for Part II with Michael Kohlhase and
Florian Rabe and for Part III with Constantin Jucovschi, Michael Kohlhase, Enxhell Luzhnica,
Akbar Oripov, Corneliu Prodescu, Florian Rabe and Tom Wiesing. In each case the precise
connection to this work is detailed in the relevant passages of the text.

iii

Abstract

The application of computer-based methods to mathematics, while meaningful, is constrained by
the fact the most mathematical knowledge exists in forms that can only be understood by humans.
In order for it to be also understood by machines, those aspects of mathematical knowledge that
are relevant for machine-driven applications need to be made explicit.

One important aspect of mathematics is the underlying semantics which can be made understand-
able to machines by formalizing it. Formalization makes explicit the implicit definitions and
inference steps that occur naturally in mathematical documents. But, despite numerous attempts,
only a small fragment of mathematics has been formalized because formalization is prohibitively
expensive. Furthermore, existing formalized mathematics typically lacks in other aspects such as
presentation information and narrative structure that are common in mathematics and critical for
human-oriented practical applications. Therefore, existing applications for formal mathematics
are mostly limited to verification so there is little practical incentive for formalization.

Relying on the idea of flexiformality we propose flexiformalizing mathematics which addresses
the bottlenecks discussed above in two ways. First, flexiformality allows content of flexible
formality, so it minimizes the starting cost of flexiformalization compared to formalization. Sec-
ond, flexiformality involves co-representing the narration, structure and meaning of mathemati-
cal knowledge. Therefore, it forms a basis for not only machine processing but also for building
practical, human-oriented applications. We call the result of flexiformalization as described here
flexiformal knowledge and we believe mathematical knowledge is fundamentally flexiformal.

In this thesis, we survey both informal and formal mathematics to identify flexiformal phenom-
ena in mathematical practice. Then, we design and implement a formal language for flexiformal
knowledge to adequately represent them. Furthermore, we evaluate the language and implemen-
tation by importing existing mathematical libraries at different levels of formality and developing
applications for them. Finally, we integrate the libraries and applications into a generic system
as an extensive case study in flexiformal knowledge management.

First and foremost, I would like to express my gratitude to Michael Kohlhase for his continuous
guidance, support and encouragement, as well as for suggesting this research topic in the first
place. I am especially indebted to Florian Rabe whose comments and advice have always proved
compelling and insightful. I am also grateful to Herbert Jaeger and William Farmer for their
support and feedback.

Finally, I would like to thank the members of the KWARC group whose ideas and remarks proved
often fruitful and always interesting.

ii

Contents

1 Introduction 1

I Flexiformal Phenomena and State of the Art 6

2 Flexiformal Phenomena in Mathematics 7

2.1 Phenomena of Mathematical Vernacular . 7

2.1.1 Phrase Structure . 9

2.1.2 Discourse Structure . 12

2.1.3 Document Context . 16

2.1.4 Level-Independent Phenomena . 20

2.1.5 Additional Requirements . 21

2.2 Narration and Structure in Formal Mathematics 22

3 State of the Art 28

II Representing Flexiformal Knowledge 36

4 Preliminaries 37

4.1 The OMDoc Format . 37

4.2 The MMT Language and System . 41

4.2.1 The MMT Language . 41

4.2.2 Inference System . 44

4.2.3 The MMT System . 45

iii

CONTENTS

5 A Formal Language for Flexiformal Knowledge 48

5.1 MMT Extensions for Flexiformal Knowledge 48

5.1.1 Opaque Terms . 49

5.1.2 Bipartite Terms . 52

5.1.3 Bipartite Declarations . 55

5.1.4 Derived Declarations . 59

5.2 The IMMT Language and System . 62

5.2.1 Grammar . 62

5.2.2 Referencing Declarations . 63

5.2.3 Implementation . 65

6 Representing Flexiformal Phenomena in IMMT 67

6.1 Informal Mathematics . 68

6.1.1 Notations and Verbalizations . 70

6.1.2 Mathematical Structures . 72

6.1.3 Structured Proofs . 75

6.1.4 Dynamic Theories . 77

6.1.5 Recaps . 83

6.1.6 Foundational Ambiguity . 88

6.2 Formal Mathematics . 91

6.2.1 Local Scopes . 91

6.2.2 Sections . 92

6.2.3 MMT Structures . 92

6.2.4 Documents . 93

III Flexiformal Knowledge Management 95

7 Flexiformal Mathematical Libraries 96

7.1 Importing the Mizar Library into IMMT . 97

7.2 Importing STEX Libraries into IMMT . 100

7.2.1 Object Level . 100

7.2.2 STEX primitives as IMMT declarations 101

iv

CONTENTS

7.2.3 Implementation . 104

7.3 Importing the OEIS Library into IMMT . 104

8 Applications for Flexiformal Knowledge 108

8.1 The IMMT System as a Semantic Database . 110

8.1.1 Accessing Explicitly Represented Content 110

8.1.2 Accessing Induced Material . 111

8.2 The MathHub System . 115

8.2.1 System Architecture and Realization . 116

8.2.2 Services and Applications . 117

8.2.3 Implementation Overview . 125

9 Conclusion and Future Work 127

v

Chapter 1

Introduction

Throughout history, knowledge has been a crucial building block for human civilization, and its
creation, distribution and consumption have been driving forces for human progress. Mathemat-
ics, in particular, is among the oldest areas of human knowledge and is the foundation for most of
modern science. Moreover, mathematical knowledge still grows relentlessly as the total amount
of published mathematics has been estimated to double every ten to fifteen years [Odl95].

The digital revolution has already transformed mathematical practice. Most mathematical knowl-
edge is rendered and read using computer systems such as PDF readers and web browsers. It
is organized in electronic repositories of mathematical knowledge such as arXiv [ArX], eu-
DML [EuD], Math Reviews [MRv] or ZentralBlatt math [ZBM]. Furthermore, computer algebra
systems (CAS) such as Mathematica [Wol02], Maple [Mpl16], SageMath [Sag16], GAP [GAP16]
or MuPAD [MPD16] are routinely used for computation.

However, computer support for mathematics is limited by the fact that most mathematical knowl-
edge exists as human-oriented content that is inaccessible to computer processing. Currently,
most mathematics is laid down in the form of documents ranging from research articles to engi-
neering whitepapers to math textbooks. These are often encoded electronically as digitizations
of printed material or born-digital in the form of PDF generated from LATEX (predominatly in
math research) but also other formats (in education and engineering). However, they are usually
targeted at and exclusively consumed by human readers while their semantics is inaccessible
to computers systems. In order to support “doing mathematics” by computer we have to re-
cover the knowledge in these documents in a way that computers can act on. [Far08] defines
this as practical expressivity as opposed to theoretical expressivity which disregards how readily
the knowledge can be encoded and used by computer applications. In this thesis, motivated by
building practical applications, we will focus on practical expressivity. We identify two distinct,
existing approaches towards achieving that goal.

The first is to use computer methods to semanticize the existing mathematical documents. This
process is essentially the syntactic and semantic analysis phase of natural language processing
applied to mathematical documents. The analysis process is traditionally viewed as a transforma-
tion from utterances or documents into a knowledge representation language. First-order logic

1

INTRODUCTION

can seem a plausible target format for mathematical knowledge because it is (together with ax-
iomatic set theory [Ber91]) the generally accepted theoretical foundation of mathematics. But,
in practice, phenomena from natural language require more expressive languages.

For example, Montague [Mon74] uses a higher-order logic based on λ-calculus to have a compo-
sitional treatment of noun phrases and determiners. Similarly, dynamic logics like DRT [KR93]
or DPL [GS91] are used to address structural issues like the accessibility of discourse referents.
The examples above concentrate on “general natural language”, which in practice means almost
exclusively non-STEM documents. While STEM documents and mathematical ones in particu-
lar retain most of the linguistic complexities [Bau99, Wol13] of natural language, they have their
very own peculiarities that mean traditional natural language processing tools are not directly ap-
plicable (see [Wol12]). On the other hand, mathematical documents are typically more rigorous
and have more explicit representations of the underlying semantics. Therefore it makes sense to
develop specialized representation formats that take these into account.

The second approach is to design computer-processable languages together with associated sys-
tems and then to re-develop (part of) mathematics from the ground up in those languages. This
has lead to a wide range of formal systems such as Coq [Coq96], Mizar [Miz], Isabelle [Pau94]
or HOL Light [Har11]. Each has developed associated libraries of content in that language
which generally range in the area of thousands of documents. However, this size is only a frac-
tion of what is routinely produced in the informal world. In terms of services, the main utility
of such systems has been mechanically checking proofs to ensure their correctness. Major re-
sults include the Flyspeck project [HAB+15] formalizing the proof of the Kepler conjecture
in HOL Light [Har11] and Isabelle [Pau05] and the formalization of the Feit-Thompson theo-
rem [GAA+13] in Coq [BC04, Coq96]. A major limitation of such formal systems is that the
cost of formalization is very high. Moreover, they require a commitment to one logical language
and system with interoperability between systems and libraries being very limited. The QED
project, whose goals were outlined in 1994 in the QED manifesto [QED96, QED95], proposed
creating a database of all mathematical knowledge, completely formalized and with all proofs
formally checked but it never gained traction. In [Wie07b] Freek Wiedijk identifies two major
reasons for this failure, the small size of the formalized mathematics community and the lack of
a “killer application” application for formalized content.

In this thesis we tackle the problem of mechanizing mathematics and focus, not on the formal-
ization or translation process, but on the underlying representation language or target format.
Moreover, we use an application driven approach where the design and implementation of the
representation language is informed by the practicality of developing services for it. For re-
stricted domains, language, system and applications are often designed together for a specific
goal (e.g. in a proof assistant), but this makes it difficult to re-purpose the system for new appli-
cations. This is partly because, often, the aspects of mathematical knowledge that are relevant for
mechanization differ between applications. For instance, i) computer algebra systems make use
of and focus on the computational aspect, ii) proof checking requires explicit representation of
the semantics of types and definitions but can ignore narrative structures such as sections or para-
graphs, iii) formula search uses the presentational structure of expressions to match results and

2

INTRODUCTION

iv) change management can benefit from introspecting statement and document level structural
constructs to compute dependencies between them.

In practice, trained mathematicians integrate understanding about all aspects of mathematical
knowledge into a mental model. Then, they can use this mental model to perform reasoning and
knowledge operations that combine the various aspects in order to understand newly acquired
knowledge as well as induce new results. We will call the ability to do this mathematical literacy
since it is a prerequisite for doing mathematics effectively. Correspondingly, we consider math-
ematical literacy of an application as its ability to combine aspects of mathematical knowledge,
such as abstracting from syntactic differences in its input, then performing inferences, computa-
tions or interpretations via non-trivial mappings internally, and finally adapting the result to users
background knowledge or notational preferences. Therefore, in order to scale to a multitude of
services and allow building math literate applications a representation language for mathematics
must be able to capture, at the same time, all aspects of mathematical knowledge that are relevant
for practical, machine-driven applications.

Contributing to designing such a language for representing mathematics, in this thesis, we start
with and focus on the semantic and narrative aspects. Most notably, we largely ignore the com-
putational aspect and consider it outside the scope of this work. However, related developments
concerning simultaneously representing the semantic and computational aspects such as [Far07],
[KMR13] and [DIK+16] suggest promising avenues for future work.

Here, we start from the flexiformal ideas introduced in [KK11, Koh13] and build upon the exist-
ing representation languages MMT [RK13a] and OMDOC [Koh06]. The flexiformalist view of
knowledge representation extends the usual dichotomy of formal versus informal mathematics.
It emphasizes the importance of both representations and integration between them. Therefore,
a flexiformal document merges the human-oriented presentation, which we call the narrative
aspect with its underlying semantics which we call content aspect.

In concrete documents, either (or both) the content and the narrative aspect may be partial. From
that perspective, the two common cases occurring in practice, which are typically described as
formal and, respectively, informal documents represent two opposite extremes in the flexiformal
space. In this thesis we will use the terms transparent and opaque to describe the explicit and,
respectively, lack thereof a representation of either the content or narrative aspect. Therefore, in-
formality of documents corresponds to having transparent (explicit) narration and opaque content
(or semantics). Conversely, formality corresponds to having explicit semantics and opaque narra-
tion. In practice, of course, the situation is less definitive. Rigorous mathematical documents (the
standard in day-to-day mathematics), make a significant part of their semantics explicit by mark-
ing up statements such as theorems or definitions and by using standard notations for representing
formulae. Similarly, in the formal world, it is common to give defined symbols human-readable
notations. Moreover, narrative-inspired constructs such as sections, lemmas, or proofs are used
partly to increase intelligibility for human readers. In both cases various structuring mechanisms
are used to organize knowledge.

Therefore, a flexiformal representation language should allow co-representing both the narration
and content aspects of mathematical knowledge in a structure preserving way while supporting

3

INTRODUCTION

partial representations for either aspect.

Then, we use the term flexiformalization for converting mathematical knowledge (which we see
as inherently flexiformal) into such a flexiformal language. It is important to note that, although
fully explicit representations for both aspects are ideal, this rarely happens in practice. However,
many applications can still makes use of partial knowledge while also benefiting from more
explicit representations.

Formality

Fu
nc

tio
na

lit
y

Ch
an

ge
Man

agement

Se
m

an
tic

Search

Proof Sea
rc

h

Proof Che
ck

in
g

The Figure on the right shows this for some common applica-
tions from the formal world. Search and change management
can already be useful with very partial semantics while proof
checking and proof search require almost completely formal li-
braries to be practical. Note that the graph only takes into ac-
count the level of formality and not the implementation chal-
lenges inherent to each service. For instance, proof checking
requires a fully formal theorem and proof while proof search,
although conceptually more complex, only requires a fully for-
mal theorem so is less demanding in terms of formality. This
scaling of the functionality of applications has two crucial con-
sequences for management of flexiformal knowledge. First, it
lowers the cost of converting knowledge (flexiformalization) before a practical gain for the user
(due to applications) is achieved. Second, it incentivizes further flexiformalization as it improves
the functionality of existing applications and, possibly, makes new ones practical.

Within this context, in this thesis, we conduct an initial, comprehensive case study of flexifor-
mality. The main objectives we pursue are:

• representing flexiformal knowledge: survey existing formal and informal mathematical
knowledge to observe how flexiformality manifests itself in practice then design and im-
plement a formal language for representing flexiformal knowledge.

• flexiformalization: import and integrate existing mathematical archives at different levels
of formality into this language to build a large library of flexiformal mathematics and, in
the process, evaluate the expressivity of the language and its implementation.

• flexiformal knowledge management: design and implement a generic system that incorpo-
rates concrete practical applications for using and managing this flexiformal library. There-
fore, we evaluate the generality of the language and the scalability of the implementation
with respect to building generic, human-facing applications.

This thesis is organized as follows. In Chapter 2 we examine how flexiformality manifests itself
in mathematical practice within both formal and informal mathematics and develop a set of phe-
nomena and requirements for a flexiformal representation language. Then, in Chapter 3, we an-
alyze and discuss related languages and systems with respect to coverage of the phenomena and
meeting the requirements. Based on that, and building on MMT [RK13a] and OMDOC [Koh06]

4

INTRODUCTION

which we discuss in Chapter 4, we design and implement a flexiformal representation language
for mathematics in Chapter 5. The result, the IMMT language and system, extends MMT with the
goal of becoming a join generalization of MMT and OMDOC. We evaluate the resulting language
in Chapter 6 by examining how each flexiformal phenomenon can be represented in IMMT. Fi-
nally, we develop a practical, flexiformal ecosystem by building a large, heterogeneous library of
flexiformal mathematics and a system integrating services and applications for it. Specifically, in
Chapter 7 we import and combine knowledge from three existing mathematical libraries, namely
the Mizar Mathematical Library [TB85, MML], the SMGloM library [GIJ+15], and the OEIS
library [OEI15]. Then, in Chapter 8 we develop several services and applications for flexiformal
knowledge that we aggregate into a concrete system. We discuss future work and conclude in
Chapter 9.

5

Part I

Flexiformal Phenomena and State of the
Art

6

Chapter 2

Flexiformal Phenomena in Mathematics

2.1 Phenomena of Mathematical Vernacular

Acknowledgement. The results in this Chapter are based on collaborative work with Michael
Kohlhase that was published in [KI14]. However, the work is significantly revised and updated.

Common Mathematical Language (CML) is the specialized sublanguage of natural language
used for expressing mathematical knowledge. To achieve this goal, CML has developed par-
ticular linguistic devices that make it more suitable for expressing mathematical thoughts and
knowledge. These include grammatical constructs, idioms and linguistic conventions but also
structural adaptations with significant effects on the fundamental properties of the language. The
integration of formulae as well as the use of symbolism and complex notations make mathemat-
ical discourse more concise and readable for experts while at the same time making it seemingly
impenetrable for neophytes. Note that CML includes the ability to extend its own vocabulary, so
once readers know enough CML, they can bootstrap and understand any new piece of CML on
the basis of prior knowledge.

From the perspective of natural language understanding, this means that CML raises very par-
ticular challenges and as a consequence, standard processing tools designed for general natural
language often do badly when applied to mathematics [Wol12]. To understand why that is, one
must first analyze the linguistic phenomena that are specific to mathematical discourse.

In this thesis, we do not want to give a complete account of the particular syntactic and semantic
phenomena of CML – we refer the reader to the work reported in [Bau99, Zin04, Wol13, Gan13]
– but we want to highlight some issues that pose challenges to the target formats of semantics
construction. This perspective has not been in the focus of the literature so far as most of the
work concentrated on semantics construction or extraction algorithms and the particular logical
systems tailored to them. So let us start with a high-level assessment of CML before we go into
particular challenges in the subsections.

From a high level view, mathematical texts discuss mathematical objects and their relations us-

7

FLEXIFORMAL PHENOMENA IN MATHEMATICS

ing textual representations1. Critical parts of assertions or proofs are often reduced to writing
down or manipulating syntactic representations of mathematical concepts. At the same time,
mathematical documents are written with humans in mind as the target audience so the harsh
formalism of mathematical notions is often softened by a carefully constructed narrative struc-
ture, examples, intuitions and high-level overviews.

This means that CML must satisfy two conflicting requirements. Firstly, the intrinsic properties
of mathematics require mathematical language to be rigorous and precise. Secondly, human
authors and readers aim for concise and intuitive results that are easy to write and understand. In
fact in many cases the value of proofs, for instance, is measured by their subjectively perceived
beauty rather than their precision or even correctness.

Therefore, in practice, the form of each narrative realization of mathematical results depends on
notational, didactic and linguistic considerations. It is an important observation that mathemati-
cal texts can only be understood as a projection of abstract mathematical results. This is of course
true for any language as it is just a code for encoding information. However, in mathematics,
the background knowledge is crucial because mathematical texts usually require a more active
reader than other text forms.

In the interest of conciseness, mathematical discourse may carry that to an extreme. In practice,
ambiguities are accepted if they can be resolved from the context. The correct meaning is left to
be inferred by the reader. The understanding process often draws on background knowledge of
concepts and notations. It can also involve non-trivial inferences for filling in missing proof steps.
Moreover, CML uses symbols, concepts and notations introduced somewhere else (sometimes
later) in the text. Even for expert human readers, this is a very involved task and, therefore, it
raises significant challenges for computers.

In the rest of this Chapter, we will look at some key language phenomena that are specific to
mathematical discourse and differentiate it from generic natural language. We will distinguish
phenomena at three levels of granularity: representations of mathematical objects at the phrase
level, mathematical statements at the discourse level, and context phenomena at the document or
collection levels.

We systematically use examples from a variety of sources to demonstrate and substantiate the
phenomena. We use established books and manuals as representatives for the central branches of
mathematics as well as a random selection of (around 30) mathematical papers from the ARXIV.
For each example we cite the source from where it is taken, except when the example is trivial
or it is taken from another compilation of examples and we do not know the original source –
i.e. from [KI14]. Note that we select each example to be idiomatic, and use a wide variety of
sources simply for coverage. Otherwise, each of the documents investigated alone is sufficient
to find examples for most phenomena discussed below.

1For the purposes of this thesis we neglect the fact that CML also uses tables, plots, charts, and diagrams besides
the textual modality – see, for instance, [Nel97] – and leave their study to future work.

8

FLEXIFORMAL PHENOMENA IN MATHEMATICS

2.1.1 Phrase Structure

P1: Formulae as Primitive Objects Formulae are an essential part of mathematics and, con-
sequently, are also an important part of mathematical discourse. We identify three distinct sub-
phenomena symbol applications, naming objects locally, and referential meaning which we an-
alyze individually. Note that we treat the integration of formulae into narrative text as a separate
phenomenon and discuss it in P2: Mixing Text and Formulae below.

P1a: Symbol Application One of the most common and basic usages of mathematical symbols
and concepts in mathematical formulae is applying them to construct new expressions. Applying
symbols such as operators or functions to other symbols such as constants, variables or values
occur either in formulae or as part of narrative text. For instance the formula in Example 2.1 can
also be expressed narratively as “the sum of a and b”.

(2.1) a+ b

(2.2) |x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε [Rud76]

For more complex examples such as (2.2) the narrative representation becomes awkward. Gener-
ally, formula notation improves conciseness and readability [Wol13] which makes it ubiquitous
in mathematical discourse.

P1b: Naming Objects Locally Symbolic names provide a concise textual representation for
mathematical objects in CML. Being, in essence, atomic formulae, they can be used both in
formulae and in text. Since mathematical practice relies heavily on syntactic manipulations of
formulae, naming objects is essential and, in practice, common.

There are various forms of declarations in CML: (2.3) shows occurrences of binders (here the
quantifiers ∀, ∃) in a (first-order logic) formula. Here the binders merely declare the identifiers
ε, δ, x, and y, whose scope ranges over the body of the binders (the part after the “.”). (2.4)
shows a CML version of (2.3), where the binders are verbalized and the declarations contain
domain restrictions of various forms, e.g. δ ∈ R+ and ε > 0. We think of the first as a type
declaration (aka. sortal restriction in linguistics) and the second as a propositional restriction;
we distinguish them as they are usually handled differently in reasoning: types are built into the
substitution mechanism (type checking, usually kept implicit), whereas propositional restrictions
are subject to the general reasoning process. The declaration “x, y ∈ R with |x− y| ≤ δ” has a
compound restriction and is placed after x and y have been used; a rather common practice used
to make the syntactic structure of the assertion easier to comprehend. For verbalized binders, the
scoping of introduced identifiers is often ambiguous. For instance, in (2.5) and (2.6) the scope
of x and, respectively, n extends to the second sentence. In the latter example, the fact that the
construction is that of a “donkey sentence” [KR93] suggests a dynamic treatment.

(2.3) ∀ε.∃δ.∀x, y.|x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε [Rud76]
(2.4) For all ε > 0, there is a δ ∈ R+, such that |f(x) − f(y)| ≤ ε for all x, y ∈ R with

|x− y| ≤ δ.

9

FLEXIFORMAL PHENOMENA IN MATHEMATICS

(2.5) Let x ∈ G. The element y such that yx = xy = e is uniquely determined. [Lan10]
(2.6) If n > 10 is prime then it is odd. Moreover n ends in one of the digits 1, 3, 7 or 9.
(2.7) Define the distance d(x, y) between two numbers x, y to be x−y. Show that [. . .]

[Lan68]

(2.7) contains an example of a nested declaration commonly used for relational nouns (which
occur often in CML to verbalize functional objects) and their notations. (2.7) introduces the
verbalization of the “distance” between two numbers together with the notation d(·, ·). x and y
(the numbers) are the parameters to the definition and are named in a similar way: “two numbers
x, y” gives the numbers names which can be referenced in the notation (and definition) for the
distance.

Note that in all cases the declarations have local scope, i.e. the names are only accessible within
the sentence or (more commonly) the containing statement (see Section 2.1.2). Scoping of global
names (introduced by definitions) is subject to the document context level (see Section 2.1.3).

P1c: Referential Meaning In natural language, the meaning of lexical entries is grounded in
the experience of the interlocutors as embodied agents in the world. Even though it is very diffi-
cult to define a concept, e.g. of a chair, in all its aspects, we all share a broad consensus on this
matter. In mathematics this is different – possibly because it is difficult to directly experience
mathematical objects and concepts. Mathematical concepts and objects are defined in explicit
definitional statements (see Section 2.1.2) from previously introduced concepts or objects or de-
clared by selection from non-empty sets with their properties further refined by assumptions or
axioms. The only possible exceptions are simple mathematical concepts like N, or Rn, which
can be directly experienced by counting and as space. Forgoing a rehash of philosophy of math-
ematics2 we subscribe to a referential theory of meaning, where the meaning of lexical items
(mathematical symbolism and technical terms) is given by referring to the statements or phrases
that introduce them (we call these declarations; see below); see [WG10, WGK11] for linguistic
studies that justify this view.

P2: Mixing Text and Formulae What is unique about formulae in CML is their deep integra-
tion into narrative text to the point where they became integral parts of the language. Formulae
often appear interspersed within the text, e.g. in (2.8). More rarely, text can occur inside for-
mulae, such as in (2.9), and as we see in the slightly more complex (2.10), text and (non-trivial)
formulae can recurse freely.

(2.8) If A is atomic, then A 6∈ S or ¬A ∈ S. [And02]
(2.9) pvar(α) := {p | p occurs in α} [EFT94]
(2.10) A×B = {Z | Z = (X, Y) where X ∈ A and Y ∈ B} [Coh81]

Formulae can usually be replaced by their verbalization, i.e. a mathematically equivalent textual
representation, typically achieved by reading out the formula as a phrase (see P3 below). There-
fore, linguistically and gramatically, formulae can take on a variety of roles. Here, we abstract

2. . . where the jury is still out even on matters like the existence of the natural numbers; see e.g. [BP64]

10

FLEXIFORMAL PHENOMENA IN MATHEMATICS

away from linguistic analysis and processing and refer to [KI14] for a more in depth discussion
from that perspective.

P3: Notations and Verbalizations Mathematical objects usually have two concrete textual
realizations, notations and verbalizations. While functionally equivalent, the two fundamentally
differ in form and usage. Verbalizations, such as “plus” or “the set of natural numbers” are
natural-language based representations of mathematical notions. They are commonly found in
mathematical texts but only rarely inside formulae, usually when there is no standardized, nice-
looking notation, e.g. in (2.10). Notations, such as infix + for addition or N for the set of natural
numbers, are associated with the formal representation in mathematical language. They are
usually used within formulae although they are also often interspersed throughout the narrative
text. For instance in (2.11) “Euler’s number” is the verbalization and “e” is the notation. A
more complex example is shown in (2.12) where both the verbalization “simple linear group of
degree n over a field F ” and the notation “SL(n, F)” have parameters – in this case the degree
n and the field F .

(2.11) Euler’s number, e [. . .]
(2.12) The simple linear group of degree n over a field F , denoted SL(n, F), is the set

of n×n matrices with determinant 1, with the group operations of ordinary matrix
multiplication and matrix inversion. [Wik]

Note that from a parsing and linguistic analysis perspective notations introduce an additional
challenge due to ambiguity. In practice, mathematical notations have implicit and loosely defined
scope and precedence which help readers disambiguate formulae. For instance “sinx/y − z” is
ambiguous between “sin(x

y
) − z”, “sin(x

y−z)”, and “ sin(x)
y−z ” but, for a reader with the required

mathematical background knowledge its meaning is clear (usually because the other readings are
nonsensical mathematically). In other cases, ambiguities can be caused by different operators
having similar notations, for instance function application and multiplication. However, f(a(b−
c)) = 3 would be considered clear by most mathematicians due to well established naming
conventions, by which f is preferentially used for functions and a and b are used for individuals.
For a more in-depth study of ambiguities we refer the readers to [Wol13, Zin04, Gin11, Gan13]
and the literature referenced in these.

A special case of notational ambiguity is elision. Some operators such as Σ, lim,
∫

have complex
notations where arguments can be omitted and have implicit default values. For instance, log n is
usually taken to be log10 n in most contexts and log2 n in others; given a sequence a0, a1, . . . , ak
in the context, Σai is automatically understood by an experienced reader as Σk

i=0ai. Additionally,
the arity of mathematical notations can be flexible as there are symbols that take sequences as
arguments. This includes sets, lists, vectors, matrices but can also be extended to most infix
binary operators in the presence of associativity.

Since we are focused on the target format rather than the parsing and processing aspect we do not
consider ambiguity and elision central concerns. However, being able to represent symbols with
multiple, possibly ambiguous notations, as well as those with flexible arity is essential. More-
over, in practice, ambiguity in the source can lead to consequences in the processing result (e.g

11

FLEXIFORMAL PHENOMENA IN MATHEMATICS

multiple parses or incomplete semantics). We cover this with the requirement R3: Underspeci-
fication below.

2.1.2 Discourse Structure

P4: Mathematical Statements At the discourse level, CML is more explicit in delineating
the role of important paragraphs than common natural language. Definitions, theorems, lemmas,
corollaries, examples, exercises, or proofs are often marked up – even in informal text – using
specific fonts, emphasis or keywords and numbers for referencing. We distinguish the most
important cases below as subphenomena and discuss them individually.

P4a: Assertions Under the name of assertions we group a variety of mathematical statements
that assert something about the truth value of a proposition. This includes axioms (e.g 2.13),
theorems (e.g 2.14), lemmas (e.g 2.15) and corollaries (e.g 2.16). Assertions are often associ-
ated with proofs which typically have more complex internal structure. We discuss proofs as a
separate sub-phenomenon below.

(2.13) Axiom of extensionality. Two sets are equal (are the same set) if they have the
same elements: ∀x, y.(∀z.z ∈ x⇔ z ∈ y)⇒ x = y. [Wik]

(2.14) Femat’s Little Theorem. If p is a prime number and a is a natural number, then
ap ≡ a (mod p). [MWd]

(2.15) Lemma 2. If a, b ∈ Z and b > 0, there exist q, r ∈ Z such that a = qb + r with
0 ≤ r < b. [IR98]

(2.16) Corollary If f is continuous on [a, b] and f = g′ for some function g, then
∫ a
b
f =

g(b)− g(a). [Spi94]

Assertions often have specific relations to others statements. For instance, a proof proves an
theorem, a lemma contributes to a proof, and a corollary follows a theorem. Furthermore, a
corollary implies the proof (from the theorem) is trivial, while a classification as a theorem
implies that a proof exists, whether or not it is given in the text.

P4b: Definitions An important particularity of the mathematical vernacular is that it is not
fixed. Instead, it is dynamic and can extended both locally within formulae (see P1b Naming
Objects Locally) as well as globally using definitions. They allow mathematicians to declare and
name new concepts that can be used later. For instance definition (2.17) declares the set intersec-
tion operator ∩ that is used later to construct new sets. Similarly, definition (2.18) declares the
complex-conjugate function that is used to produce and relate complex numbers.

(2.17) If S1, S2 are sets, then the intersection of S1 and S2 denoted by S1 ∩ S2, is the
set of elements which lie in both S1 and S2. [Lan10]

(2.18) The complex conjugate of a complex number z = a + ib is defined to be z̄ =
a− ib. [MWd]

12

FLEXIFORMAL PHENOMENA IN MATHEMATICS

(2.19) 5.1 Definition. Let A and B be S-structures. [. . .] A and B are said to be
isomorphic (written A ∼= B) if there is an isomorphism π : A ∼= B. [EFT94]

Definitions lead to a layered construction of mathematical knowledge where ever-more complex
concepts are built (defined) based on simpler ones. For instance, definition (2.19) of the predicate
isomorphic uses the concept of isomorphism which was defined previously. Additionally, is uses
the type S-structure which was also defined previously. Defining new types is a particularly
interesting kind of definition which we treat as a separate sub-phenomenon and discuss it below.

P4c: Type Declarations The notion of objects having types, (e.g. “Complex Number”,
“Polygon”, “Prime Number”), is ubiquitous in mathematical practice. Note that we use the
term types in an unconstrained sense here to simply mean specific, named sets of individuals.
But not every type is a set, for instance “set” itself. Such types are used to construct and classify
mathematical objects. For instance, Example 2.20 introduce the new concept of sets, Example
2.21 defines prime numbers as a subset of naturals, and Example 2.22 constructs a new type
(complex numbers) as, effectively, a pair of real numbers.

(2.20) A collection of objects is called a set [Lan10]
(2.21) A prime number (or a prime) is a natural number greater than 1 that has no

positive divisors other than 1 and itself. [Wik]
(2.22) The complex numbers are the field C of numbers of the form x + iy, where x

and y are real numbers and i is the imaginary unit equal to the square root of
−1,
√
−1. [MWd]

Also, like other definitions, types are used for clarity and conciseness when introducing new
objects. Concretely, such types function as predicates describing the properties of the newly
introduced objects which can later be used in proofs involving them. For instance, in Fermat’s
Little Theorem from Example 2.14 p is introduced as a prime and a as a natural number.

P5: Structured Declarations Structured declarations are special statements that have internal
structure and context. We distinguish between several kinds of structured declarations below.

P5a: Inline Statements Even though statements are usually paragraph-level structures, abbre-
viated forms also appear at the phrase level. Consider the situation in (2.23) where we use the
existence and uniqueness of a solution to a (differential) equation to define a new concept (the
exponential function) in a parenthetical phrase. This construction is usually considered to be
mathematically equivalent to the combination of the explicit statements (2.24) and (2.25).

(2.23) Theorem 7.1: There is exactly one solution (called the exponential function
f(x) = ex) to the equation f ′ = f with f(0) = 1.

(2.24) Theorem 7.1: The equation f ′ = f has exactly one solution with f(0) = 1.
(2.25) Definition 7.2: We call the function f with f ′ = f and f(0) = 1 the exponential

function and write f(x) = ex.

13

FLEXIFORMAL PHENOMENA IN MATHEMATICS

(2.26) Let E be a vector space. A norm on E is a function v 7→ |v| from E into R
satisfying the following axioms:
N1. We have |v| ≥ 0 and |v| = 0 if and only if v = 0.
N2. If a ∈ R and v ∈ E, then |av| = |a| · |v|.
N3. For all v, w ∈ E we have |v + w| ≤ |v|+ |w|.

[Lan68]
(2.27) Definition 3.17 The number e is an important mathematical constant, approxi-

mately equal to 2.71828, that is the base of the natural logarithm. It is the limit
of (1 + 1

n
)n as n approaches infinity, an expression that arises in the study of

compound interest, and can also be calculated as the sum of the infinite series
e = 1 + 1

1
+ 1

1·2 + 1
1·2·3 + 1

1·2·3·4 + · · · [Wik]

Example 2.26 shows a different case where a definition requires three named inline declarations.
The three identities are arguably local to the definition unlike the exponential function from
Example 2.23 which is global. The last example (2.27) shows that inline statements can be
intricately nested to form complex, but concise statement-scapes, featuring a (primary) definiens,
alternative definitions, properties, and even hints for calculations.

P5b: Mathematical Structures Mathematical structures (e.g. “equivalence relation”, “com-
mutative group” or “vector space”) are constructs formed from one or more sets together with
elements, operations, and relations on them which must satisfy various properties (sometimes
called requirements or axioms).

In CML mathematical structures typically function as types (see P4c) but often behave differently
due to their internal structure. CML definitions, theorems and proofs involving mathematical
structures often work within the structure as if it were a standalone theory and treat its sets,
operations and properties as standalone declarations. We call this the pragmatic perspective
as opposed to the strict perspective where mathematical structures are treated as types without
focusing on their internals. For instance, the problem in (2.30) asks about the equivalence of two
statements within a finite field. Although the problem statement uses the pragmatic abstraction
“K [X]”, the natural proof that the two are derivable from each other works within the context of
the operations, relations and axioms that make up the field declaration (using an implicit forall
introduction to prove case (b)). On the other hand, the problem in (2.31) involves abstraction
over the set (type) of finite groups as well as the set of morphisms between them. Therefore,
mathematical practice makes use of both perspectives and while some problems (e.g. (2.30))
can be expressed and solved using the strict perspective others require the pragmatic one (e.g.
(2.31)).

(2.28) A group is a monoid (§2, no. 1, Definition 1) in which every element is invertible.
[Bou74]

(2.29) Definition 4. Let 〈R,+, 0,−〉 be a commutative group, and 〈R, ∗, 1〉 a monoid,
such that 〈R,+, ∗〉 is a ringoid. Then we call 〈R,+, 0,−, ∗, 1〉 a ring.

(2.30) Problem 1. Let K be a finite field. Prove that the following statements are
equivalent:

14

FLEXIFORMAL PHENOMENA IN MATHEMATICS

(a) 1 + 1 = 0;
(b) for all f ∈ K [X] with deg f ≥ 1, f

(
X2
)

is reducible.
[APS]

(2.31) Problem 2. Let G be the set of all finite groups with at least two elements.
(a) Prove that if G ∈ G, then the number of morphisms f : G→ G is at most p

√
nn,

where p is the largest prime divisor of n, and n is the number of elements in
G.

(b) Find all the groups in G for which the inequality at point a) is an equality.
[APS]

P5c: Proofs Reasoning about the truth of propositions is, arguably, the primary concern of
mathematics. Therefore, proofs are one of the central and distinguishing features of mathematical
documents. They consist of text fragments of various sizes – ranging from single words as in
(2.32) over meta-instructions as in (2.33) to complex argument structures that can span a whole
chapter or even an entire book3. But, even though proofs sometimes straddle the three levels we
used to structure our phenomena, they are most commonly structured discourse elements as in
(2.36).

(2.32) Proof: Trivial 2
(2.33) Proof: The proof is left to the reader as an exercise. 2
(2.34) . . . f(n), which must obviously be positive.
(2.35) . . . thus we have . . . , hence we have proven the assertion.
(2.36) Assume there are only finitely many primes. Let p be the largest prime number

and P be the product of all primes less than or equal to p; then consider the
number P + 1:

P + 1 = (Πq≤pq) + 1.

Two cases are possible: either (a) P + 1 is prime, or (b) P + 1 is not prime. But if
(a) is true, P + 1 would be a prime number larger than p. And if (b) holds, none
of the primes q ≤ p is a prime factor of P + 1, so the prime factors of P + 1 are all
larger than p. In both cases, the assumption that there is a largest prime p leads
to a contradiction. This shows that there must be infinitely many primes. [Rib96]

Usually proofs are structured into proof steps, which consist of an (intermediary) assertion with
a justification. In larger proofs, proof steps can be interspersed by proper statements like defi-
nitions, assertions, statement of subgoals, subproofs, etc. The relation between all of these are
given by the justifications, which can be explicit, lexicalized by special termini like “thus” and
“hence” in (2.35), or (often) elided or implicit as in (2.32) and (2.33). The internal structure

3The proof of the classification of finite simple groups, which consists of tens of thousands of pages in several
hundred journal articles written by about 100 authors, published mostly between 1955 and 2004 is a somewhat
extreme example.

15

FLEXIFORMAL PHENOMENA IN MATHEMATICS

mediates complex scoping structures that determine the visibility of identifiers/names and the
accessibility of results.

Proofs are one of the more interesting and well-studied linguistic phenomena, and we refer to the
discussions in [Wol13, Ker10, Avi08, Mel93] for more in-depth analyses.

2.1.3 Document Context

P6: Modularity Mathematical knowledge is written down and disseminated in the form of
individual documents such as books, articles or lecture notes. At the same time there is an
orthogonal, pragmatic organization of mathematical knowledge branches, fields or theories of
mathematics (e.g. “algebra”, “number theory”, “mathematical logic”, etc.). We therefore dis-
tinguish two forms of modularity corresponding to documents and, respectively, mathematical
theories and discuss them below. Note that we explore how such modules are related and reused
separately in P7: Framing and, respectively, P8: Common Ground.

P6a: Grouping Statements Mathematical documents encapsulate knowledge in the form of
statements (see P4 and P5) such as definitions, theorems, notations, proofs, etc. Within docu-
ments, there can be paragraphs, sections, or chapters which provide additional encapsulation and
influence scoping of declarations and variables. These containers of knowledge can be and often
are reused in various forms in other documents.

P6b: Dynamic Theories In mathematical practice, theories tend to be very large and fluid rather
than fixed. First, instead of documents, they corresponding to entire mathematical branches or
fields such group theory, number theory, etc. Second, they are implicitly enriched with new
results when they appear or are used, rather than being explicitly declared in an immutable doc-
ument. Review and survey articles are sometimes produced to provide an explicit snapshot of
some mathematical theory at a point in time. We call such theories as used in the context of
mathematical practice dynamic theories as opposed to the static groups of statements typically
used in representation languages (and mentioned above in P6a).

Mathematical theories exist in this form because mathematics is focused on usability in practice.
Mathematicians want an extensive tool-chest of concepts and theorems to develop new proofs
and results. However, from a knowledge management perspective, theories that are small and
fixed are easier to declare, organize and reason about. See, for instance, the theory-graph-based
little-theories [FGT92] approach. This makes dynamic theories as a phenomenon particularly
interesting to represent adequately.

P7: Framing An important property of mathematical thought is framing certain notions in
terms of others. In mathematical discourse objects of interest are often viewed in terms of al-
ready understood structures and creative use is made of this perspective. This allows relating
seemingly distinct mathematical fields as well as establishing new results; see [KK09, Koh14b]
for a discussion.

For example, the set of integers can be viewed as a group under addition, subsets of a fixed set

16

FLEXIFORMAL PHENOMENA IN MATHEMATICS

can be seen as (characteristic) functions and functions can be seen as sets (of input/output pairs).
More advanced results include interpreting a Boolean algebra as a field of sets via Stone’s repre-
sentation theorem or embedding an abstract manifold into some Euclidean space using Whitney’s
embedding theorems.

Framing is deeply ingrained in mathematical thought and naturally transpires into the presenta-
tion of mathematical results. Consider for instance (2.37) and in particular the adjective “dis-
crete”, which applies to metric or topological spaces4. But it is well-known that a normed vector
space can be viewed as a metric space: d(x, y) := ‖x − y‖ is a metric. So we can felicitously
utter (2.37) to any interlocutor who can frame a normed vector space as a metric space. (2.38) is
similar, only that the concept of a “ball” is a concept in metric spaces and the concept of “open”
sets in topological spaces – here we have a case of “nested framing” and need the additional
framing that metrics induce topologies.

(2.37) A normed vector space (V, ‖ · ‖) cannot be discrete.
(2.38) | · | is a norm on R . . . Let B ⊆ R be an open ball, . . .

Mathematical adjectives (and nouns in declarations) are notoriously prone to be applied via
frames – see also [Koh14a], so framing appears as a important challenge in the understanding
and semantic representation of mathematical texts.

P8: Common Ground Mathematics is a heterogeneous field and mathematical texts in dif-
ferent areas routinely use distinctive notations and vocabularies. This is a natural consequence
of the modular nature of mathematical practice and of mathematics’ dynamic vocabulary. In
practice, mathematical texts remain understandable due to a complex notion of document con-
text that resembles an object-oriented model. As mathematical documents build on existing
knowledge, they implicitly inherit concepts, notations and verbalizations from such sources to
create a specific mathematical vocabulary. We call this process “establishing common ground”
and, in practice, it is partly explicit via recaps of inherited notions and partly implicit leading to
ambiguity. The former typically appears in a preliminaries section that briefly restates relevant
developments while possibly overriding some definitions and notations. The latter is typically
used for foundational and logical assumptions which are rarely made explicit in mathematical
papers and documents and instead are left for the reader to determine. We discuss each as indi-
vidual sub-phenomena below.

P8a: Recaps Standalone mathematical documents such as articles or books have a standard
narrative structure: an introduction, followed by the main part that presents the body of knowl-
edge the document is written to convey (the payload of the document), which is followed by
conclusions. Often, such documents also contain a presentation of related work and a recapitu-
lation of the conceptual foundations to make the document self-contained and/or introduce the
concepts and notations needed to understand the payload – for lack of a better word we call such
document fragments recaps.

4stating that the metric or topology is discrete (i.e. separates points), which a norm cannot do, since it has to
scale with scalar multiplication (this is the core of the assertion in (2.37)).

17

FLEXIFORMAL PHENOMENA IN MATHEMATICS

The snippet from Example 2.39 is taken from [HK15] and defines the cover of the multiplicative
group of an algebraically closed field. However, later, the authors source the concept origin to
an earlier paper ([Zil03] – “[13] ” in the text) and effectively import the terminology, definitions
and theorems. For instance, when establishing results, [HK15] mentions “Moreover, with an
additional axiom (in Lω1ω) stating K ∼= Z, the class is categorical in uncountable cardi-
nalities. This was originally proved in [13] [. . .]. Throughout this article, we will make the
assumption K ∼= Z.”. Therefore it directly builds on results from another paper.

The situation from Example 2.40 is more complicated as it builds on developments from different
papers that use equivalent definitions. The snippet shows a definition introducing multinets from
a paper ([Bar15]) studying their properties. Later in that section some concrete properties of
multinets are introduced with the phrase “Several important properties of multinets are listed
below which have been collected from [4,10,12].”. The referenced papers all use slightly
different definitions of multinets but they are assumed to be equivalent so that the properties
hold. In fact, in this paper the assumption is made explicit – although not proved – from the start:
“There are several equivalent ways to define multinets. Here we present them using
pencils of plane curves.”

Example 2.41 is from a paper ([CS09]) that studies the halting problem for accelerated Turing
machines. The paper gives a telegraphic version of the full definition, which is given in the liter-
ature. Actually [CS09] continues with an overview of the literature, citing no less than 12 papers,
which address the topic of accelerated Turing machines. One of these supposedly contains the
formal definition, which involves generalizing Turing machines to timed ones, introducing com-
putational time structures, and singling out accelerating ones.

(2.39) Definition 1.1 Let V be a vector space over Q and let F be an algebraically
closed field of characteristic 0. A cover of the multiplicative group of F is a
structure represented by an exact sequence 0 → K → V → F → 1 , where the
map V → F ∗ is a surjective group homomorphism from (V,+) onto (F , ·) with
kernel K. We will call this map exp. [HK15]

(2.40) Definition 2.1 The union of all completely reducible fibers (with a fixed par-
tition into fibers, also called blocks) of a Ceva pencil of degree d is called a
(k, d)−multinet where k is the number of the blocks. The base X of the pencil is
determined by the multinet structure and called the base of the multinet. [Bar15]

(2.41) An accelerated Turing machine (sometimes called Zeno machine) is a Turing
machine that takes 2−n units of time (say seconds) to perform its nth step; we
assume that steps are in some sense identical except for the time taken for their
execution. [CS09]

(2.42) 1.5 Topological spaces A topological space is a set S in which a collection τ of
subsets (called open sets) has been specified, with the following properties: S
is open, ∅ is open, [. . .] Such a collection is called a topology on S. [Rud73]

(2.43) 1.6 Topological vector spaces Suppose τ is a topology on a vector space X
such that

18

FLEXIFORMAL PHENOMENA IN MATHEMATICS

(a)every point of X is a closed set, and
(b)the vector space operations are continuous with respect to τ
Under these conditions, τ is said to be a vector topology on X, and X is a
topological vector space. [Rud73]

The situation in mathematical textbooks is similar in structure to that in research papers – per-
haps more pronounced. Consider the passages in (2.42) and (2.43) taken from Rudin’s classical
introductory textbook to Functional Analysis [Rud73]. Rudin does not directly cite the literature
in either of these definitions. But in the preface he mentions the vast literature on function analy-
sis and in Appendix B he cites the original literature for each chapter. The situation in textbooks
is also different from research articles in that textbooks – like survey articles, and by their very
nature – do not add (much) new knowledge or results, but aggregate and organize the already
published ones, possibly reformulating them for a more uniform exposition. But still, one can
distinguish recap parts – as the ones above – which are much more telegraphic in nature from the
primary material presented in the textbook.

The common part in all examples above is that the document establishes the realm of mathe-
matical knowledge to which the current development belongs (e.g. multinets, accelerated Turing
machines or functional analysis). Therefore, it situates the content of the document within the
mathematical knowledge space. This is not only relevant for understanding the document by es-
tablishing a common ground. It also outlines the context in which the document and its payload
contributes back to the existing mathematical knowledge.

Additionally, as shown in the examples above, mathematical documents typically rephrase or
reframe concepts and notations when establishing common ground. Therefore, concepts are not
always directly imported but often are modified via renamings and redefinitions or by giving
local notations and verbalizations.

P8b: Foundational Ambiguity Mathematical documents can (and typically do) leave founda-
tional and logical assumptions implicit. This can lead to ambiguity when interpreting the con-
tents of the document. For example, mathematical discourse makes use of a large set of concepts
whose existence is implicitly justified by them being definable from some foundational primi-
tives. Notable examples are natural numbers and tuples which, in more formal developments,
are usually defined based on sets. Another common example is sequences which also come with
their own notational infrastructure, for instance elision (see P3).

The reader, if interested in such things at all, is expected to determine what are the compati-
ble foundations in which the document can be interpreted. This is useful because it leaves the
document payload open to any foundation in which the needed assumptions and concepts can
be derived and, respectively, defined. It is also particularly interesting because the individual
foundational options can be incompatible with each other. For instance, the problem of whether
a finite game is determined (i.e. there is a winning strategy) can be proved in both a foundation
with axiom of choice and in one with the axiom of determinacy. But the two are known to be
incompatible [MS62].

Therefore, the challenge with respect to representing mathematical knowledge is not just the

19

FLEXIFORMAL PHENOMENA IN MATHEMATICS

multitude of alternative logics and foundations. It is also the fact that mathematical practice
often intentionally avoids foundational commitments.

2.1.4 Level-Independent Phenomena

Below we discuss phenomena that straddle the three levels we distinguished above.

P9: Structural Dimorphism Mathematical knowledge has a dual role: to be precise and
rigorous – close to the semantics – on the one hand and concise and intuitive – understandable
by humans – on the other. Arguably, it is these irreconcilable requirements that give rise to two
kinds of representations usually associated with formal and, respectively, informal mathematics.
While these two kinds of representation are meant to refer to the same platonic world (the world
of mathematics) it has proven difficult to formally express this connection. One can easily relate
a formal document with its informal counterpart or a formal proof with its informal version but
the relations are more complex and fine-grained than that. We observe that the narrative and the
content representations often have different internal structure.

This practical and structural difference which we call structural dimorphism5 occurs at all levels
identified above. At the phrase level this is most transparent with CML itself using and mixing
what is arguably two languages for representing formulas. The first is natural language such as
in Example 2.44 and the second is mathematical formula language such as in Example 2.45. In
fact the two examples convey the same mathematical object, but with different representations.
A similar situation occurs above in Examples 2.4 (for natural language) and 2.3 (for formula
language) above. Example 2.46 shows how the flexibility of natural language allows a different
order or structure from the formula representation. In this case the binding happens at the end
(often introduced by the keyword where). Similarly, Example 2.5 above shows one formula
split over several sentences.

(2.44) For all a, b ∈ N there exists a number m such that a|m and b|m.
(2.45) ∀a, b ∈ N. ∃m. a|m ∧ b|m.
(2.46) There exists a number m, such that a|m and b|m for any a, b ∈ N.
(2.47) Theorem 7.1: There is exactly one solution (called the exponential function

f(x) = ex) to the equation f ′ = f with f(0) = 1.
(2.48) Definition 1. Let X be a set, then {∅, X} is a topology on X, it is called the

trivial topology and 〈X, {∅, X}〉 the indiscrete space over X.

We observe that discourse-level declarations also commonly have internal structure that differs
from the structure of their semantics. Consider, for instance, the hybrid of a definition and a
theorem from Example 2.47 (a repeat of Example 2.23). This kind of “definition” is commonly
used in informal mathematics and pragmatically combines two actions into one aggregated form:

5cf. the usage in crystallography the phenomenon that some substances have two chemically identical but crys-
tallographically distinct forms.

20

FLEXIFORMAL PHENOMENA IN MATHEMATICS

i) the assertion that there is an unique function f such that f ′ = f and f(0) = 1 and ii) defin-
ing the exponential function as the unique function implied by the assertion. Therefore, what
is narratively one declaration, amounts to two related declarations from the content (semantic)
perspective. A similar situation occurs in example 2.48 where there is again one narrative dec-
laration corresponding to several from a content perspective: i) the assertion that {∅, X} is a
topology on X , ii) defining the trivial topology as {∅, X} and iii) defining the indiscrete space
over X as 〈X, {∅, X}〉.
We observe the same phenomenon at the document context level. Mathematical documents use
structuring constructs such as chapters, sections, paragraphs or sentences. But such structures
are usually mostly narrative and do not directly determine the context and scoping within the
document. The proof from Example 2.36 above shows that in the context of a proof where the
scope of local declarations is split over several sentences.

We believe that any representation language for mathematics must take seriously the narrative-
content duality of mathematical texts. This is practically necessary so that knowledge in that
language should be at the same time understandable by humans and processable by machines.
Therefore, we emphasize the importance of both content and narrative aspects as well as inte-
grating between them.

2.1.5 Additional Requirements

In this Section, we develop some practical requirements for flexiformal representation languages
that come from management, efficiency, and interoperability considerations. They are induced by
the observation that the linguistic study of mathematical documents is a niche subject, where re-
searchers have to collaborate to be able to create the necessary linguistic resources like gazetteers,
semantic lexica, etc. This leads to the following three (distinct, but interrelated) requirements:

R1: Opaqueness Mathematics is often considered precise and rigorous with the formalization
challenges coming from the complexity and ambiguity of CML rather than from mathematics
itself. As some of the phenomena above show (e.g P2 Mixing Text and Formulae, P8b Foun-
dational Ambiguity, P9 Structural Dimorphism), we disagree with that perspective. But even
assuming it, a language for representing mathematical knowledge should be applicable to im-
precise or incomplete knowledge. This is because (math-specific) natural language processing
tools, which are often the sources for such knowledge, produce partially semanticized docu-
ments. There, only some parts or aspects of the document semantics are explicit, while others
parts remain semantically opaque – i.e. the meaning is inaccessible for current computational
systems. There is a prevalence, in the real world, of informal documents and of such efforts to
semanticize them [SK08]. Even in the formal world, exports for systems can be partial. For in-
stance the MIZAR export (discussed in more detail in Section 7.1 below) skips proof steps that are
inferred by the system. Moreover, imports to a different formal language may be unable to fully
preserve the original semantics. Therefore, being able to represent such partially semanticized
documents is essential.

21

FLEXIFORMAL PHENOMENA IN MATHEMATICS

R2: System Scalability Representation languages must balance expressiveness and minimality.
The former increases coverage (e.g. of the phenomena discussed above) but the latter simplifies
implementing and reasoning about the language. For a complex language, even if an implemen-
tation is realizable, it can be difficult to re-purpose or scale the system to new applications. Com-
mon mathematical language itself is an extreme example of a language with extensive coverage
but which lacks minimality. As a result of its complexity it is yet to be given a formal seman-
tics let alone an implementation. In this thesis we consider realizing machine-driven practical
applications as a central goal, alongside comprehensive mathematical knowledge representation.
Therefore we view minimality, with the focus on system scalability, as an important requirement.

R3: Underspecification Under the name “underspecification” the natural language semantics
community discusses a set of techniques for dealing with ambiguity by deliberately omitting
information from linguistic descriptions to capture several alternative realizations of a linguis-
tic phenomenon in one single representation and how to process such underspecified represen-
tations without multiplying them out. Approaches include lexical techniques for polysemous
words [Pus98], packed formula representations [DT00] and meta-languages that describe a set of
formulae [KTP10]. Even though mathematical language is often regarded as virtually unambigu-
ous, semantic target formats should support underspecified representations. This is particularly
important for the lexical level, where polysemy is rampant.

2.2 Narration and Structure in Formal Mathematics

The field of formal mathematics includes a variety of different languages and systems. While
the principal goal of such languages is the adequate representation of the semantics of mathe-
matical knowledge, there are also components that are inspired from or reminiscent of informal
mathematics. In fact, narrative phenomena abound in formal mathematics also. Much of the in-
formation encoded into formal mathematical libraries is not strictly necessary for proof checking.
Examples include documentation, notations, statement roles (e.g. lemma vs theorem), structured
declarations and proofs, document structure and sectioning information as well as the pragmatic
layer designed for human authors and readers. All could be removed or de-constructed to long
lists of logical inferences while preserving the provability and formal semantics. But, as empha-
sized in the discussion on common mathematical language, narration and structure are, alongside
semantics, essential components of mathematical knowledge. Therefore, it is unsurprising that
they are found in formal systems and libraries also. For the purposes of this thesis we are also
interested in a language that is capable of representing the narration and structure as it manifests
in libraries of formal systems not just in informal texts.

Therefore, in this Section, we analyze these language features specifically, from the perspec-
tive of the phenomena developed in the previous section. There are large number of formal
systems which all differ in terms of syntax, choice of foundation or implementation. Notable
systems include Mizar [TB85], Isabelle [NPW02], Coq [BC04, Coq96], HOL Light [Har11],
Agda [BDN09], Matita [ARCT11], Lean [dMKA+15] and the IMPS system [FGT93]. We will

22

FLEXIFORMAL PHENOMENA IN MATHEMATICS

mostly look at Mizar, Isabelle, Coq, and MMT [RK13a] as idiomatic examples and refer to
[RK13a] for a full overview from the purely formal perspective.

P1 Formulae as Primitive Objects At the formula level, different formal systems provide
different primitives depending on their base logic and foundation. However, the fundamental
constructs used for building formulas using those primitives can be distilled to the same ones as
in CML. The basic constructs are symbol application, binding as well as referencing symbols
and variables. These are also, effectively, the central primitives used by formula representation
languages such as OPENMATH [BCC+04] and Content MATHML [CIM14].

P2 Mixing Text and Formulae Similar to programming languages, comments as user-readable
annotations of formal declarations and proofs represent a relatively common language construct
among formal systems. In the simplest case, comments represent arbitrary text delineated by
dedicated syntactic markers that is typically ignored by the system implementing the language.
We call such comments throwaway. However, in some cases languages provide dedicated syntax
for comments to talk about or refer to formal objects. Moreover, like in programming lan-
guages, comments are sometimes used by document work-flows other than proof checking, such
as generating documentation or presentation. Isabelle, has source comments (which are plain and
throwaway) as well as formal comments (which are more structured) that are used for instance,
when generating PDF articles as presentation of Isabelle theories. The structuring mechanism
in formal comments is “antiquotation”, which allows comments to talk about formal objects by
recursing back into the object language (with the keyword “@”), effectively permitting a mix
of formal and informal content (see Example 1). Moreover Isabelle has both inline comments
(separated using “--”) and declaration-level comments (separated by “text”).

Example 1. The listing below shows a lemma with inline comments from [AFP]6. The two com-
ments, while separate, represent one statement that is split because of code-style considerations
(line width). The first comment makes use of antiquotation to embed an object into the informal
part in order to refer to the “split_if” lemma. While this is a fairly trivial example of antiquo-
tation, it can be used to embed arbitrarily complex objects, including ones that recurse back to
the comment language.

1 lemma cases_simp: "((P --> Q) & (˜P --> Q)) = Q"
2 -- {* Avoids duplication of subgoals after @{text split_if}, when the true

and false *}
3 -- {* cases boil down to the same thing. *}
4 by blast

Mizar, has only one type of comments (separated using “::”) which are plain text and are ignored
by the proof checker (as expected) and the PDF presenter but are used by the HTML presenter.

Example 2. The listing below shows a theorem from the Mizar Mathematical Library [MML]7

6at http://isabelle.in.tum.de/library/HOL/HOL/HOL.html
7at http://mizar.org/version/current/mml/xboole_1.miz

23

http://isabelle.in.tum.de/library/HOL/HOL/HOL.html
http://mizar.org/version/current/mml/xboole_1.miz

FLEXIFORMAL PHENOMENA IN MATHEMATICS

1 ::$N Modus Barbara
2 theorem
3 X c= Y & Y c= Z implies X c= Z;

Similarly, in Coq comments are plain and throwaway, as they are discarded by the parser and
treated as blanks.

P3 Notations and Verbalizations Formal systems do not use verbalizations since they are,
for the most part, exclusively focused on the formal aspect. However, they do have notation
declarations in various forms. For instance, in Mizar notations are usually part of the definition
itself as in the listing below.

1 func X \/ Y -> set means . . .

Mizar also has notation as a standalone declaration which can be used to declare synonymic
and antonymic notations for preexisting symbols. Isabelle, provides primitives in the syntax for
the usual fixities including infix and binder. But, abstracting away the concrete syntax, Coq,
Isabelle, Mizar and MMT notations are all mixfix notations with placeholders for arguments (or
variables for binders).

P4 Mathematical Statements At the statement level most formal systems provide a relatively
rich set of CML-inspired language constructs for representing mathematics.

For instance Mizar has definition, theorem and notation all with the obvious role. In addi-
tion Mizar also has reservation which reserves variable names for certain types. This is typical
although implicit in math, where variable names have often implicit type associations in every
field (e.g. m,n are usually used for natural numbers, p for primes, etc.). We discuss the Mizar
statement-level constructs in more detail in Section 7.1.

The situation is similar for Isabelle and Coq which have constructs such as definition, lemma,
notation, proof and theorem. LCF-style provers (e.g. the HOL family) use the program-
ming language for statements. MMT on the other hand, provides a single language construct for
declaring plain statements: constant. Rather than being primitive, the role may be annotated to
a constant declaration as metadata. However, in general, formal systems do have a considerable
taxonomy of statement level constructs with CML-inspired meaning.

P5 Structured Declarations Even though not always strictly needed by the parser or proof
checker, structure in declarations makes them easier to process (understand or create) by hu-
mans. Therefore, as in CML, statement-level declarations with internal structures are common
in formal systems also. They are most commonly used for mathematical structures (typically
called inductive types) and for structured proofs.

For the former, Mizar has a dedicated language construct structure which aggregate declara-
tions and provide selectors for the fields. We discuss Mizar structures in more detail in Section

24

FLEXIFORMAL PHENOMENA IN MATHEMATICS

7.1. Isabelle uses records for the same purpose, which can extend other records and have select
and update functionality [WBB+]. In some cases module-level elements (see modularity and
framing below) are used instead for representing such structured declarations. For instance Coq
uses modules to develop algebraic structures in their Standard Library [Coq96, Chr03] (see also
P6: Modularity below). Similarly, in the MMT library LATIN [CHK+11], algebraic structures
are declared as theories and relating using imports and views.

Proofs are another instance of structured declarations in formal systems. Languages include
constructs for local constants and assumptions that will be used to produce the final proof later.
Moreover, there are several proof methods that are distinguishable in their importance in mathe-
matical discourse such as induction, proof by cases, proof by negation etc. Logically they can be
seen as plain proof rules or tactics but some formal languages distinguish them at least in their
syntax. For instance, proof by cases is a primitive in Mizar alongside local constants and as-
sumptions (see listing below). Other languages such as Coq use an extensible set of proof tactics
with a similar effect.

1 unionE : ded A in (X union Y) -> ded A in X or A in Y =
2 [p] existsE (bigunionE p)
3 ([x][q: ded x in uopair X Y and A in x] orE (uopairE (andEl q))
4 ([r: ded x eq X] orIl (congEl r ([u] A in u) (andEr q)))
5 ([r: ded x eq Y] orIr (congEl r ([u] A in u) (andEr q)))
6).

P6 Modularity Formal systems typically have one or more constructs for grouping statements
and managing their scope. At a minimum, they provide an equivalent to mathematical documents
to practically organize large libraries into separate files. These include articles in Mizar, theories
in Isabelle, documents in MMT and libraries in Coq. Many systems, including Mizar, Isabelle
and Coq also provide some form of narrative-inspired sectioning mechanism. The section con-
struct may have some additional semantics. For instance, in Mizar, sections, introduced with the
keyword begin determine the scope of lemmas. In Coq they manage the scope of local variable
declarations. Such declarations behave like normal constants from within the section but, from
the outside, they are abstracted over using binders where they are used.

Other, more fine grained, examples of constructs for declaring logical modules include locales in
Isabelle [KW99], modules in Coq, and theories in MMT. They are named, possibly parametric
(e.g. in Coq and Isabelle) lists of declarations that come with an infrastructure for relating and
reusing them. We refer to [RK13a, Sect. 2.1&4] for a more detailed overview of modularity in
formal systems.

P7 Framing In formal systems some framing-like notion typically exists to relate the logical
modules discussed above (e.g. the theories in MMT, locales in Isabelle, modules in Coq, etc.).
In MMT, views are translations between two theories demonstrating one as being a realization
of the other. MMT views map symbols in the source (specification) theory to expressions in the
target (realization) theory. In Isabelle, locale interpretations instantiate parametric locales by

25

FLEXIFORMAL PHENOMENA IN MATHEMATICS

fixing the parameters and requires proofs that they satisfy the specification of the locale. In Coq,
modules can be related with subtyping relations and parametric modules can be instantiated into
concrete realizations by providing arguments for the parameters [Chr03]. Other related concepts
are implicit coercions and unification hints but we refer to [RK13a, Sect. 2.3&4] for a more
detailed overview of framing in formal systems.

P8 Common Ground In formal systems, establishing common ground and reusing other mod-
ules is done through some form of explicit import. Direct, unnamed imports such as plain inclu-
sion in Coq, import in Isabelle and PVS, extension in CASL and includes in MMT are standard.
More complex forms of imports that allow for renamings, redefinitions or instantiation (as com-
monly used in CML) are supported in some systems. For instance, MMT structures allow im-
porting by instantiating another theory while optionally adding new names or notations. modules
in Coq and imports in Isabelle can fulfill a similar role.

In Mizar, articles can be exported as PDF files in a human readable format. The narrative doc-
uments contain a part that verbalizes the imports from the source documents and the notation
reservations. This functions as a common ground section and, in fact, is similar to the informal
examples for common ground from Section 2.1.

Example 3. The common ground part for [RK13b]

The notation and terminology used in this paper have been introduced
in the following papers: [4], [11], [12], [19], [9], [3], [5], [6], [21], [22],
[1], [2], [7], [18], [20], [24], [25], [23], [16], [13], [14], [10], [15], and [8].
[. . .] In this paper T , U are non empty topological spaces, t is a point
of T , and n is a natural number.

(1)

Among the various systems a number of approaches are used to avoid name clashes and diamond
problems including, shadowing, renaming, hiding or filtering of declarations. Again, we refer to
[RK13a, Sect. 2.2&4] for a more detailed overview of imports and inheritance in formal systems.

At the foundational level, the ambiguity specific to CML is naturally not a concern in formal sys-
tems. However, the plurality of foundational assumptions and language features that are needed
to effectively do mathematics remains important. Most formal systems take the approach of using
an extremely expressive language that can be used to define various mathematical foundations
internally. For instance Coq is based on the calculus of constructions (CoC [CH88]), Isabelle on
higher order logic and Mizar on Tarski-Grothendieck set theory on top of a (mostly) first-order
logic. MMT, on the other hand, takes a different approach by making the logical language a
parameter in the representation format and allowing one to relate different logical languages via
translations. We discuss MMT in more detail in Section 4.2.

P9 Structural Dimorphism The richness in constructs of formal language that we discussed
above can be misleading because it studies the human-oriented surface syntax that authors write.
But some of these constructs are extensions such as macros or syntactic sugar that are not present
in the underlying formal language that the system processes and checks. Therefore, one can

26

FLEXIFORMAL PHENOMENA IN MATHEMATICS

Figure 2.1: Presentation for the Mizar Mathematical Library

often distinguish between a rich pragmatic language level optimized for authors and a mini-
mal strict level optimized for the proof system. For instance, in the Mizar case the syntax in
which Mizar articles are written is called the pattern-level (presentation-level) language and the
machine-internal representation used in the Mizar system is called the constructor-level (seman-
tic level) language [IKRU13]. Isabelle achieves a similar effect by using packages to define
user-convenient constructs on top of the core HOL primitives.

Moreover, even with the rich pragmatic level, source documents of formal systems are typically
burdensome to read and understand even by habitual users. This is partly because the languages
are optimized for writing and parsing rather than reading. As a consequence some libraries
offer additional ways of browsing the documents by presenting the source documents in a more
reader-friendly manner.

For instance, Mizar and Isabelle provide two ways of presenting articles, a HTML-based one
and a PDF-based one. The HTML presentation is typically a source view, enhanced with syntax
highlighting, hyperlinks, expandable components (i.e. sections, proofs, etc.). Figure 2.1 shows
the two (HTML and PDF) presentations for Theorem 2 from the MML article MEASURE5.

Currently, presentation algorithms (like the ones exemplified in Figure 2.1) are relatively simple
and the presentation is structurally identical to the source, different notations or renderings (e.g.
LATEX for PDF, CSS and JavaScript for HTML). However, not all presentation is generated al-
gorithmically. For instance, [TKUG13] uses manually written LATEX for the presentation part by
cross-linking between Hales’s informal Flyspeck book, and the formal Flyspeck development.

27

Chapter 3

State of the Art

Acknowledgement. Part of the results in this Chapter are based on collaborative work with
Michael Kohlhase that was published in [KI14]. However, the work is significantly revised and
updated.

In this Chapter we present and analyze related languages for mathematical knowledge represen-
tation and their associated systems. We observe two categories of such languages: the (mathe-
matical) natural language processing community and the formal mathematics community.

First, there are several, traditional, target formats for common mathematical language (CML)
that mix logical aspects with structural ones. For example, dynamic logics like DRT [KR93]
or DPL [GS91] combines the truth functionality of logical connectives with the accessibility of
discourse referents. Montague-style [Mon74] systems combine structural issues (using λ-calculi
to achieve compositionality of semantics construction) again with certain – often non-standard –
assumptions about the propositional level. Systems like λ-DRT [KKP96] or dynamic Montague
grammar [GS90], further increase expressivity but can become complex and unwieldy. Tradi-
tionally, the most common approach towards a representation language for mathematics has been
by combining all the desired traits of the various semantic formats into a single extremely ex-
pressive language that contains all other formats as sub-languages. We call this homogeneous
pluralism) as opposed to heterogeneous pluralism which makes the logical language a parameter
in the representation format and (optionally) relate different logical languages via translations.
Here we take the heterogeneous view as motivated by the phenomena from Section 2.1. There-
fore we see suitable logical representation languages (which tend to largely ignore the discourse
and context levels) as parameters for such meta-level heterogeneous system rather than as direct
alternatives. We discuss more concrete examples in detail below.

Second, as presented in Section 2.2, there are a wide variety of formal languages and systems
for representing mathematics. They generally adopt a bottom-up approach where they fix a logic
and syntax and re-develop mathematics on top of that. Therefore, representing phenomena of
common mathematical language is, at best, an indirect goal. However many formal languages
come with (a growing list of) narrative constructs inspired from CML. Moreover, type theories

28

STATE OF THE ART

with dependent record types (e.g. the calculus of constructions (CoC [CH88]) of the Coq sys-
tem [BC04, Coq96]) can represent many of the structures at the theory level in a logic-internal
way by encoding what we think of as theories as record types and views as type coersions.
However, their expressivity with respect to representing CML in general and the flexiformal phe-
nomena (from Chapter 2) in particular is still very limited. Therefore, they are not realistically
practical as a basis for building human-facing applications where coverage of CML is essen-
tial because that is the language mathematicians use and understand. Moreover, since the core
goal of such formal systems is verification, they require full formalization. Despite some no-
table achievements, such as the Flyspeck project [HAB+15] which formalized the proof of the
Kepler conjecture in HOL Light [Har11] and Isabelle [Pau05] as well as the formalization of
the Feit-Thompson theorem [GAA+13] in Coq, formalizing mathematics on a large scale is still
prohibitively expensive. Therefore, given the particular objectives of this thesis, most formal
systems are not directly pertinent. This is why we analyzed them as potential source formats in
Section 2.2 rather than here as target languages.

Below, we discuss in more detail particular languages and systems that we do consider suitable
targets for representing flexiformal phenomena, either because of their expressivity, design goals
or ubiquity. We discuss each of the selected languages individually below and evaluate them
with respect to the phenomena from Section 2.1. Figure 3.1 gives an overview of the results.

First-Order Logic On the surface, first-order logic is an appealing target format for translating
mathematical documents since, together with axiomatic set theory [Ber91], it forms the most
widely accepted foundation of mathematics. However, due to its first-order nature and limitations
on handling some natural language phenomena, (e.g. anaphora) other variants, such as higher-
order or dynamic logics [Har84] were identified as more appealing.

In general, FOL and related logics are good at representing formulae (P1:+), and allow for named
declarations (P1b:+) and references (P1c:+). However, there is no mixing of text with formulae
(P2:-) and there are no constructs for declaring notations (or verbalizations) (P3:-).

Moreover, while there are many ways to extend FOL with a more or less complex module sys-
tem, modularity is not typically a part of FOL’s standard formulation. Therefore, one cannot
adequately represent the high level discourse (P4:-, P5:-) and context (P6:-, P7:-, P8:-) structure
of mathematical documents (e.g. theorems, definitions, proofs, theories, etc. and the relations be-
tween them). Proofs can be naturally represented, but not their pragmatic structure with internal
declarations, assumptions and proofs steps (P5c:0).

As a direct consequence, the phenomena from the discourse and context level discussed in Sec-
tion 2 cannot be captured in plain FOL or related logics.

Moreover there is no solution as part of FOL for representing opaque (R1:-) or underspecified
(R3:-) formulae. On the plus side, FOL is a relatively simple language with a well defined
semantics and therefore easy to implement (R2:+).

29

STATE OF THE ART

FO
L

Na
pr

oc
he

W
TT

M
at

hL
an

g

O
M

D
O

C

M
M

T

M
iza

r

P1 Formulae as Primitive Objects + + + + + + +
P1a Symbol Application + + + + + + +
P1b Naming Objects Locally + + + + + + +
P1c Referential Meaning + + + + + + +

P2 Mixing Text and Formulae – + 0 + + – 0
P3 Notations and Verbalizations – – – – + 0 +
P4 Mathematical Statements – + + + + + +

P4a Assertions – + 0 + + + +
P4b Definitions – + + + + + +
P4c Type Declarations – + + + + + +

P5 Structured Declarations – – 0 0 0 0 +
P5a Inline Statements – – 0 + + + +
P5b Mathematical Structures – – – – 0 0 +
P5c Proofs 0 + 0 + + 0 +

P6 Modularity – – 0 0 0 0 0
P6a Grouping Statements – – + + + + +
P6b Dynamic Theories – – – – – – –

P7 Framing – – – – + + –
P8 Common Ground – – 0 0 0 0 0

P8a Recaps – – – – 0 0 0
P8b Foundational Ambiguity – – + + + 0 0

P9 Structural Dimorphism – – – 0 0 – –
R1 Opaqueness – – 0 0 + – –
R2 System Scalability + + 0 + 0 + 0
R3 Underspecification – – – – – – –

Figure 3.1: Features of Mathematical Knowledge Representation Languages

30

STATE OF THE ART

Naproche The Naproche project [CFK+10] starts from the common mathematical language
to develop a controlled natural language (CNL) for mathematical texts and a proof checking
software to formally check texts written in this language. An important result is translating
the first chapter of Landau’s book Grundlagen der Analysis [Lan30] in Naproche’s controlled
language [CCK09] while staying relatively close to the original.

The Naproche CNL focuses on proofs to permit adequate proof checking by the Naproche system
and does not necessarily aim to cover all phenomena from Section 2.1.

At the phrase level, the Naproche CNL includes a language for formulae which can be integrated
within natural language phrases (P1:+, P1a:+) and includes local declarations (P1b:+) and refer-
ences (P1c:+). Moreover, as its goal is to remain as close as possible to CML, it supports mixing
text and formulae, albeit in a controlled way (P2:+). However, there is no explicit support for
declaring notations and verbalizations (P3:-).

At the discourse level, Naproche’s CNL offers explicit markup for axioms, definitions, lemmas
and theorems (P4:+) as well as proofs with case distinctions and assumptions (P5c:+) but not
for inline statements or mathmatical structures (P5a:-, P5b:-). Proofs are represented using
proof representation structures (PRS) which are adapted from discourse representation structures
[KR93].

The context level, as defined in Section 2.1, is missing as there is no explicit markup for docu-
ments, theories or groups of statements, let alone relations between them (P6:-, P7:-, P8:-).

The Naproche project also includes a system implementing the language (R2:+). Some ambigu-
ity is supported in the syntax but it is meant to be resolved during parsing and analysis. Therefore,
the system does not allow representing opaque (R1:-) or underspecified (R3:-) content.

Weak Type Theory WTT (Weak Type Theory) [KN04] is a refinement of de Bruijn’s Math-
ematical Vernacular and is designed to act as an intermediary between common mathematical
language and formal mathematics based on various logics.

At the phrase level, WTT has primitives inspired by common mathematical language for con-
structing terms (P1:+) such as application (P1a:+) , binding (P1b:+) and referencing (P1c:+).
The structure of narrative text interspersed with formulae is partly captured with dedicated prim-
itives such as nouns, adjectives and sets. But the distinction between narrative text and formulae
is lost as they are both represented within the same WTT concrete syntax (P2:0). Moreover,
WTT does not support declaring notations or verbalizations (P3:-).

At the statement level, WTT has statements and definitions (P4:+, P4b:+) although it does not
distinguish, for instance, examples or lemmas (P4a:0). The approach to representing types is
heavily inspired by the CML practice and uses weak types constructed by predicates over sets
(or linguistically, adjectives over nouns). The representation of mathematical types is, therefore,
one of the main strengths of Weak Type Theory P4c:+.

Structured statements and proofs can be represented albeit slightly awkwardly. For this, WTT
uses contexts which are ordered and can therefore be linearized (P5a:0). Moreover, contexts

31

STATE OF THE ART

can contain assumptions for proofs which are represented as statements inside contexts (P5c:0).
However, mathematical structures additionally require a form of extension and reusability which
is not provided (P5b:-).

Books are the only module level element in WTT, roughly representing ordered collections of
statements (P6:0, P6a:+, P6b:-). Therefore, the context level of WTT is limited in expressivity,
for instance with respect to framing (P7:-) or complex knowledge sharing via parametric imports
(P8a:-). However, it does not require committing to a specific logic or foundation (P8b:+, P8:0).

As WTT is designed to be structurally close to the grammar of natural language it is suitable
as a first step in the formalization process. Consequently, translating a CML text into WTT
is easier than fully formalizing it (although further formalization can require significant ef-
fort) [Joj05, Gel04]. This is because, while WTT requires linguistic correctness and adherence
to the WTT grammar, it does not require providing a precise semantics (R1:0). While there
is no full implementation of WTT [KN04] we know of, the formal syntax makes it machine-
friendly (R2:0). With respect to underspecification, WTT formalization requires solving ambi-
guities to the point where the WTT grammar can resolve them (R3:-).

MathLang MathLang [KW08] aims at reaching a compromise between expressivity and for-
mality and thus provide an interface language between mathematicians and computers as well as
a framework to make the link with existing formal proof systems. MathLang is based on WTT
and can be viewed as an extension of it. Therefore, we evaluate it relative the coverage of WTT
which we discussed above.

The current design of the MathLang language is composed of three aspects [KW08].

• The Core Grammar Aspect (CGa) is a kind of weak type system directly based on WTT
[KN04] and de Bruijn’s mathematical vernacular [dB87]. In addition to WTT, MathLang
introduces flags as nestable context-management construct to better represent the scope of
variables and assumptions over several lines. More, MathLang adds blocks as a nestable
construct for representing the narrative structures such as proofs, examples, sections or
paragraphs. Blocks also allow defining local constants which is useful, for instance, in
representing local lemmas during proofs. MathLang references allow statements and def-
initions to refer to previous lines. As a result, compared to WTT, support for both plain
and structured statements is significantly improved (P4a:+, P5a:+, P5c:+). However, due
to the lack of OOP-style instantiation or extension, support of representing mathematical
structures is limited (P5b:-).

• The Text and Symbol Aspect (TSa) enables establishing the association between textual
presentation and mathematical meaning. A notion of souring rules (named in relation to
syntactic sugaring) is introduced to permit better control over the structure of mathemat-
ical texts. Although mostly annotation based and at the object level, the effort to weave
together presentation-oriented and content-oriented representations tackles structural di-
morphism (P9:0).

32

STATE OF THE ART

• The Document Rhetorical Aspect (DRa) allows labeling fragments of text and establishing
relations between them using unary (labels) or binary (relations) predicates. For instance
a text fragment can be labeled as a chapter, or section or theorem. Then a proof fragment
can be related to the theorem it proves.

Just like WTT, MathLang lacks at the module level though where it only has books as ordered
collections of statements (P6:0) Even though DRa aspect improves representation of narrative
structures in documents, it offers no real solution for framing (P7:-) or common ground (P8:-).

However, Unlike WTT, MathLang also comes with a system [KMW04] that implements the
abstract syntax, type checking (in the sense of MathLang types) as well as a presentation func-
tionality via LATEX (R2:+).

OMDOC OMDOC [Koh06, Koh10] is a rich representation language for mathematical knowl-
edge with a large set of primitives motivated by expressivity and user familiarity. It models
mathematical knowledge at three levels: i) object level for formulae, expressions or equations
ii) statement level for symbol declarations, definitions, axioms, theorems or notation definitions
and iii) module level for theories and views. Additionally, it adds an infrastructure for represent-
ing the functional aspects of mathematical documents at the content markup level. Note that we
discuss OMDOC in more detail in Section 4.1 and only give an overview here.

OMDOC has been successfully used as a representational basis in a wide array of applications
ranging from theorem prover interfaces to e-learning systems. To allow this diversity of appli-
cations, the format has acquired a large, interconnected set of language constructs. This was
motivated by coverage and user familiarity but not by minimality and orthogonality of language
primitives. As a result the OMDOC language is expressive enough to provide good coverage for
most of the phenomena above.

At the phrase level, it mixes informal text (HTML) with dedicated formula markup in either
OPENMATH or MATHML (P1:+, P1b:+, P1c:+, P3:+). Moreover, it allows mixing narrative
text and formulae (P2:+).

At the discourse level OMDOC provides a rich set primitives including definitions, assertions,
example and exercise (P4:+, P4a:+, P4b:+, P4c:+). OMDOC proofs are also particularly expres-
sive [ASC06] (P5c:+). With respect to structured declarations, OMDOC provides primitives for
inline statements but not for mathematical structures (P5:0, P5a:+, P5b:0).

At the context level, OMDOC omdoc provides theories to organize declarations (P6a:+). How-
ever, OMDOC theories are fixed unlike mathematical ones (P6b:-, P6:0). OMDOC also provides
views to relate theories (P7:+) as well as imports and structures to reuse knowledge (P8a:0).
Also, OMDOC permits but does not require committing to a particular logic or foundation
(P8b:+, P8:0).

At all levels, OMDOC allows mixing informal text (or HTML) within or alongside OMDOC ele-
ments (R1:+). Moreover, OMDOC provides dedicated elements for partially representing struc-
tural dimorphism. At the object level it supports MATHML. At the statement level it provides

33

STATE OF THE ART

a CMP element for commented mathematical properties and a FMP element formal mathematical
properties. But it is lacking in this sense at the theory and document level (P9:0). Also, OM-
DOC’s focus on coverage and expressivity has meant that it lacks a fully specified semantics.
Therefore, the only implementation [JOM] (now obsolete) is limited in functionality and partial
in coverage (R2:0). There is also no solution for representing underspecification (R3:-).

MMT MMT [RK13a] is a generic, formal module system for mathematical knowledge and
is a basis for foundation-independent knowledge representation. Relative to OMDOC, MMT

is a complete redesign of the formal core of OMDOC focusing on foundation-independence,
scalability, modularity and minimality. As for OMDOC, we discuss MMT in more detail in
Section 4.2 and only give an overview here.

At the object level, MMT uses OPENMATH-inspired primitives for application, binding and ref-
erencing symbols or variables (P1:+, P1a:+, P1b:+, P1c:+). However, it does not allow mixing
text with formulae (P2:+). MMT optionally has a notation [IR12b] associated with each symbol
but its notation language is limited. Additionally it does not distinguish between notations and
verbalizations and has limited support for notation variants (e.g. “Ck

n” and “(nk)” for combina-
tions) (P3:0).

At the statement level, MMT uses constant declarations as a single yet generic mechanism for
representing a wide array of mathematical statements (P4:+). There is no native appropriate
construct for representing structured declarations but declaration patterns are an extension in-
troduced in [HKR12] that can be used to represent inline declarations (P5a:+). Proofs are rep-
resented as MMT terms, with no internal structure (P5c:0). For mathematical structures, MMT

theories can be used to represent their inner structure, albeit at the theory instead of the statement
level (P5b:0, P5:0).

At the theory level, MMT uses theories for organizing declarations (P6a:+) but there is no con-
struct for representing dynamic theories (P6b:-, P6:0). MMT views formalize the mathematical
intuition of framing (P7:+) and MMT includes and structures are used to reuse knowledge and
establish common ground (P8a:0). MMT is logic and foundation independent but does require
individual theories to fix a logic (P8b:0, P8:0).

As a fully formal language MMT is designed to represent only the content aspect of mathematical
knowledge. Therefore support for structural dimorphism, opaqueness and underspecification is
lacking (P9:-, R1:-, R3:-). However, MMT does come with an associated, scalable implementa-
tion which we described in Section 4.2 below (R2:+).

Mizar MIZAR [TB85] is a representation language for formal mathematics but designed to be
as close as possible to the mathematical vernacular. The MIZAR language is based on Tarski-
Grothendieck set theory [Try90] formalized in (unsorted) first-order logic1(P1:+, P1a:+, P1b:+,
P1c:+).

1Technically, theorem schemes and the Fraenkel operator of MIZAR transcend first-order expressiveness, but the
language is first-order in style.

34

STATE OF THE ART

MIZAR notations are effectively mixfix, text-based notations. Moreover, while not explicitly
having verbalizations the names of dependent or refined types are composed to produce adequate
verbalizations such as empty set or finite Subset of NAT (P3:+). Therefore, even though,
as a formal language it does not allow arbitrary text within formulae, the syntax simulates it
somewhat (P2:0).

At the statement level, MIZAR has number of primitives to represent mathematical statements,
including justified theorems, function and predicate definitions and schemes (which are second
order sentences which take functors and predicates as arguments) (P4:+, P4a:+,(P4b:+)). Addi-
tionally, MIZAR provides an expressive and flexible type system that features dependent types
as well as predicate restrictions [Ban03]. The central primitives are mode and attribute defini-
tions as well as clusters all of which are used to define new types and refine or compose existing
ones (P4c:+). MIZAR structure definitions allow for defining pragmatic concepts with internal
structure and give selectors for accessing its internals (pragmatics) (P5:+, P5a:+, P5b:+). Addi-
tionally, MIZAR proofs can also have complex internal structure including reasoning steps, local
assumptions, proofs by cases, etc. (P5c:+).

At the document context level, Mizar organizes declarations in articles (P6a:+) that are fixed
and defined declaratively by the statements they contain (P6b:-, P6:0). There is no support for
framing (P7:-) and common ground is established only through direct, unnamed imports (P8:0,
P8a:0). Mizar uses Tarksi-Grothendieck set theory (TG) [Try90] as a fixed foundation. However
TG, is a relatively expressive one that can represent others (e.g. ZFC) internally P8b:0).

Since MIZAR is a fully formal language there is also no support for structural dimorphism (P9:-),
opaqueness (R1:-), or underspecification (R3:-). However, there is an implementation (the Mizar
System [Miz]), although the system is notoriously complex and abstruse (R2:0).

35

Part II

Representing Flexiformal Knowledge

36

Chapter 4

Preliminaries

As observed by studying related work in Chapter 3 none of the languages we looked at cover
all the phenomena we observed in practice and presented in Chapter 2. Moreover, building a
language and system for representing mathematics that even partially covers our phenomena is a
multiple person-decade endeavor.

Therefore, our approach in this thesis is to develop an experimental language and system by
extending already existing ones. Concretely we base our design on the OMDOC [Koh06, Koh10]
and MMT [RK13a] languages.

OMDOC is one of the more expressive languages surveyed and has the most extensive coverage
of narrative phenomena. However, due to its complexity, it does not have a formal semantics and
does not lend itself to a scalable implementation.

MMT is interesting due to its extensibility at both the language and system level as well as
its coverage of essential phenomena. Specifically, the module-level appears to be the least un-
derstood and covered by most mathematical representation languages. We believe that MMT’s
theory graph-based solution is the correct approach and the most mature realization. Moreover,
MMT is parametric in the choice of foundation as it allows arbitrary declarative languages such
as logics or type theories to be represented in it. For the scope of this thesis, this allows us to
abstract over foundational details and focus on the meta-level constructs when tackling the flex-
iformal phenomena from Chapter 2. However, MMT is fully formal and lacks any real coverage
of opaqueness or narrative structures.

In Chapter 5 and later we will extend the MMT language to cover missing phenomena inspired
mostly by the OMDOC language. Before that, below, we briefly review the parts of OMDOC

and, respectively, MMT that are relevant in this thesis.

4.1 The OMDoc Format

OMDOC [Koh06, Koh10], as discussed in Section 2.1, is not a direct solution to the problem

37

PRELIMINARIES

tackled here. However, it is one of the most expressive languages we reviewed in terms of
coverage of the phenomena. Moreover, OMDOC is one of the only languages that recognizes
the narrative-content duality as an intrinsic property of informal mathematics and comes with
dedicated primitives to adequately represent it.

Theories

Statements

Objects D
oc

um
en

ts

For instance, at the object level, OMDOC can use MATHML which
in turn uses parallel markup to represent these two aspects. Parallel
markup is realized in MATHML using the semantics and annotation

-xml elements. The former has the narration (or presentation) markup
as the first child followed by optional annotation-xml elements
which contain the content markup. Corresponding subtrees are marked
with cross-references using the id and xref attributes. Consider the
example in the listing below which represents the Boolean expression a(b + c) (inspired from
an example in the MATHML 3.0 W3C Recommendation in [ABC+10]). The first child is the
presentation markup with an id attribute on each element. The mrow, mi, and mo elements are
part of the MATHML presentation markup primitives, representing rows, identifiers and oper-
ators, respectively. The second child annotates the presentation with its semantics, where each
element has a xref attribute referring to the corresponding presentation element. The apply,
ci, and, and or elements are part of the MATHML content markup primitives for representing
applications, identifiers, conjunctions and disjunctions, respectively.

1 <semantics>
2 <mrow id="E">
3 <mrow id="E.1">
4 <mi id="E.1.1">a</mi>
5 </mrow>
6 <mo id="E.2">⁢</mo> <!--INVISIBLE TIMES-->
7 <mrow id="E.3">
8 <mo id="E.3.1">(</mo>
9 <mi id="E.3.2">b</mi>

10 <mo id="E.3.3">+</mo>
11 <mi id="E.3.4">c</mi>
12 <mo id="E.3.5">)</mo>
13 </mrow>
14 </mrow>
15 <annotation-xml encoding="MathML-Content">
16 <apply xref="E">
17 <and xref="E.2"/>
18 <ci xref="E.1.1">a</ci>
19 <apply xref="E.3">
20 <or xref="E.3.3"/>
21 <ci xref="E.3.2">c</ci>
22 <ci xref="E.3.4">d</ci>
23 </apply>
24 </apply>
25 </annotation-xml>
26 </semantics>

Note that the same presentation a(b+c) could have a different content interpretation. For instance

38

PRELIMINARIES

if + and invisible times are sum and product between real numbers instead of boolean operators.
Moreover, the same content could have a different presentation such as a ∧ (b ∨ c). Therefore,
both the presentation and content representations are needed together to adequately capture the
mathematical expression in question.

At the statement level, OMDOC identifies a number of conceptual primitives and provides its
own infrastructure for marking them up. In particular, it supplies dedicated elements for repre-
senting axioms, definitions, assertions (theorems, conjectures, lemmas, etc.) as well as proofs.

OMDOC accounts for the dynamic vocabulary of mathematics using the symbol and notation

elements which allow for declaring new symbols and, respectively, notations for them. Symbol
declarations introduce a new name, and notation elements can use that name to declare a notation
for its associated symbol. notation elements have two children: 1. the prototype element
encodes the functional structure using content MATHML with additional expr elements for the
parameters, 2. the rendering element encodes the presentation using presentation MATHML
with additional render elements which represent the (recursive) presentation of parameters.

Consider the example in the listing below, which represents the notation SL(n, F) for the special
linear group of degree n over a field F (see Example 2.12 from 2.1). The listing declares a new
symbol for the special linear group then a notation for it. The prototype of the notation encodes
the application of the symbol to two arguments which in the example rendering above they
would be n and F . Then the rendering encodes the presentation with the render elements as
placeholders for the presentation of each argument. Note that we use the m namespace for native
MATHML elements (as opposed to OMDOC ones) for clarity.

1 <symbol name="special-linear-group"/>
2 <notation for="special-linear-group">
3 <prototype>
4 <m:apply>
5 <m:csymbol>special-linear-group</m:csymbol>
6 <expr name="arg1"/>
7 <expr name="arg2"/>
8 <m:apply>
9 </prototype>

10 <rendering>
11 <m:mrow>
12 <m:mo>SL</m:mo>
13 <m:mo>(</m:mo>
14 <render name="arg1">
15 <m:mo>,</m:mo>
16 <render name="arg2">
17 <m:mo>)</m:mo>
18 </m:mrow>
19 </rendering>
20 </notation>

OMDOC also accounts for the narrative-content duality through a form of parallel markup at the
statement level. Concretely, each statement-level element has two children elements CMP (com-
mented mathematical properties) and FMP (formal mathematical properties) for representing the

39

PRELIMINARIES

narrative and, respectively, content aspect. The internal formats used for each are parametric
but are typically HTML and presentation MATHML inside the CMP and OPENMATH or content
MATHML inside the FMP. Consider, for instance, the example in the listing below which repre-
sents the OMDOC markup for Fermat’s little theorem: “If p is a prime number and a is a natural
number, then ap ≡ a (mod p).” (see Example 2.14 from Section 2.1). The CMP below effec-
tively encodes the statement above in HTML plus MATHML. Then, the FMP uses various content
MATHML primitives to represent its formal semantics. Effectively, it encodes the following
formal statement:

prime-number(p) ∧ natural-number(a)⇒ rem(ap, p) = rem(a, p)

where rem(m,n) represents the remainder of m when divided with n.
1 <assertion type="theorem" name="Fermat’s Little Theorem">
2 <CMP>
3 <p>
4 If <math><mi>p</mi></math> is a prime number and <math><mi>a</mi></

math> is a natural number, then
5 <math>
6 <mrow>
7 <msup>
8 <mi>a</mi>
9 <mi>p</mi>

10 </msup>
11 <mo>≡</mo>
12 <mi>a</mi>
13 <mo>(</mo> <mo>mod</mo> <mi>p</mi> <mo>)</mo>
14 <mrow>
15 </math>
16 <p>
17 </CMP>
18 <FMP>
19 <apply>
20 <implies/>
21 <apply>
22 <and/>
23 <apply> <csymbol>prime-number</csymbol> <ci>p</ci> </apply>
24 <apply> <csymbol>natural-number</csymbol> <ci>a</ci> </apply>
25 </apply>
26 <apply>
27 <equal/>
28 <apply>
29 <rem/>
30 <apply> <power/> <ci>a</ci> <ci>p</ci> </apply>
31 <ci>p</ci>
32 </apply>
33 <apply> <rem/> <ci>a</ci> <ci>p</ci> </apply>
34 </apply>
35 </apply>
36 </FMP>
37 </assertion>

40

PRELIMINARIES

At the module level OMDOC also provides its own conceptual primitives such as theories, im-
ports and views. However, in re-developing the formal core of OMDOC, MMT reuses the same
module-level primitives but with a more thorough specification and a formal semantics. There-
fore, we discuss these as part of introducing MMT in Section 4.2 below.

At the document level OMDOC provides elements for metadata (using the metadata element),
front- and back-matter such as tableofcontents, bibliography and index, as well as top-level
elements such as theories or views. Moreover, the omgroup element is used for generic grouping
and can be used to instantiate sectioning, sequences of paragraphs, itemizes or enumerations.

Other than the native XML language, the primary surface syntax for writing OMDOC is the
LATEX-based STEX [Koh08, sTe] language. We discuss STEX and OMDOC further in Section
7.2 where we import several STEX libraries into our extension of MMT to asses its coverage with
respect to OMDOC.

4.2 The MMT Language and System

4.2.1 The MMT Language

The MMT language [RK13a] is designed to be applicable to a large collection of declarative
formal base languages and all MMT notions are fully abstract in the choice of the base language.
Therefore, MMT focuses on foundation-independence, scalability and modularity.

It is meant to be applicable to all base languages based on theories. Relations between theories
are represented as MMT views (or theory morphisms). Theories and views form the MMT module
level. A view V : T1 → T2 is based on a signature morphism V σ : T1 → T2 interpreting all
symbols of T1 as terms in T2. But, additionally, V translates all theorems of T1 to theorems of
T2. MMT uses the Curry-Howard representation to drop the distinction between symbols and
axioms (and thus between signatures and theories). As a result, MMT needs only theories and
views.

We will only give a brief overview of MMT and refer to [RK13a] for details. Furthermore, we
will omit some details for simplicity, most notably MMT structures and documents. However,
both will be recovered as extensions in Section 6. We give the grammar of the relevant MMT

fragment in Figure 4.2 and discuss each production below (see also the MMT ontology in Figure
4.1).

Remark 4. We will use the following notations throughout this thesis. To represent instances of
concepts, we will use the corresponding identifiers from the grammar productions of the concept
(see Figure 4.2). However, when needed, we use subscripts to distinguish them. For example,
since T is the identifier for theories, we will routinely use T1 and T2 as theory names. Moreover,
we use superscripts as labels to clarify the meaning of certain instances. For example, a body
(Σ) which we know contains exclusively constants (C) might be denoted by ΣC or possibly ΣC

1 .
In particular, we will often use gM for a module URI and gS for a statement URI.

41

PRELIMINARIES

Diagram Level

Module Level

Statement Level

Object Level

declared in
subconcept of
used to form

Diagram

Module

Theory View

Statement

Constant Include

Term

Figure 4.1: The MMT Ontology

Declaration D ::= M | S
Diagram Θ ::= M∗

Body Σ ::= S∗

Module Level
Module M ::= T | V
Theory T ::= g = {Σ}
View V ::= g : g → g = {Σ}

Statement Level
Statement S ::= C | I
Constant C ::= l[: E][= E]
Include I ::= include g

Object Level
Object O ::= E | Γ
Expression E ::= l | g | E E∗ | E Γ.E
Context Γ ::= [(l[: E][= E])∗]

Identifiers
Global name g ::= URI[?l[?l]]
Local name l ::= String

Figure 4.2: MMT Grammar

42

PRELIMINARIES

The central notion is that of a diagram1 (or theory graph), a list of modules, which are theories
T or views V . Correspondingly we use the term body to refer to a list of statements, which are
includes I or constants C. Moreover, we use the term declarations to collectively refer to both
modules and statements.

A theory declaration g = Σ introduces a theory with global name g and body Σ containing a list
of statements.

View declarations (or theory morphisms) g : gT1 → gT2 = Σ introduce a morphism with global
name g from gT1 to gT2 and body Σ containing a list of statements. Such a morphism must contain
exactly one constant c := E2 for every undefined constant c : E1 in gT1 where E2 is a valid term
over gT2 . Theory morphisms extend homomorphically to a mapping of gT1 -terms to gT2 -terms.

Intuitively, a theory morphism formalizes a translation between two formal languages. For ex-
ample, the inclusion from the theory of semigroups to the theory of monoids (which extends the
former with two declarations for the unit element and the neutrality axiom) can be formalized
as a theory morphism. Similarly, assuming the corresponding theories are defined, the notion
that the integers form a group can be formalized in MMT as a view from the theory group to the
theory integers.

A constant declaration l : E1 = E2 introduces a constant named lwith typeE1 and definiensE2.
An include statement include g in a module M makes all the statements from g (or accessible
in g) accessible in M . We discuss accessibility (or visibility) in more detail in Section 4.2.2
below. Note that the local name of an include statement include g is produced by wrapping
(and escaping) the global name of the included module, written bgc. Again, we refer to [RK13a]
for details.

Terms E over a theory gT are formed from either references gS to constants visible from gT ,
references l to bound variables, applications E E1 . . . En of a function E to a sequence of argu-
ments, bindings E1Γ.E2 using a binder E1, a bound variable context Γ, and a scope E2. MMT

terms are fragment of the OPENMATH language [BCC+04].

Every MMT module or constant declaration is identified by a canonical, globally unique URI.
For modules this is their global name g, for constants l : E1 = E2 in a module g it is g?l. MMT

statements subsume most semantically relevant statements in declarative mathematical languages
including function and predicate symbols, type and universe symbols, and — using the Curry-
Howard correspondence — axioms, theorems, and inference rules. Their syntax and semantics
is determined by the foundation, in which MMT is parametric.

Content in the MMT language can be serialized into XML similar to OMDOC. We omit the
details here but, to give the general idea, we show a simple example in the listing below. It
contains the XML serialization for a trivial MMT theory Nat-Ext that includes the basic theory
of natural numbers and uses its constants to define one as the successor of zero. Note that, for
objects, MMT uses the same XML tags as OPENMATH, namely OMA for application, OMS for
constant (symbol) references, OMV for variable references and OMBIND for binding. Moreover,

1The intuition is that theories are nodes and views are arrows between them.

43

PRELIMINARIES

Judgment Intuition
` Θ Θ is a well-formed diagram
Θ `+ M adding M at the end of Θ preserve well-formedness of Θ
Θ `+

gM
S if gM is the URI of a module M in Θ, then adding S at the end of the body of

M preserves well-formedness of Θ
Θ,Γ `gM E expression E is well-formed over theory gM and context Γ in diagram Θ
` Σ(l)⇒ S Σ contains statement S with name l (we use if Σ contains no statement at l)
` Θ(g)⇒ D looking up g in Θ yields declaration D (or for no declaration at g in Θ)
Θ `vgM gS the statement at global name gS is visible from module at gM in Θ

Figure 4.3: MMT Judgments

for constant references, it uses the attribute name cd (from content dictionary) to give the MMT

theory.

1 <theory name="Nat-Ext">
2 <include from="Nat"/>
3 <constant name="one">
4 <type>
5 <OMS cd="Nat" name="nat"/>
6 </type>
7 <definiens>
8 <OMA>
9 <OMS cd="Nat" name="succ"/>

10 <OMS cd="Nat" name="zero"/>
11 </OMA>
12 </definiens>
13 </constant>
14 </theory>

Remark 5. Note that, although we introduced local names l as plain strings, in the rest of the
thesis we will occasionally use the “/” separator within local names for artificial scoping. Alter-
natively we could have defined local names as a non-empty list of “/”-separated strings (which
is how they are actually implemented), but opted for simplicity so that the grammar is easier to
understand.

4.2.2 Inference System

The judgments needed to define well-formedness are given in Figure 4.3 together with their
intuitive semantics.

Remark 6. For brevity and by abuse of notation, we will occasionally directly write `M(l)⇒ S
as a judgment. This represents that the body of the moduleM contains statements S at local name
l.

The rules in Figure 4.4 govern the building of diagrams by adding statements one by one. For

44

PRELIMINARIES

simplicity, all rules omit the hypotheses necessary for well-typedness. For example, Θ `+g l :
E1 = E2 requires that E2 has type E1.

The rules in Figure 4.5 define the well-formed expressions relative to a diagram Θ and a module
in Θ identified by gM . We omit the straightforward but tedious rules for binders as well as the
ones for views (and refer to [RK13a]).

Finally, we give the rules visibility (accessibility) rules for MMT theories in Figure 4.6. They
determine when a statement can be referenced which is used to define the well formedness of
MMT terms (see rule Econst ref). The intuition of rule vis base is that all constants from the
current theory are visible. Then, rule vis incl states that all statements that are visible from an
included theory are also visible from the current theory (i.e. inclusion is transitive).

Θbase
` ·

` Θ(gM)⇒
Θadd thy

Θ `+ gM = {·}

` Θ(gM)⇒ ` Θ(gT1)⇒ T1 ` Θ(gT2)⇒ T2
Θadd view

Θ `+ gM : gT1 → gT2 = {·}

` Θ(g)⇒ T ` Θ(g?l)⇒ [Θ, · `g E1] [Θ, · `g E2]
Tadd cons

Θ `+g l[: E1][= E2]

` Θ(g1)⇒M1 ` Θ(g2)⇒M2
Tadd incl

Θ `+g1 include g2

Figure 4.4: Basic Rules for Building Diagrams

4.2.3 The MMT System

The MMT System [RK13a, Rab14a] (MMT API) is a Scala-based [Sca] open source implemen-
tation of the MMT language as described above. It implements basic services generically such
as retrieval of content from local storage (via the MMT backend) as well as directly accessing
content via the MMT web server using a RESTful API. Moreover, it implements a query en-
gine based on the QMT [Rab12] query language which permits applications to use the MMT

system as a semantic database. Other core services include change management [IR12a] and
notation-based parsing [IR12b].

Like the MMT language, the MMT system is implemented foundation-independently and all
provided services carry over to the individual languages that are represented in MMT. However,

45

PRELIMINARIES

Θ `vgM gS

Econst ref

Θ, · `gM gS
Γbase

Θ, · `gM [·]

Θ, · `gM Γ [Θ,Γ `gM E1] [Θ,Γ `gM E2]
Γadd

Θ, · `gM Γ, x[: E1][= E2]

` Θ(gM)⇒M Θ, · `gM Γ ` Γ(x)⇒ x[: E1][= E2]
Evar ref

Θ,Γ `gM x

Θ,Γ `gM Ei i = 0, . . . , n
Eapply

Θ,Γ `gM E0E1 . . . En

accordingly
Ebind

Θ,Γ `gM E1 Γ1.E2

Figure 4.5: Rules for Building Expressions

` Θ(g)⇒ g = {Σ} ` Σ(l)⇒ l[: E1][= E2]
vis base

Θ `vg g?l

` Θ(g1)⇒ g1 = {Σ} ` Σ(bg2c)⇒ include g2 Θ `vg2 g
S

vis incl
Θ `vg1 g

S

Figure 4.6: Visibility Rules for MMT Theories

some services cannot be implemented generically, and therefore, the MMT API provides a rich
set of abstractions that permit extending the core functionality of the MMT system using plugins.

The essential plugins that are most relevant for this thesis are as follows:

• Importers are MMT plugins that parse and process input source files from various concrete
languages and produce MMT abstract syntax. They allow MMT to support multiple sur-
face syntaxes so users can use their own language and syntax if they implement an MMT

importer for it.

• Exporters are MMT plugins that are the opposite of importers in the sense that they produce
output files based on MMT content. The typical example is presenting MMT modules for
instance as HTML documents [KMR08].

• Servlets (or server plugins) are MMT plugins that extend the functionality of the MMT web
server. Servlets allow external application designers (most commonly web applications) to

46

PRELIMINARIES

implement their own interface to the core MMT API as needed by their application.

• Frameworks (or foundations) are MMT plugins that “give the semantics” for concrete lan-
guages represented in MMT by implementing oracles to answer whether typing or equality
constraints hold in that language. They allow MMT to implement other algorithms, such
as type checking, generically and defer to foundation plugins when necessary.

Additionally, in the implementation, MMT allows annotating each declaration with arbitrary in-
formation as meta-data using the meta tag. This information is normally ignored by the core
MMT processes but MMT plugins can access and make use of it. A typical example is annotating
constants with information about how they should be presented to be used by selected exporters.

The extensibility of the MMT system is one of its central features as it allows it to scale to a wide
range of potential applications. Moreover, it is critical because the generality of the MMT lan-
guage means that many basic services cannot be fully implemented at the MMT level (e.g. type
checking needs input from framework plugins). As we will see in future Chapters this extensible
design is essential for balancing two conflicting requirements: being generic enough to support
a wide array of heterogeneous languages while remaining useful for enabling development of
practical applications.

47

Chapter 5

A Formal Language for Flexiformal
Knowledge

In this Chapter, we first look at the shortcomings of MMT with respect to the phenomena from
Chapter 2 and design language extensions to tackle them. We present them below in Section
5.1. Then, we integrate the extensions into the IMMT language and system, which we discuss in
Section 5.2. Later, in Chapter 6, we evaluate the resulting language by applying it to represent
the concrete phenomena discussed above.

5.1 MMT Extensions for Flexiformal Knowledge

Acknowledgement. Part of the results in this Section, in particular in Section 5.1.3 and Sec-
tion 5.1.4, are based on collaborative work with Michael Kohlhase and Florian Rabe and have
been prepared for publishing in [IKR].

As discussed in Chapter 3, MMT already meets a number of flexiformal requirements. We con-
solidate the deficiencies into two central shortcomings of the MMT design with respect to our
phenomena. Firstly, MMT is (by design) fully formal so it cannot adequately represent content
that is either fully or partially informal. Secondly, MMT has a minimal, fixed set of declaration-
level constructs that are not sufficient to directly represent (in a structure-preserving way) the
breadth of advanced structuring constructs used in both formal and informal knowledge repre-
sentation languages.

Therefore, we extend both the object and declaration level of MMT to tackle the shortcomings
mentioned above by adding:

• opaque terms to represent partially formalized content (R1)

• bipartite terms to capture structural dimorphism at the object level (P9) as well as the
mixing of narration and formulae in CML texts (P2)

48

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

Phenomenon Realization Discussed in
P1 Formulae as Primitive Objects MMT terms [Rab14b]
P2 Mixing Text and Formulae Bipartite Objects 5.1.2
P3 Notations and Verbalizations Bipartite Objects and Structural Fea-

tures
6.1.1

P4 Mathematical Statements MMT Constants + MetaData [RK13a]
P5 Structured Declarations Structural Features 5.1.4

P5a Inline Statements MMT + Patterns [HKR12]
P5b Mathematical Structures MathStruct Feature 6.1.2
P5c Proofs Proof Feature 6.1.3

P6 Modularity MMT + Structural Features [RK13a],5.1.4
P6a Grouping Statements MMT Theories [RK13a]
P6b Dynamic Theories Realm Feature [CFK14],6.1.4

P7 Framing MMT Views [RK13a, Rab15b]
P8 Common Ground MMT + Structural Features 5.1.4

P8a Recaps MMT Imports + Realm Feature 6.1.5
P8b Foundational Ambiguity MMT + PreRealm feature 6.1.6

P9 Structural Dimorphism Bipartite Declarations 5.1.3
R1 Opaqueness Opaque Terms 5.1.1
R2 System Scalability MMT System + IMMT Extensions [Rab13], 5.2.3
R3 Underspecification MMT System (partial) [Rab13]

Figure 5.1: Phenomena and their Realization in IMMT

• bipartite declarations to cover structural dimorphism at the statement and module lev-
els (P9)

• a mechanism for declaring structural features that allow extending the MMT statement and
module levels with new kinds of constructs. Then, sections and paragraphs (P6a), math-
ematical theories (P6b), structured declarations (P5) become concrete examples of such
features. Moreover, recaps (P8a) and foundational ambiguity (P8b) can be represented
more accurately.

Note that, with respect to the ideas from [Far08] our goal is to extend MMT’s practical expres-
sivity without extending its theoretical expressivity. This means preserving the central MMT

properties and invariants while making it more suitable for building practical applications.

Remark 7. In the following we will use ~∗ to denote a sequence of elements ∗1, ∗2, . . . , ∗k.

5.1.1 Opaque Terms

We use opaque terms to represent mathematical expressions whose precise semantics is missing
or incomplete. In practice this occurs in two common situations: 1. in a formal setting because

49

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

there are implicit parts left to be inferred by another process after parsing (e.g. type reconstruc-
tion), 2. in an informal setting because the primary representation is narrative and parts of the
semantics cannot be inferred by systems such as natural language processors.

Conceptually, we represent them as terms where only some of their sub-terms (possibly none)
have a known structure and semantics.

An opaque term [Γ](~E) is an IMMT object constructed from an IMMT context Γ and a se-
quence of IMMT terms Ei ∈ ~E.

Intuitively, an opaque term E1 = [Γ](~E) represents (any element from) the set of fully formal
(i.e. with no opaque sub-terms) terms that bind the variable declarations from Γ and have eachEi
as a sub-term – we call such a fully formal term a formal grounding of E1. This idea originated
in [Koh13].

Essentially, opaque terms are informal objects with zero or more formal sub-terms inside, under
an optional context – since both the opaque or the partly non-opaque parts could bind variables.
Therefore, opaque terms can be used to represent mathematical expressions whose semantics is
unspecified or underspecified, as well as terms in an intermediate state of parsing or processing.

Before we dive into the inference system, we look at an example to solidify our intuitions.

Example 8. Consider the statement :

(5.1) “It holds that xy = md where m and d are the least common multiple and, re-
spectively, greatest common divisor of x and y.”.

Assuming a trivial parser that does no significant natural language processing the resulting IMMT

opaque term could be:

E1 = [·]((equal (mul x y) (mul m d)),m, d, x, y)

From the perspective of IMMT, E1, represents any term that contains xy = md, m, d, x, and y as
sub-terms. This, obviously, includes the intuitive meaning that mathematicians understand when
reading that sentence. Therefore, the language allows for a potential, future processing step to
refine the result to a concrete non-opaque term representing the intended meaning.

For instance, if a processing step can recognize the meaning of “where” as defining and binding
m and, respectively d, the resulting term would be:

E2 = [x, y,m = (lcm x y), d = (gcd x y)](equal (mul x y) (mul m d))

Inference System For defining the semantics of opaque objects, we add one new judgment to
the ones used by MMT and presented in Section 4.2. The new judgment Θ ` T E, shown in
Figure 5.2, describes a term E that can be used as a sub-term to construct a well-formed opaque
term.

50

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

Judgment Intuition
Θ ` T E object E is a well-formed opaque sub-term in diagram Θ, over theory T

Figure 5.2: New Judgments for IMMT Objects

The key difference from regular terms is that the opaque parts are unknown to IMMT. They may
contain binders that bind variables inside the sub-terms, possibly shadowing an outside context.
Consider, for instance, the situation from Example 8 above where there are four free variables in
the standalone opaque term. But x and y are meant to be bound by an external context, while m
and d are defined and bound locally. This is unknown to IMMT without adequate math language
parsing and processing. The rules from Figure 5.3 ensure that the resulting term is well-formed
by effectively considering sub-terms of opaque terms as closed with the opaque parts providing
the required bindings. This includes those that shadow existing bound variables.

Θ, free(E) `T E
 base

Θ ` T E

Θ, · `T Γ Θ,Γ `T Γ1 Θ ` T Ei for all Ei ∈ ~E
 inc

Θ,Γ `T [Γ1](~E)

Figure 5.3: Well formed IMMT Opaque Terms

The central object-level services that IMMT implements are (IMMT-level) equality and substitu-
tion. Foundations then implement typing and can refine equality by declaring (and implement-
ing) their own equality relation. For opaque objects, IMMT-level equality is straightforward and
defined recursively: [Γ1](~E1) = [Γ2](~E2) if and only if Γ1 = Γ2 and ~E1 = ~E2.

The situation for substitution is different because of the potential implicit bindings that could
occur in the opaque parts. Therefore, substitutions are not applied inside the sub-terms of the
opaque objects. Instead, they are added as variable bindings to the context of the opaque term.
Effectively, this has the consequence of delaying the substitution, which could be applied later
as beta reduction if the opaque term is refined to a non-opaque one so that all internal binders
become explicit. Concretely, substitution [x/E1] [Γ](~E) of the term E1 for the variable x in the
opaque term [Γ](~E) is defined as [x = E1,Γ](~E).

As expected, and already noticeable in the discussions above, opaqueness limits the potential for
mechanization. In particular, formal processes such as type (or proof) checking or inference are
generally impractical in the context of significant opaqueness. However, there are services for
which even the partial information provided by the opaque terms is useful.

For instance, the sub-terms for opaque terms can be used for presentation, definition lookup (and
expansion) or formula search. As is the theme throughout this thesis, the design of opaque terms

51

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

described above is informed and motivated by making such applications possible. We present
the results from the perspective of the services and applications side in Section 8.2.2.

Note that there are other aspects that can be analyzed in the context of opaque terms. For instance,
the more formal than relation <: between two terms E1 and E2 could be formally defined. The
intuition being that that E1 <: E2 if and only if any formal grounding of E1 is also a formal
grounding of E2. Then operations on an opaque term such as adding a sub-term to the list or
replacing a sub-term with another that contains it would produce a more formal term. However,
we leave studying such relations for future work to be explored as applications appear that can
make use of them.

5.1.2 Bipartite Terms

We use bipartite terms to represent structural dimorphism at the object level. Concretely, we add
markup for annotating the content aspect of a mathematical object with its presentation. This is
essentially a form of parallel markup inspired by MathML (see [ABC+10]) and we describe the
details below.

For representing the content aspect we use the IMMT objects as described so far – which are
basically MMT objects extended with opaque terms. However, for the presentational aspect we
introduce new language primitives.

First, we define a dedicated construct for cross-referencing between the presentation and content
aspects.

An object-level realization specification (or realization spec for short) is a tuple ρ(p; pc) where
p is the position of the referenced subterm and pc is the presentation context optionally providing
language, format, and variant information for notation selection.

The position is a list of natural numbers viewing the term as a tree and representing the path from
the root to the relevant node. Then, the empty list represents the entire term and each additional
integer i takes the i-th child of the result. The presentation context is used by exporters to decide
which notations will be prioritized to present the term. Then ρ(p; pc) represents the presentation
of the IMMT object referred to by p with presentation context pc. Therefore, the intuition is
that a realization spec ρ specifies how IMMT exporters should realize the narration of a formal
(sub)term.

We allow the presentation of objects to be any concrete format enhanced with realization specs.
However, in practice the only such formats we encountered were XML (i.e. HTML or MATHML)
and strings (e.g. LATEX). Since XML subsumes strings, we will just use XML below and se-
rialize realization specs into XML. For example, the listing below, shows a realization spec to
the second child of the first child of the associated content object. It will resolve to the HTML
rendering for the default verbalization in the German language.

1 <obj-real-spec position="1_2">
2 <pres-cont type="verbalization" language="german" format="HTML" variant="

default"/>

52

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

3 </obj-real-spec>

The object presentation PO for a XML-based presentation format f is an XML-language ex-
tending f with the IMMT primitives for realization specs (see listing above) under the namespace
http://kwarc.info/ns/iMMT.

Therefore, presentation extends the native format f (e.g. HTML) with realiation specs. This im-
plies that if resolving the references produces valid fragments of f , then the resulting document
after resolving the references is a valid f -document. Note that for the common case of plain
strings the extension becomes simply a sequence of string literals and realization specs ρ(p; pc).
In the following, we will use the string representation instead of the XML serialization where
appropriate for brevity and simplicity.

Now we are ready to define bipartite terms.

A bipartite term PO ‖ E is an IMMT term representing a mathematical expression with both
functional and narrative structure. Concretely, E represents its content (functional structure) and
PO its presentation.

One can see bipartite terms as regular MMT terms annotated with presentational information.
Then the annotation can be either ignored or used by the relevant IMMT processes.

To fortify our intuitions about bipartite terms we revisit the statement from Example 8, this time
by adding narrative information.

Example 9. For the statement:

“It holds that xy = md where m and d are the least common multiple and, re-
spectively, greatest common divisor of x and y.”.

Assuming the same content aspect as E1 in Example 8, the resulting bipartite IMMT term could
be:

PO ‖ [·]((equal (mul x y) (mul m d)),m, d, x, y)

where the presentation part PO is:

“It holds that ρ(1; ·) where ρ(2; ·) and ρ(3; ·) are the least common multiple and,
respectively, greatest common divisor of ρ(4; ·) and ρ(5; ·).”

Inference System For bipartite terms, we add one new judgement for well formed object-level
realization specs. The new judgement E `P ρ, shown in Figure 5.4, describes a realization spec
ρ that is well formed with respect to its associated content representation E. The corresponding
rules for well formed realization specs are shown in Figure 5.5. While the rules look complex,
the central idea is that a realization spec is well formed iff the position it points to exists in the
content representation – i.e. in our case the term E. We also omit the straightforward rules
for referencing inside the context of binders for simplicity. The intuition is that the position of
a variable, type or definiens in the list of variable declarations forming the context is used to

53

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

Judgment Intuition
E `P ρ realization spec ρ is well formed with respect to corresponding content term E

Figure 5.4: Judgments for Bipartite Terms

resolve the realization specs. However, due to both the type and definiens being optional, the
formal definitions quickly become verbose due to the number of cases.

ρbase
E `P ρ(·; pc)

E1 `P ρ(p; pc)
ρβbind

E1 Γ.E2 `P ρ(1, p; pc)

Γ `P ρ(p; pc)
ρβcon

E1 Γ.E2 `P ρ(2, p; pc)

E2 `P ρ(p; pc)
ρβscope

E1 Γ.E2 `P ρ(3, p; pc)

Ef `P ρ(p; pc)
ρAfunc

Ef ~E `P ρ(1, p; pc)

Ei `P ρ(p; pc)
ρAargs

Ef ~E `P ρ(i, p; pc)

Ei `P ρ(p; pc)
 args

 [Γ](~E) `P ρ(i, p; pc)

Figure 5.5: Well formed object-level Realization Specs

Based on the validity of realization specs we can now define well formed bipartite terms. The
rules are shown in Figure 5.6 and ensure that the content aspect is well formed and that the
realization specs are valid (i.e. that the referenced sub-terms exist). The intuition is therefore
that an object presentation is well formed if all realization specs it contains are well formed with
respect to its associated term.

Θ,Γ `T E E `P ρi for all ρi in presentation PO
1 ‖rule

Θ,Γ `T PO
1 ‖ E

Figure 5.6: Well formed IMMT Bipartite Terms

IMMT level equality and substitution for bipartite terms are straightforward as they are defined
based on the content aspect. Therefore, we define equality recursively as PO

1 ‖ E1 = PO
2 ‖ E2 if

and only if E1 = E2. This is because IMMT equality evaluates the IMMT-level semantics of the
object which are unaffected by the presentational annotations. As far as the semantic processes
of IMMT are concerned, presentation is simply annotated meta-data.

54

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

Similarly, we define substitution [x/E](PO
1 ‖ E1) as PO

1 ‖ ([x/E]E1). Note that the rules for
well formedness of realization specs are designed such that it is conserved by substitution.

Theorem 10. If E `P ρ (i.e. ρ is a valid realization spec w.r.t. term E) and γ is a valid
substitution for E, then [γ]E `P ρ.

The proof is elementary, given that every substitution replaces leaves in the term tree with sub-
trees, therefore adding new valid reference-able positions in the tree, but not removing any. The
rules from Figure 5.5 do not permit referencing inside the context of opaque objects since that
can be structurally changed by substitution (i.e. adding a new variable declaration) as defined
above in Section 5.1.1.

5.1.3 Bipartite Declarations

To account for structural dimorphism at the declaration level we introduce a new structural el-
ement in IMMT which we call bipartite declaration. The intuition is that, like bipartite terms,
bipartite declarations are constructed from two distinct parts, one to represent its narrative struc-
ture, and the other to represent its formal semantics.

In the following, we call the former the pragmatic declarations (or pragmatics) and the latter the
strict declarations. The intuition is that the strict declarations correspond to the minimal language
for representing the semantics that is easy to reason about (and that is largely backwards com-
patible with MMT). Meanwhile, pragmatics correspond to the rich, extensible layer of language
constructs that human users (e.g. mathematicians) prefer.

These two aspects are typically conflated in mathematical representation languages, especially at
the statement and module levels. Making them explicit in IMMT allows us to capture uniformly
many commonly occurring phenomena from both formal languages and common mathematical
language (CML).

We reuse pre-existing constructs from MMT wherever viable in order to achieve a minimal lan-
guage that preserves as much as possible from MMT’s properties and invariants. Concretely, we
observe that both documents and modules are at their core named bodies (i.e. sets of statements).
Similarly, in the presence of opaque and bipartite objects, narrative paragraphs as well as formal
symbol declarations can both be represented using named IMMT terms (i.e. constants). There-
fore, in IMMT we use constants to represent both narrative or content-side statements. Moreover,
we use the notions of global name (URI) and body (set of statements) that are already used to
form theories and views to also construct bipartite statements and modules. This is essential in
achieving a minimal, scalable language that can be reasoned about and practically implemented.
However, before we define bipartite declarations, we do need to introduce an additional primitive
to IMMT.

An IMMT declaration-level realization specification (or realization spec for short) l = ν(g;nc)
is a statement level construct with local name l referencing the declaration at global name g with
narrative context nc.

55

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

Declaration-level realization specs are used for representing documents that refer to and build
upon other documents (modules) and are effectively the narrative-side analog to imports. The
narrative context describes how the narration should be realized by IMMT presenters. It contains
information such as type (reference, inclusion, transclusion), sectioning level (paragraph, section,
chapter, part, etc.), and title. The narrative context mirrors the presentation context of object-level
realization specs but at the declaration level. It can be used by IMMT exporters (e.g. presenters)
to produce browsable mathematical documents from the narrative parts of a module by resolving
the references where needed.

Now, we are ready to define bipartite declarations. First, we differentiate between the statement
and module level to preserve MMT’s and OMDOC’s three-level design. Therefore, to concretely
realize bipartite declarations we introduce two new constructs into the IMMT language corre-
sponding to the statement and, respectively, module level.

A bipartite statement BS is an IMMT statement l = J ~S1 ‖ ~S2K, where l is its name and ~S1 are
its pragmatic statements represented as a sequence of either realization specs, constants, or other
bipartite statements. Similarly, ~S2 are its strict statements represented as a sequence of either
constants or includes.

A bipartite module BM is an IMMT module l = J ~D1 ‖ ~D2K, where l is its name and ~D1 are
its pragmatic modules represented as a sequence of either pragmatic statements, theories, views
or other bipartite modules. Similarly, ~D2 are its strict declarations represented as a sequence of
theories or views.

The XML serialization for the bipartite statements is shown in the listing below where each of
the “. . .” represents the (recursive) XML serialization of the respective IMMT elements. The
XML for bipartite modules is analogous except the root tag is bipartite-mod.

1 <bipartite-stm name=". . .">
2 <pragmatics>
3 . . .
4 </pragmatics>
5 <stricts>
6 . . .
7 </stricts>
8 </bipartite-stm>

Bipartite statements and modules scale the bipartite design, used for bipartite objects and inspired
from parallel-markup, to all three levels of IMMT. A key difference between bipartite statements
and modules are the kinds of declarations that they can be composed from. Bipartite modules can
additionally contain modules in their strict declarations as well as other, nested, bipartite modules
in their pragmatics. With respect to the pre-existing MMT constructs, bipartite statements can
only occur inside theories (since they are statement-level elements) while bipartite modules can
only occur inside a diagram.

Note that, in this thesis, we do not cover the case of bipartite declarations in views. They are
redundant because views represent a relation between the semantics (i.e. strict declarations) of
theories so they can ignore the narrative structure encoded by bipartite declarations. Instead,

56

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

views provide a constant declaration for any undefined constant in the strict declarations of a
bipartite statement from its domain. We clarify this below in Section 5.1.3 where we discuss the
inference system. However, note that it is possible (and often convenient) for views to contain
such structured declarations so that bipartite statements in the source theory can be mapped more
naturally to bipartite statements in the target theory. We discuss that as part of future work in
Chapter 9.

For bipartite declarations, we require names so that they can be uniquely referenced later. We
assume that if no name is present in the source document, names will be automatically generated
when importing content into IMMT. Moreover, in the following, if a name is unreferenced or
otherwise irrelevant we will use the symbol “ ” to denote it. We leave the rest of the discussion
on IMMT URIs and referencing declarations to Section 5.2.2 below.

Bipartite declarations are useful because often there is not a one-to-one correspondence between
narrative text and content expressions which can be represented via bipartite terms. Instead, one
piece of narrative text can correspond to one or more declarations in the content representation.
Conversely, one declaration in the content representation can correspond to one or more phrases
or paragraphs such as large structured definitions or long proofs.

Example 11. Consider, for instance Example 2.23 mentioned above which we repeat below :

“Theorem 7.1: There is exactly one solution (called the exponential function f(x) =
ex) to the equation f ′ = f with f(0) = 1.”

A corresponding bipartite declaration is Theorem7 .1 = J = E ‖ Cthy, CexpK where E is ‖PO·
and encodes the presentation for the theorem as shown above. Moreover, Cthy and Cexp are:

thy :
 ∃!f : R→ R.f 0
.
= 1 ∧ ∀x : R.f ′ x .

= f x
exp : R→ R = ι (λ f : R→ R.f 0

.
= 1 ∧ ∀x : R.f ′ x .

= f x) thy

where we assume the required concepts are already defined in an included theory. Concretely,

is the operator for the type of proofs, ∃! is unique existence, R is the type of real numbers, .= is
equality between reals, ι is the definite description operator, and ∀ is the universal quantifier.

For bipartite modules, a common example is an isomorphism between two (or more) theories
S and T which would correspond to a pair of views v1 : S → T and v2 : T → S. A related,
concrete example is shown in Example 2.40 where, for instance, the following statement occurs
in the original text (from [Bar15]) “There are several equivalent ways to define multinets.
Here we present them using pencils of plane curves.”. We discuss this in more details in
Section 6.1.4 below.

Inference System We do not need additional judgments for bipartite declarations as we can
reuse the judgments for valid statements and, respectively, modules and just add the appropriate
rules.

In order to reference declarations inside the new constructs (i.e. bipartite statements and mod-
ules) we need to extend the URIs for IMMT. We discuss this in more detail in Section 5.2.2
below, but the intuition is that we use two separators to look inside bipartite declarations: “!” for

57

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

the pragmatics and “?” for the strict declarations.

We give the rules for bipartite declarations in Figures 5.7 and 5.8. The former shows the ad-
ditional rules establishing when adding a declaration to a (theory in a) diagram preserves well-
formedness. The latter, formalizes the visibility (access) rules for bipartite declarations. We
discuss each individually below.

First, the rule BS
base add states that adding a bipartite statement with no pragmatics (to a theory

in a diagram) preserves well-formedness if adding each of its strict statements sequentially (to
that theory) preserves well-formedness. This follows the intuitions discussed above, that the
strict statements represent its semantics as seen from the containing theory. As expected, the
rule additionally requires that the referenced theory exists and that global name introduced by
the bipartite statement is fresh.

Then, the rule BM
base add is the direct, module-level analogue, stating that adding a bipartite mod-

ule with no pragmatics (to a diagram) preserves well-formedness if adding each of its strict
modules sequentially (to that diagram) preserves well-formedness. Similarly, it requires that the
newly introduced global names are fresh.

The last two rules formalize the conditions for adding pragmatics to existing bipartite decla-
rations. SNprag add states that adding a realization spec to the pragmatics of a bipartite declara-
tion preserves well-formedness if the bipartite declaration exists, the referenced (module) global
name exists and the local name of the realization spec is fresh. Similarly, SCprag add states that
adding a constant (to the pragmatics of a bipartite declaration) preserves well-formedness, if the
bipartite declaration exists, the local name of the constant is fresh, and that the optional type and
definition of the constant are well-formed with respect to the bipartite declaration.

The last conditions for SCprag add involve well-formedness of objects which in turn involve the
visibility conditions between global names (see Section 4.2). Concretely, for an object to be
well-formed with respect to a global name g it is required that every global name gi it references
is visible from g. This is formalized by the visibility judgment Θ `vg gi. The visibility rules for
bipartite declarations are shown in Figure 5.8. First, Bvis strict states the pragmatics of a bipartite
declaration can access its strict declarations. Concretely, any global name visible for the strict
declarations is also visible for the pragmatics. Then, Bvis prag states that realization specs make
visible locally all declarations that are visible in their target.

Corollary 1. By removing the narrative information from a well-formed IMMT diagram Θ (i.e.
replacing every bipartite declaration with its strict declarations) we obtain a well-formed MMT

diagram.

The proof is straightforward following the rules from Figure 5.7. But, the statement above is
essential because it means that the central MMT algorithms that ignore narration can still work
for IMMT. This is consequential for both the theoretical aspect (reasoning about the language)
and the implementation.

58

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

` Θ(g)⇒ T ` Θ(g!l)⇒ Θ `+g ~S
BS
base add

Θ `+g l = J· ‖ ~SK

` Θ(g)⇒ Θ `+ ~M
BM
base add

Θ `+ g = J· ‖ ~MK

` Θ(g!l)⇒ l = JΣ1 ‖ Σ2K ` Θ(gM)⇒M ` Θ(g!l!l1)⇒
SNprag add

Θ `+g!l l1 = ν(gM ;nc)

` Θ(g!l)⇒ l = JΣ1 ‖ Σ2K ` Θ(g!l!c)⇒ [Θ, · `g!l E1] [Θ, · `g!l E2]
SCprag add

Θ `+g!l c[: E1][= E2]

Figure 5.7: Well Formed IMMT Bipartite Declarations

` Θ(g!l)⇒ l = JΣ1 ‖ Σ2K Θ `vg gs
Bvis strict

Θ `vg!l gs

` Θ(g!l)⇒ l = JΣ1 ‖ Σ2K ` Σ1()⇒ l1 = ν(gM ;nc) Θ `vgM gS

Bvis prag

Θ `vg!l gS

Figure 5.8: Visibility Rules for Bipartite Declarations

5.1.4 Derived Declarations

The binary design of bipartite declarations described above can do more. It allows uniformly
modeling and adequately representing the pragmatics of structurally complex declaration con-
tainers such as records or structured proofs (with inline lemmas, sub-proofs, etc.). We model
this as the case where the strict declarations of a bipartite declaration are practically derivable (or
computable) from its pragmatics in a process we call elaboration. Note that the practicality of
elaboration is not a fixed point but is relative to the efficiency of algorithms and, in the informal
case, the capability of natural language processing and understanding.

To represent such declarations we add two new constructs to IMMT: structural features and de-
rived declarations. Note that the idea of pragmatic extensions for the MMT language is not new as
[HKR12] introduced an extension language for the statement level. It provided syntactic means
for defining pragmatic language features and their semantics in terms of strict MMT. However,

59

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

here, we give a much more expressive extension mechanism which 1. is not syntactically con-
strained and instead lets language designers provide arbitrary elaboration functions (see below),
2. allows extending both the statement and module levels, 3. is built on top of the dual-container
design of bipartite declarations.

A structural feature F of a theory g = Σ is a tuple 〈f, g, n,V , E〉 where f is its name and n ∈ N
is its arity. Then V is the validity predicate which evaluates tuples of the form 〈l, ~E, ~D〉. Finally,
E is the elaboration function which maps a tuple 〈l, ~E, ~D〉 to a sequence of declarations ~D.

The intuition behind structural features is to allow IMMT theories to declare their own language
features. This is often useful because IMMT theories can be used to define other languages such
as logics or logical frameworks. Such languages may have their own declaration-level constructs
(e.g. records, sections, structured proofs, etc.) which can now be explicitly defined in IMMT

as structural features of their respective theory. The features of a theory T can then be used to
instantiate concrete IMMT declarations in modules that extend T .

We introduce a new construct to represent such instances which we call derived declarations. As
for bipartite declarations, we distinguish between the statement and module levels.

A derived statement DS is a 4-tuple 〈l, f, ~E, ~S〉 (written l = f ~E {~S}), we call l its name, f its
feature, the Ei its arguments, and the Si its pragmatic statements.

A derived module DM is a 5-tuple 〈g, gT , f, ~E, ~D〉 (written g : gT = f ~E { ~D}), we call g its
global name, gT is (the global name of) its meta theory, f its feature, the Ei its arguments, and
the Di its pragmatic declarations.

Derived declarations are part of the IMMT grammar, and the same general syntax is used for them
regardless of their feature. Thus, we can introduce almost arbitrary new features and still have
algorithms that treat them uniformly. Concretely, the XML serialization for derived statements is
shown in the listing below where each of the “. . .” represents the (recursive) XML serialization
of the respective IMMT elements. The XML for derived modules is analogous except the root
tag is derived-mod and it has an additional meta-theory attribute.

1 <derived-stm name=". . ." feature=". . .">
2 <arguments>
3 . . .
4 </arguments>
5 <pragmatics>
6 . . .
7 </pragmatics>
8 </derived-stm>

The intuition of derived declarations is that their feature expands derived declarations to bipartite
ones by using the elaboration function to produce the strict declarations (by applying it to the
tuple 〈l, ~E, ~D〉 formed from the name, arguments and pragmatics of the derived declaration).
Moreover, the validity predicate is analogously used to define the well-formedness of derived
declaration. Note that the dual case when the pragmatics can be inferred from the strict declara-
tion is possible but outside the scope of this thesis.

60

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

Before we give the judgments and inference system below we give a few examples to solidify our
intuitions. Structural features are useful to define a wide array of new kinds of declaration-level
constructs for representing knowledge. These include narrative constructs such as documents,
sections or comments, content ones such as inductive datatypes or MMT structures, and mixed
ones such as definitions, proofs and theorems.

Example 12. Consider Example 11, where a single statement is both a theorem (of unique ex-
istence) and a definition of that concept. This can be generically defined as a structural feature
〈DefTheorem, g, 2,V , E〉. Then, theories importing g can use the feature and declare derived
statements such as l = DefTheorem E1, E2 {~S}. The validity predicate V checks the following:

1. there are indeed 2 arguments
2. the first argument E1 is a proposition stating a unique existential
3. the second argument E2 is a proof of E1 (i.e. E2 has type
 E1)
4. the statement list ~S is empty.

The elaboration function E produces two statements: l/thy :
 E1 = E2 and l/def = ι E2 where
ι is the definite description operator. Therefore, we can systematically capture in IMMT both the
intended semantics (the two statements in the elaboration) as well as the narrative structure. In
practice, language designers would identify the structural features of their domain of application
and implement them in IMMT. Then, the intended knowledge can be represented in IMMT in a
structure-preserving way.

We present some example features that recover and extend the original expressivity of MMT

within IMMT below in Chapter 6. Moreover, in Chapter 7 we discuss library imports and define
a series of features for adequately representing the primitive constructs for each base language
of the imported libraries.

Inference System The additional judgments that we need to define the semantics of derived
declarations are given in Figure 5.9.

The key novelty are the judgments for elaboration. Θ `g DS ; ~S defines the result of
elaborating a derived statement DS using the elaboration function implemented by its feature.
Similarly, Θ ` DM ; ~M defines the result of elaborating a derived module DM using the
elaboration function implemented by its feature. Additionally, the judgment `f D states that the
declaration D satisfies validity constraints imposed by the feature f. Concretely, assume V is the
validity predicate of f and D has local name l, arguments ~E and pragmatics ~S. Then V holds for
〈l, ~E, ~S〉.
Now we can give the inference rules which are shown in Figure 5.10. The intuition is that a
derived declaration is well formed if the corresponding bipartite declaration constructed from its
pragmatics and its elaboration is well formed. Additionally, we require that the validity function
as implemented by the feature holds. Therefore, the rules follow the intuition that derived decla-
rations plus structural features are essentially syntactic sugar and macros built on top of bipartite
declarations.

61

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

Judgment Intuition
Θ `g DS ; ~S derived statement DS elaborates to ~S in the module at g
Θ ` DM ; ~M derived module DM elaborates to ~M in diagram Θ
`f D the validity predicate of the feature f holds for the derived declaration D

Figure 5.9: Judgments for IMMT Derived Declarations

`f l = f ~E { ~S1} Θ `g l = f ~E { ~S1} ; ~S2 Θ `+g l = J ~S1 ‖ ~S2K
DS
add

Θ `+g l = f ~E { ~S1}

`f g : gT = f ~E { ~D} Θ ` g : gT = f ~E { ~D} ; ~M Θ `+ g = J ~D ‖ ~MK
DM
add

Θ `+ g : gT = f ~E { ~D}

Figure 5.10: Well Formed IMMT Derived Declarations

Theorem 13. By replacing every derived declaration from a well-formed IMMT diagram Θ
with its corresponding bipartite declaration after elaboration we obtain a well-formed IMMT

diagram.

The proof is trivial since this is exactly how the well-formedness of derived declarations is de-
fined in Figure 5.10.

Together with Theorem 1 this means that a well-formed IMMT diagram with derived declarations
can also be reduced to a well-formed MMT one by ignoring narration. Again, this is essential for
reasoning about the language as well as for its implementation. Crucially, it means that we can
safely extend the MMT system to produce an implementation for IMMT.

5.2 The IMMT Language and System

In this section we present the IMMT language by aggregating the extensions described above
together into one language. We present the grammar below in Section 5.2.1, then discuss IMMT

URIs and referencing declarations in Section 5.2.2. Finally, we present the implementation of
the language and the resulting IMMT system in Section 5.2.3.

5.2.1 Grammar

The IMMT grammar is shown in Figure 5.11 with the original MMT primitives grayed out. Each
of the individual extensions are discussed above in Section 5.1. The central idea is that we

62

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

preserve MMT’s three-level design by having explicit, object, statement and module levels but
extend expressivity at each level.

At the object level we extend the term language by adding opaque terms (see 5.1.1) and bipartite
terms (see 5.1.2). The former allows representing in IMMT fully or partially opaque knowledge.
The latter allows capturing structural dimorphism at the object level. Since structural dimorphism
occurs at all levels, we add corresponding constructs to the statement and module level.

Concretely, at the statement level we introduce bipartite statements (see 5.1.3) to represent both
the internal structure and the semantics of complex statements. The structure of a bipartite state-
ment, which we call its pragmatics, is represented as a sequence of pragmatic statements, and
its semantics is represented as a sequence of strict statements. Moreover, in order to realize
extensibility at the statement level in IMMT we add structural features (see 5.1.4) to the IMMT

statement level. They allow language designers to declare their own set of declaration level con-
structs. At the statement level these constructs can be instantiated as derived statements. They
capture the structure of the instances as pragmatic statements (same as bipartite declarations).
However their semantics (represented as strict statements) is derived by their structural feature
in a process we call elaboration (see 5.1.4 for details).

At the module level, the IMMT extensions mirror the ones at the statement level. First we add
bipartite modules for structural dimorphism (see 5.1.3). The central difference is that their se-
mantics is represented as strict modules and their pragmatics can be either pragmatic statements
or modules (theories, views or bipartite modules). We also add derived modules (see 5.1.4) to
realize feature-based extensibility at the module level. They behave analogously to derived state-
ments with respect to elaboration, but being at the module level, their structure and semantics are
represented as pragmatic and, respectively, strict modules.

5.2.2 Referencing Declarations

In addition to the object statement and module levels we also extend MMT URIs. We set as a
requirement that every IMMT declaration has its own global name (URIs). This is essential to
allow declarations from an IMMT diagram to be used (referenced) by new content as well as by
services and applications. In fact this is a central motivation for the declaration-level extensions
that we presented above. Human users (e.g. mathematicians) use narrative constructs as part of
doing, writing, or talking about mathematics. So, having these narrative structures represented
and reference-able is a prerequisite for being able to build a wider range of semantic, user-facing,
practical applications.

Compared to MMT, the problem is that for the new bipartite declarations there are two containers
in parallel, namely for the pragmatic and strict declarations. Therefore, MMT URIs which use the
“?” separator for looking into containers such as theories or views do not work directly. In IMMT

we need more than one separator since we can have two containers that need to be accessed for
one declaration. This is because for bipartite declarations looking into requires a choice, namely
which one of the two containers to access. Therefore, we use two separators for global names

63

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

Declaration D ::= M | S
Diagram Θ ::= M∗

Body Σ ::= S∗

Module Level
Module M ::= T | V | BM | DM

Strict Module RM ::= T | V
Pragmatic Mod. PM ::= P S |M
Theory T ::= g = {Σ}
View V ::= g : g → g = {Σ}
Bipartite Mod. BM ::= g = JPM ∗ ‖ RM ∗K
Derived Mod. DM ::= g : g = f E∗ {PM ∗}

Statement Level
Statement S ::= C | I | F | BS | ν
Strict Stm. RS ::= C | I
Pragmatic Stm. P S ::= C | F | BS | ν
Constant C ::= l[: E][= E]
Include I ::= include g

Bipartite Stm. BS ::= l = J ~P S ‖ ~RSK
Decl. Realization Spec. ν ::= see Section 5.1.3
Struct. Feature F ::= f cp

Derived Stm. DS ::= l = f ~E { ~P S}
Object Level

Object O ::= E | Γ
Expression E ::= l | g | E E∗ | E Γ.E | [Γ](E∗) | PO ‖ E
Context Γ ::= [(l[: E][= E])∗]
Obj. Realization Spec. PO ::= see Section 5.1.2

Identifiers
Global name g ::= URI | g?l | g!l
Local name l ::= String
Feature name f ::= String
Class Path cp ::= Java ClassPath

Figure 5.11: The IMMT Grammar

64

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

instead: “!” and “?” as shown in the grammar from Figure 5.11. The intuition is that “!” is used
to access narrative structures (i.e. pragmatics) and “?” is used to access declarations that rep-
resent semantics (e.g. theories, views, constant or strict declarations). Therefore, the URIs for
pre-existing MMT primitives remain unchanged and use the “?” separator as before. This means
that in situations (e.g. type-checking, proof-inference) where the narration is irrelevant we pre-
serve the central properties and invariants of MMT. This is practically useful for preserving the
correctness of such algorithms and also for backwards compatibility of the systems and libraries.

The new rules are for the URIs of bipartite declarations are shown in Figure 5.12. They formalize
URI-based lookup for bipartite declarations in diagrams and follow the intuitions given above.

The first rule, Buri strict covers the case for referencing strict declarations and states that they
can be accessed by using the URI of their container and their local name, separated by “?”.
Concretely, if the container at URI g includes a bipartite declaration which in turn contains a
strict declaration D with name l, then D can be referenced with URI g?l.

The last two rules cover the case for accessing pragmatic declarations and state that pragmatics
can be referenced using the URI of their container together with their local name, separated by
“?”. Since bipartite declarations can themselves be pragmatics (and therefore nest) we formalize
this using two rules: Buri prag base for pragmatics directly inside theories, and Buri prag rec for
pragmatics within other bipartite declarations.

` Θ(g!l)⇒ l = JΣ1 ‖ Σ2K ` Σ2(l2)⇒ D
Buri strict

` Θ(g?l2)⇒ D

` Θ(g)⇒ g = Σ ` Σ(l)⇒ l = JΣ1 ‖ Σ2K
Buri prag base

` Θ(g!l)⇒ l = JΣ1 ‖ Σ2K

` Θ(g!l)⇒ l = JΣ1 ‖ Σ2K ` Σ1(l1)⇒ D
Buri prag rec

` Θ(g!l!l1)⇒ D

Figure 5.12: URIs for IMMT Bipartite Declarations

5.2.3 Implementation

We base our implementation on the MMT system described in Section 4.2. We extend the imple-
mentation to add the constructs described above and integrate it into the existing implementation.
The code is available at https://github.com/KWARC/MMT in the src/mmt-api/trunk

sub-project. Bipartite and derived declarations are added as new statement-level classes and are
implemented as described in Section 5.1.3 and 5.1.4.

65

https://github.com/KWARC/MMT

A FORMAL LANGUAGE FOR FLEXIFORMAL KNOWLEDGE

Structural features are implemented as a new class of IMMT plugins which must implement the
validity predicate and elaboration function as specified above. However, for adding them to a
theory, we do not add a new primitive to the code-base, but instead reuse the infrastructure for
MMT rules described in [Rab15a]. Rules are new primitive statements which takes as an argu-
ment a string literal pointing to a Scala class implementing an IMMT/MMT plugin. Therefore,
they allow enabling such plugins as part of declaring theories. It is mainly used for defining type-
checking and well-formedness rules for constants declared in foundations (such as λ or Π for the
LF logical framework [Pfe91]). But it applies directly for enabling structural features in a theory
by adding a rule referencing the Scala class that implements the feature. By being user-definable
and integrated in the module system, structural features represent the key construct that allows
modular, declaration-level extensibility in both the IMMT language and system.

On the other hand, bipartite and opaque objects are not added as primitives and instead en-
coded using existing MMT object constructors in the implementation. Concretely, we can add a
dedicated foundation that declares symbols corresponding to the primitives introduced above
and implement complementary IMMT plugins that implements the well-formedness rules as
IMMT/MMT rules. The resulting theory is shown in Figure 5.13.

From that perspective, the grammar introduced in Section 5.2.1 above can be considered just
syntactic sugar that gets expanded to regular MMT objects as long as the theory iobjects is in
scope (i.e. transitively included). Note that, in MMT, the flexiformal foundation includes both
the flexiformal objects foundation iobjects and the collection of necessary structural features
(discussed below in Chapter 6).

theory iobjects = {
constant β

constant A
rules base, inc

constant ‖
rules ‖rule, ‖ρ
}

Figure 5.13: Foundation for Flex-
iformal Objects in MMT

To cover the fact that an opaque term [Γ](~E) works
as both a binder and an application from the perspective
of MMT/OPENMATH primitives we add two constants for
opaque terms instead of one. They correspond to the appli-
cation and, respectively, a binding operation. Therefore, we
expand [Γ](~E) to (β Γ.(A ~E)).

For parallel markup, we use MMT/OPENMATH attribu-
tions [BCC+04, Rab14b] which we omitted here for sim-
plicity but are implemented in the MMT system. Attribu-
tions @(E, g, v) are effectively a new primitive constructor
for terms that allows annotating a term E using a key g with
arbitrary data v. We use attributions to annotate IMMT terms
with presentational information to represent natively bipartite terms. The constant ‖ from Fig-
ure 5.13 is the attribute key, the n arration is the value and the content aspect is the term being
annotated. Therefore, an IMMT term PO ‖ E is represented as @(E, ‖, PO).

66

Chapter 6

Representing Flexiformal Phenomena in
IMMT

In this Chapter we evaluate the IMMT language by applying it to represent common constructs
from both formal and informal mathematics. Effectively, we take the language designer perspec-
tive and try to design IMMT foundations for narrative mathematics by defining structural features
capable of representing the phenomena observed in Chapter 2. First, in Section 6.1, we look at
the informal phenomena, specifically those that the MMT language cannot represent adequately.
Then, in Section 6.2, we select and analyze some common constructs used in formal systems. In
both situations, we discuss each construct individually and examine how to represent it in IMMT.

Before describing individual features, we introduce some auxiliary definitions. In the IMMT

implementation, these are provided as utility functions.

Definition 14 (Renaming). For a partial function r from names to names and a body Σ, we
write [r]Σ for the result of replacing in Σ every occurrence of c with r(c) as follows:

• every declaration named c with the corresponding declaration named r(c),
• every expressionE with the expression obtained by replacing every occurrence of a name
c or c/l in E with r(c) or r(c)/l, respectively.

We write [c/]Σ for [. . . , n 7→ c/n, . . .]Σ where the ellipsis runs over the names of all declara-
tions in Σ.

Renaming does exactly what the name suggests, it updates the names of the declarations in Σ
following the renaming function r. Additionally, it looks into expressions and updates any refer-
ences to the renamed declarations to the new name to make sure well-formedness is preserved.

Definition 15 (Translation). For a partial function t from names to expressions, we write t(E)
for the result of replacing in E every occurrence of a name c for which t(c) = E ′ with E ′.

67

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

Moreover, we use the term subfeature for a structural feature sf that is declared with the ex-
plicit purpose of appearing as an pragmatic declaration in a parent elaborating feature f. The
elaboration of instances of sf is then defined as part of the elaboration function of f.

As we will see below, defining a structural feature sometimes involves defining other, auxiliary
features that are only needed to occur as pragmatics within instances of their parent feature. Ex-
amples include reasoning steps in proofs, operations in mathematical structures, or isomorphisms
in establishing common ground (as seen in 2.1). Since instances of the subfeatures always occur
inside their parent feature, it is often more convenient to describe (and implement) their elab-
oration together. Therefore, the elaboration of subfeatures is usually defined using extra cases
within the elaboration function of their parent.

6.1 Informal Mathematics

In this Section we discuss representing informal mathematical libraries in IMMT. Since there
is no automatic tool for semantization of informal mathematics, we cannot do a meaningful
import of a large informal corpus (i.e. one that actually enables useful practical applications).
Indeed, we see our work on IMMT as the basis on which such an import could be developed.
Instead, we systematically address the phenomena from Section 2 and present how they can be
represented in IMMT. In essence, we are building a target format in IMMT for representing
informal mathematics. Specifically, we define structural features for each construct to test the
expressivity of IMMT with respect to informal libraries in common mathematical language.

Naturally, we focus only on those phenomena that MMT does not natively support . As discussed
in Section 3, P1 Formulae as Primitive Objects, P1b Naming Objects Locally, P1c Referential
Meaning and P7 Framing are already covered by plain MMT. Moreover, P9 Structural Dimor-
phism, R1 Opaqueness were discussed in Section 5. Therefore, here, we discuss representing P3
Notations and Verbalizations, P5 Structured Declarations, P6b Dynamic Theories, P8a Recaps
and P8b Foundational Ambiguity.

Before we demonstrate how to represent each of these phenomena below, we develop an informal
foundation IF in IMMT based on the logical framework LF (which provides the primitives for
type and for the binders λ and Π). IF will serve as the logical foundation for the examples
in the rest of this chapter. It is inspired by the Mizar logic [Wie07a, Ban03] and Weak Type
Theory (WTT) [KN04]. Concretely, it is similar to the LF formalization of the Mizar base logic
described in [IR11]. The key idea of IF is a foundation based on first-order logic and ZFC
together with a notion of weak types that can be constructed via predicates. We use the usual
notations in declaring the types and terms for convenience and readability, but only discuss how
to represent these notations in IMMT below in Section 6.1.1.

Note that we make no particular claims about the expressivity of IF so far and just use it as an
example. Instead we rely on the foundation independence of MMT (and therefore IMMT) to al-
low mathematicians and library developers to use (or design) an appropriate foundation for each
individual development or library. However, in the following, we extend IF with appropriate

68

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

theory IF : LF = {
prop : type
set : type
wtp : type
is : set → wtp → prop

: prop → type

∧ : prop → prop → prop
¬ : prop → prop
∨ : prop → prop → prop = λ a : prop.λ b : prop.¬(¬a ∧ ¬b)
⇒: prop → prop → prop = λ a : prop.λ b : prop.¬a ∨ b
⇔: prop → prop → prop = λ a : prop.λ b : prop.a⇒ b ∧ b⇒ a
∀ : (set → prop)→ prop
∃ : (set → prop)→ prop = λ P : set → prop.¬∀x.¬P x
∧I : Π A : prop.Π B : prop.
 A→
 B →
 A ∧B
∧El : Π A : prop.Π B : prop.
 A ∧B →
 A
...
wtpI : Π T : wtp.Π P : set → prop.wtp
wtpE : Π T : wtp.Π P : set → prop.
 ∀x:setx is T ∧ Px⇔ x is wtpI T P
...
extensionality : ∀ x : set.∀ y : set.(∀ z : set.z ∈ x⇔ z ∈ y)⇒ x = y
∅ : set
...
}

Figure 6.1: Informal Foundation for IMMT

69

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

structural features to capture the outstanding phenomena discussed above. Therefore, we pro-
duce the blueprint for an informal foundation that could be used to represent both the narrative
structures and semantics of informal mathematics. Again, while acknowledging the limitations
of IF as presented here, we see it as a basis for practically realizing a meaningful import of an
informal corpus in the future.

6.1.1 Notations and Verbalizations

Notations are an important part of both formal and informal mathematics. They act as rules
for transforming between the content and presentation forms and can, therefore, be used for
both parsing and presenting. Unlike MMT, in IMMT we do not add explicit productions for
notations. Instead, we represent notations as a structural feature where instances give the content-
presentation relation as a bipartite term.

This has two advantages in addition to keeping the core language simple. First, by treating
notations as standalone declarations we leverage the modularity of IMMT to manage scoping and
re-usability of notations. Second, by using bipartite terms to represent notations, we leverage the
genericity and expressivity of the IMMT object level to obtain a powerful and extensible notation
language.

We define a special nullary structural feature Notation whose elaboration is the constant function
“·” returning the empty list. This means that notations as structural features have no semantic
consequence. They are just used by other processes, such as parsers and presenters. The validity
function, checks that the pragmatic declarations are constants of the form c = PO ‖ E where
any variables in E serve as notation arguments. They are used for the arity and can be referenced
by realization specs in PO. This definition is useful as it permits representing non-compositional
notations involving several constants such as sin2(x) – as opposed to the compositional (sin(x))2

– which involves both sin and power . But, the most common case are pragmatics of the form c =
PO ‖ (s ~x). Then s is the symbol for which this notation applies and ~x are the arguments. In both
cases, PO is a narration which can make use of the arguments as needed, and presenters replace
the arguments with the actual values when presenting applied instances of the symbol. Additional
properties of the notation are optionally given using metadata. The possible attributes and values
are given in Figure 6.2 and are inspired from OMDOC’s notations. The same properties form
the presentation context of IMMT realization specs and can be used to override options of the
notation itself. For example, to give different precedence to an argument. Note that it is up to the
IMMT exporters to actually make use of this information when presenting IMMT objects.

Example 16. Consider the definition:

(6.1) “The special linear group of degree n over a field F , denoted SL(n, F), is the set
of n×n matrices with determinant 1, with the group operations of ordinary matrix
multiplication and matrix inversion.”

From the perspective of IMMT the text above declares three things:

70

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

Name Syntax Intuition
type parse | pres | verb for parsing (text), presentation (html) or verbalization

(e.g. english)
lang String default content type of this notation (e.g. text,

mathml or en, de for verbalizations)
precedence Integer priority when parsing, bracket detection
variant String string identifier (name) of this notation

Figure 6.2: Notation Scope in IMMT

• A symbol for special linear group (will call it slg below for brevity) with a flexiformal
definition.
• A binary presentation notation SL(n, F) for the symbol slg .
• A binary verbalization notation “special linear group of degree n over a field F ” for the

symbol slg .

The corresponding representation in IMMT for each of the two notations above is a derived
declaration of the feature Notation. Its pragmatics are a constant with its definition a term of
the form PO ‖ (slg n F). For the presentation notation the narrative aspect PO is a MathML
expression with object-level realization specs (see Section 5.1.2) for the variables:

1 <mrow>
2 <mo>SL</mo>
3 <mo>(</mo>
4 <obj-real-spec position="1">
5 <pres-cont language="mathml"/>
6 </obj-real-spec>
7 <mo>,</mo>
8 <obj-real-spec position="2">
9 <pres-cont language="mathml"/>

10 </obj-real-spec>
11 <mo>)</mo>
12 </mrow>

with metadata
1 <meta format="mathml" variant="default"/>

For the verbalization notation, the corresponding narration is :

1 special linear group of degree
2 <obj-real-spec position="1">
3 <pres-cont language="mathml" type="pres"/>
4 </obj-real-spec>
5 over a field
6 <obj-real-spec position="2">
7 <pres-cont language="mathml" type="pres"/>
8 </obj-real-spec>

71

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

with metadata

1 <meta type="verb" format="text" variant="default"/>

Note, that the verbalization notation above, explicitly uses the type="pres" attribute for the
arguments. This prioritizes (assuming a correctly implemented exporter) the math notations for
its arguments (n and F in this case) over any available verbalization notations. However, the
presentation context for the term being presented (see Section 5.1.2) can be used to override that
preference. For instance, by choosing a concise verbalization for the set of real numbers rather
than the math notation (R) as in: “Special linear group of degree n over the reals”.

The notations described as above are effectively OMDOC notations [Koh10] only expressed
in terms of IMMT primitives. We discuss OMDOC notations further in Section 7.2 where we
present our import of several STEX libraries in IMMT. STEX, as discussed in Section 4.1, is an
expressive, LATEX-based surface syntax for OMDOC.

6.1.2 Mathematical Structures

To represent mathematical structures we introduce the MathStruct structural feature. Before
defining MathStruct we define a series of sub-features motivated by constructs that are used to
define mathematical structures in CML.

In mathematical practice, a mathematical structure instance has a name, a set of primitives and
a set of properties for those primitives. We further separate the primitives into set (or type)
declarations (e.g. G for a group or (F, V) for vector space) and operator declarations (e.g. ◦
for monoid or u for a meet-semilattice). We include nullary operators such as elements of the
primitive sets (e.g, e monoid) in the operator list.

Therefore, we define three dedicated subfeatures of MathStruct for each category discussed
above:

First, we define an unary structural feature TypeDecl which is used for declaring the primitive
types (usually sets in CML) used to form a mathematical structure. The argument E represents
the type of the resulting primitive and is typically set . The validity predicate requires that there
are no pragmatic declarations (only term arguments).

Second, we define an unary structural feature OpDecl which is used for declaring operators on
types of the mathematical structure. The argumentE represents the type of the resulting operator
the validity constraints require that it uses the types declared as primitive types in its construction.

Third, we define an unary structural feature PropDecl for declaring mathematical properties
of the types and operators forming the mathematical structure. The argument E represents the
assertion that must hold and the validity constraints require that it is a proposition.

72

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

name
types
operations
properties

monoid
M : TypeDecl set
◦ : OpDecl M→ M→ M

e : OpDecl M
assoc : PropDecl ∀x, y, z.(x ◦ y) ◦ z

.
= x ◦ (y ◦ z)

e prop : PropDecl ∀x.x ◦ e .
= e ◦ x .

= e

semilattice
S : TypeDecl set
u : OpDecl S→ S→ S

assoc : PropDecl ∀x, y, z.(x u y) u z
.
= x u (y u z)

comm : PropDecl ∀x, y.x u y .
= y u x

idem : PropDecl ∀x.x u x .
= x

Figure 6.3: Example instances of the MathStruct feature

Figure 6.3 shows two examples of mathematical structures that can be declared in a straight-
forward way using the subfeatures introduced above. However, as observed in Section 2.1, in
practice mathematical structures are not always defined directly by their components but, in-
stead, extend or instantiate other pre-existing structures. Therefore, in addition to the three basic
subfeature described above, we declare two additional subfeatures for representing commonly
occurring definitional mechanisms observed in practice.

First, we define a unary subfeature Extend where the argument E is a reference to the mathemat-
ical structure being extended. The validity constraints require that the reference is valid.

Second, we define a binary subfeature Inst where the first argument E1 is a reference to the
mathematical structure being instantiated and the second argument Γ2 is a list of local names to be
used in the current MathStruct for the primitives of the imported one. The validity constraints
check, in addition to the validity of the reference, that the length of the list of local names matches
the number of primitives of the referenced mathematical structure.

Now, we can define MathStruct as a nullary structural feature. The validity function requires
that each of its pragmatic declarations are instances of one of the subfeatures declared above.
Additionally, it checks that there is at most one instance of the Extend feature. The elaboration
function Θ `T ms = MathStruct E {Σ} ; {Σ′} is defined for each statement S ∈ Σ as
follows:

• if S is s = TypeDecl E {·} or s = OpDecl E {·} then we add s : E to Σ′

• if S is s = PropDecl E {·} then we add s :
 E to Σ′

• if S is s = Extend ms2 {·} then we add include ms2 to Σ′

• if S is s = Inst ms2 ~l {·} then:

73

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

Σ′ = {
include g?monoid
invertibility :
 ∀x ∈ G.∃y ∈ G.x ◦ y = e
}

Figure 6.5: Elaboration of the group MathStruct

– for each local name li we find the corresponding (by order) primitive declaration
si : Ei in ms2

– we construct the partial translation function t such that t(si) = li for all i

– if li is new (not already defined) in Σ′ we add li : t(Ei) to Σ′

– otherwise, we check that the type of the declaration li : E ′ from Σ′ is compatible with
(i.e. equal to) t(Ei)

– finally, for every property pj :
 Ej from ms2 we add pj :
 t(Ej) to Σ′

The intuition of the elaboration algorithm for Inst is that we copy over the declarations from the
target, but while renaming appropriately to the given names. Moreover, we skip over copying
declarations if the name exists and the types match (which should be checked by the validity
predicate). Then, translating over the terms ensures that the references are appropriately updated
so that well-formedness is preserved. The algorithm is demonstrated in Example 18.

Below we look at two examples of mathematical structures from Section 2.1 and how they can
concretely be represented in IMMT using the MathStruct feature.
Example 17. Consider the definition of group from Example 2.28 which we repeat on the left side
of Figure 6.3. On the right side, we show a definition of group as a MathStruct that follows the
structure of the narrative definition. Concretely, it extends the pre-defined MathStruct monoid
with one additional property, namely that every element has an inverse. We assume monoid is
defined in the natural way, with G as its base set, ◦ its operation, and e its neutral element.

A group is a monoid (§2, no.
1, Definition 1) in which ev-
ery element is invertible.

group : MathStruct = {
: Extend g?monoid = {·}

invertibility : PropDecl ∀x ∈ G.∃y ∈ G.x ◦ y = e
}

Figure 6.4: Defining group as a MathStruct in IMMT

Then, the elaboration follows the algorithm described above. We first elaborate the Extend in-
stance to an include of monoid. Then, we add the elaboration of the invertibility PropDecl. The
resulting set of declarations Σ′ is shown in Figure 6.5.
Example 18. Consider the definition of ring from Example 2.29 which we repeat on the left side
of Figure 6.6. On the right side, we show its representation as a MathStruct that mirrors the
structure of the narrative version.

74

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

Σ′ = {
R : set
+ : R→ R→ R
0 : R
− : R→ R
∗ : R→ R→ R
1 : R
comgroup/assoc :
 ∀x, y, z.(x+ y) + z = x+ (y + z)
...

}

Figure 6.7: Elaboration of the ring MathStruct

Definition 4. Let 〈R,+, 0,−〉 be
a commutative group, and 〈R, ∗, 1〉
a monoid, such that 〈R,+, ∗〉 is a
ringoid, then we call 〈R,+, 0,−, ∗, 1〉
a ring.

ring : MathStruct = {
: Inst commgroup R,+, 0,− = {·}
: Inst monoid R, ∗, 1 = {·}
: Inst ringoid R,+, ∗ = {·}
}

Figure 6.6: Defining ring as a MathStruct in IMMT

The resulting derived declaration contains three Inst sub-features one for each instantiation of
another mathematical structure used in the original definition. The elaboration result Σ′ is con-
structed using the elaboration algorithm described above and is shown in Figure 6.7. First the
primitive declarations for the base set R and the +, 0 and− operations are added to the signature
by the Inst of comgroup. For the second Inst (of monoid), R already exists and is matched
since its type (set) is compatible. Therefore, afterwards, ∗ and 1 are added with their type now
referring to the same R as +, 0 and − due to the translation function. Then, for the last Inst of
ringoid all local names R, + and ∗ are matched with the existing ones. Finally, the properties,
(associativity, commutativity, distributivity, etc.) are added modulo the translation function t that
updates the referenced names accordingly. The names of the properties are namespaced using
the “/” separator to avoid name clashes.

6.1.3 Structured Proofs

Proofs are an essential concept in mathematics and related fields. Strict MMT takes the logical
view of proofs as a tree of applications of inferences rules, but the notion of proof is much
wider in mathematical practice. Proofs often appear as statement or module-level elements with
rich internal structure containing inline definitions, lemmas, sub-proofs, etc. as proof steps.
To explore how such structured proofs can be modeled with structural features we represent
OMDOC proofs (which are quite generic and expressive in their own right) as a structural feature

75

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

with an elaboration based on our informal foundation IF . The intuition of the elaboration is that
it merges the proof steps using FOL connectives into one strict MMT term representing the proof
as an application tree. Therefore, the elaboration result is a single MMT constant declaration
with its definition being the proof term.

The OMDOC reasoning steps used to construct proofs are symbol declarations, definitions, hy-
potheses or derivations. Therefore, before defining proofs, we introduce a series of subfeatures:

• a feature 〈ODecl, IF, 1,VODecl, EODecl〉 corresponding to OMDOC symbol declarations,
where the argument represents the type of the symbol.

• a feature 〈ODef, IF, 2,VODef, EODef〉 corresponding to OMDOC symbol definitions, where
the two arguments represent the type and respectively, definition of the symbol.

• a feature 〈OHyp, IF, 1,VOHyp, EOHyp〉 corresponding to OMDOC hypotheses, where the
argument represents the proposition being assumed to hold.

• a feature 〈ODer, IF, 2,VODer, EODer〉 corresponding to OMDOC derivations, where the two
arguments represents the proposition being derived and, respectively, its proof.

In all cases above, the validity predicate requires that the list pragmatic declarations is empty.
The elaboration functions are described as part of the elaboration proofs discussed below.

An OMDOC structured proof is a structural feature 〈Proof, IF, 1,VProof, EProof〉 where the ar-
gument is the proposition being proved and the pragmatics are MMT statements representing
the proof steps. The validity predicate ensures that the pragmatics are instances of proof steps,
meaning either ODecl, ODef, OHyp, ODer or of Proof itself. The last one ensures that, like in
OMDOC, proofs can nest and be used as reasoning steps to construct larger proofs.

The elaboration function Θ `T p = Proof E1 {Σ} ; {Σ′} produces a single constant
p :
 E1 = E2 where E2 (the proof) is produced sequentially based on each declaration in Σ as
follows:

• for an instance x = ODecl E {·} we produce ∀I(λ x : E.E ′) where E ′ is the elaboration
of the later statements in Σ and ∀I is the ∀ introduction rule in IF .

• for an instance h = OHyp E {·} we produce⇒I (λ h : E.E ′) where E ′ is the elaboration
of the later statements in Σ and⇒I is the implication introduction rule in IF .

• for an instance c = ODef Ea, Eb {·} we produce t(E ′) where E ′ is the elaboration of the
later statements in Σ and t is the function replacing c with Eb.

• for an instance d = ODer Ea, Eb {·} we have two cases:

– if this is the last statement in Σ then we produce Eb
– else, we produce t(E ′) where E ′ is the elaboration of the later statements in Σ and t

is the function replacing d with Eb.

76

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

• finally, for an instance sp = Proof Ea {Σsp} we elaborate recursively to obtain its proof
term Esp then treat that exactly like for the derivation step above:

– if this is the last statement in Σ then we produce Esp
– else, we produce t(E ′) where E ′ is the elaboration of the later statements in Σ and t

is the function replacing sp with Esp.

The intuition of the elaboration algorithm above is that the linear proof encoded as pragmatic
statements is elaborated to a tree structured IMMT term but preserving the intended semantics.
Undefined symbols become universally quantified, hypothesis become assumptions for proving
implications and defined symbols are, where applicable, replaced with their definition.

Note that alternative elaborations of such proofs can be envisioned depending on the logical
meta-theory where the Proof structural feature is declared. For instance, [ASC06] shows a
formal correspondence between OMDOC proofs and the λµµ̃-calculus which can be straightfor-
wardly re-framed as an elaboration function into a particularly expressive meta-logic (i.e. λµµ̃).

6.1.4 Dynamic Theories

Acknowledgement. Part of the results in this Section are based on collaborative work with
Michael Kohlhase have been published in [IK15b].

Strict IMMT (same as MMT) already provides theories as reusable containers of mathematical
statements. However, this is insufficient for informal mathematics where, often, such containers
are not declared but inferred and aggregated from multiple sources. In practice, mathematicians
often abstract away details of an underlying development and focus on the useful symbols and
theorems that implicitly form the mathematical theory. Basic examples are the different ways to
define natural or real numbers, groups or topologies.

We observed this as the phenomena P6b Dynamic Theories in Section 2.1. Additionally, a very
similar concept is discussed in [CF08] as high-level theories, in analogy with high-level pro-
gramming. Moreover, [CFK14] introduces realms as a theory-graph construct for representing
such dynamic mathematical modules in the formal world.

In this Section, we build on this existing work, but re-frame it in terms of IMMT structural
features as well as extend it to cover the phenomena as observed in Section 2.1. But, first, we
briefly introduce realms and refer to [CFK14] for details.

Realms Intuitively, a realm is a set of modules in a theory graph Θ (i.e. a subgraph of Θ) that
abstracts from the development and provides practitioners with the useful symbols and theorems
via an interface theory.

An important concept for realms is that of a conservative extension which usually occurs when a
theory includes another and contains only theorems and derived symbols (i.e. adds no axioms or

77

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

primitive symbols). An essential property of conservative extensions is that if S ′ is a conservative
extension of S then there is view v between T and S iff there is a view between T and S ′ in the
same direction. In fact, we will often talk about views modulo conservativity below.

Realm

Pillar1 Pillarn

>1

⊥1

>...

⊥...

>n

⊥n

F
I1

I...
In

C1 C... Cn

Figure 6.8: The Architecture of a Realm

Figure 6.8 shows a prototypical realm with F as
its interface theory (also called a face) and n pil-
lars each representing a different (yet isomorphic)
development of the concepts in the face. Each pil-
lar is a conservative development in the sense that
all theories in a pillar are conservative extensions
of a bottom theory (denoted with ⊥). A top the-
ory (denoted with >) aggregates all symbols, ax-
ioms and theorems declared within the pillar. The
view pairs at the bottom establish the equivalence
of the pillars and the n views Ik capture the rela-
tion of interface-implementation between the face
and each pillar.

A B

i/left

i/right

i

Figure 6.9: Elaboration of
Theory Isomorphisms

Theory Isomorphisms as a Feature To define realms as struc-
tural features we first define a feature for theory isomorphisms,
which are the relations between the pillars of a realm. But theory
isomorphisms are useful also on their own. Different definitions
or developments yielding equivalent concepts is a regular occur-
rence in both formal and informal mathematics. In module sys-
tems like MMT or IMMT, this typically manifests as theories that
are isomorphic. We introduce theory Isomorphism as a binary
structural feature for IF . Its two arguments are just references
(global names) to the theories in question, and its pragmatics are
pairs of equivalent constants that define the isomorphism (repre-
sented as MMT constants). Note that the general case where the isomorphism can map constants
in a theory to objects in the other is also possible but we omit the details here for brevity.

We define the elaboration of a derived module i : IF = Isomorphism A,B {Σ} to be the two
views i/left : A→ B = {Σ} and i/right : B → A = {Σr} where Σr is constructed inductively
as follows:

• Σr starts out as the empty body {·}
• for every constant ca = cb in Σ (representing a symbol pair) we add cb = ca to Σr

Effectively, Σr is the reverse of Σ and we obtain the diagram in Figure 6.9 as the result of
elaboration.

Realms as a Structural Feature Now we are ready to reframe realms as a structural feature.
We first define pillars as an auxiliary structural feature Pillar with flexible arity. The arguments

78

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

represent (references to) the theories that form the pillar with the first argument being the base
theory.

>1

⊥1

>...

⊥...

>n

⊥n

r/face

r/v1 r/v... r/vn

p1 p... pn

i1 in

Figure 6.10: Elaboration of a Realms

Then, a realm is a nullary structural feature Realm
whose validity predicate requires that the pragmatic
declarations of its instances are either pillars or isomor-
phisms. The elaboration function for a realm r : IF =
Realm {Σ} with n pillars produces a theory r/face
(the interface theory) together with n views r/vi that
justify the interface theory as an abstraction of each pil-
lar. The theory and views are constructed following the
face-generation algorithm described below which basi-
cally traverses the pillars to produce the face by aggre-
gating statements that are unique modulo the given iso-
morphisms. Figure 6.10 shows the diagram obtained as
the result of elaboration.

Generating Realm Faces We introduced the algorithm for generating the faces of realms as
induced theories in [IK15b]. Effectively, we consider their face as inducible from the pillars and
discuss below how we mechanize that. Generally, the face is produced from the statement in the
pillars modulo the equivalence views and there are two main difficulties.

The former is abstracting away (i.e. removing from the face) those statements that are only
needed for development in the pillars. For example defining functions using sets might require
defining pairs first but the face should only contain functions and their properties.

Therefore we introduce a structural feature Private that contains a single statement S and elab-
orates to it – so it does not change the strict perspective of theories where it is used. The purpose
of Private is to allow pillar developers to mark statements that are not meant to be exported into
the face by wrapping them in a Private derived declaration. Then, for the purpose of the face
generation algorithm discusses below we can safely ignore all instances of the feature Private
to produce the face as intended by the pillar developers.

The latter is generating unique names for the statements. The algorithm we give is simply an
heuristic for generating those names in some cases. Otherwise, we default to using the name
of each pillar as a prefix (see renaming in Definition 14 above) to ensure uniqueness whenever
the heuristic fails. Therefore, alternative and perhaps better algorithm could be designed in the
future to improve on the work described here. Note that, from a category theory perspective
this generally amounts to generating a co-cone of the pillars. It is not always a co-limit because
pillars can, and usually do, abstract away implementation details from the pillars. Even so, co-
limits are unique only up to isomorphism and, in practice, the particular choice of names for the
face does matter. Moreover, there is no general, optimum solution for choosing the names (see
[CMR16] for a discussion) which is why the algorithm we give is merely a reasonable heuristic
for our particular case.

79

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

group◦
G : type, ◦ : G→ G→ G

e : G, inv : G→ G

assoco, eleft, eright, invax

group/
G : type, / : G→ G→ G, e : G

eax1 , eax2 , /ax1 , /ax2

slash◦
/ : G→ G→ G = λa, b.a ◦ (inv b)

circ/
◦ : G→ G→ G = λa, b.a/(e/b)
inv : G→ G = λa.(e/a)

inv thm◦
inv thm :
 (inv e)

.
= e = trans eright invax

inv thm/
inv thm :
 (inv e)

.
= e = eax2 e

group

G : type, ◦ : G→ G→ G, e : G, inv : G→ G, / : G→ G→ G

circ/inv thm :
 (inv e)
.
= e, slash/inv thm :
 (inv e)

.
= e

assoco, eleft, eright, invax, eax1 , eax2 , /ax1 , /ax2

v/ v◦

i◦ i/

Figure 6.11: A Realm of Groups

For the generated face, the URI g of the theory with the realm specification induces the IMMT

URI of the face, and the IMMT URIs of the symbols inside are induced from the pillar names.
To generate the face we need to solve three main issues:

1. select which symbols from each pillar should be in the face
2. merge equivalent symbols (such as the e in Figure 6.11)
3. resolve naming conflicts (equivalent symbols with different names and distinguishable

symbols with same name)

Before we formalize this in Definition 21 below, let us adapt the groups realm from [CFK14] to
the IMMT setting.

Example 19. Figure 6.11 shows a realm with two pillars for the isomorphic group definitions
based on composition ◦ and, respectively, division / in the usual way. The corresponding realm
specification is in Figure 6.12. We have added the unit e with its axiom eax1 , eax2 to group/ even
though it is mathematically redundant – can be defined as x/x for all x in G – because that allows
us to show all aspects of the face generation algorithm below.

Theories slash◦ and inv thm◦ as well as circ/ and inv thm/ are each conservative develop-
ments of group◦ and group/ respectively as they only introduce defined symbols. The views v◦
and v/ ensure the equivalence of the two pillars with the obvious assignments. The proofs that
the axioms hold (i.e. the assignments for them in the views) are all straightforward and omitted
for simplicity. The face for the realm is shown in theory group and has the intuitive shape, con-
taining all the important concepts as primitive symbols and all their properties as axioms. We

80

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

group = Realm {
circ = Pillar group◦, slash◦ {·}
slash = Pillar group/, circ/ {·}
v = Isomorphism circ, slash {v◦, v/}
}

Figure 6.12: The realm of groups as a derived declaration

explain how the face was produced below.

Definition 20. We define the following partial ordering on symbols in a realm r. Let t and s

be symbols in theories T and S respectively such T and S are in different pillars. If there is an
assignment s = t in one of the pillar equivalence views then we write s ≤r t. If there is also
an assignment t = s in such a view then we write s =r t, otherwise s <r t. We call a symbol
s essential in r if there is no symbol t such that s <r t.

The intuition behind Definition 20 is that if there is an assignment from s to t (or conversely
t to s, or both) then s and t represent the same concept at the realm level. So, if possible, we
can add only one of the two constants in the face to represent that concept. Then, the ordering
captures the fact that s is a primitive concept in its realm while t is derived, possibly only to give
the equivalence view. For example, in Figure 6.11 the symbols inv and ◦ from theory circ/ are
derived.

Definition 21. Let r be a realm as defined above. We generate a face for r by adding copies of
all essential symbols with their type but not their definition (if any) – following the specification
of a realm face from [CFK14] – with the following provisions:

1. If two (or more) essential symbols in different pillars have the same name we prefix all
of them with the pillar name (to ensure unique names)

2. If n essential symbols are equal (with respect to =r) we first order them s1, . . . , sn (based
on the order of their respective pillars within the pragmatics of r) and then:

• add s1 as normal

• for every si, if it has the same name as s1 we skip it (effectively merge the two
statements)

• otherwise, we add the constant si = s1 (effectively use si as an alias of s1)

Example 22. The face for group from Figure 6.11 is generated following the algorithm from Def-
inition 21. The essential symbols (omitting axioms for simplicity) are G, ◦, e, inv, inv thm for
the first pillar and G, /, e, inv thm for the second. We have two name clashing pairs: group◦?e
and group/?e as well as inv thm◦?inv thm and inv thm/?inv thm. For the first pair (e) we
have an equality since v◦ and v/ assign them to each other so we merge. Then, for the second

81

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

pair (inv thm) there is no assignment so we cannot merge. Therefore, we follow case 1. of the
algorithm and prefix them with the pillar name producing circ/inv thm and slash/inv thm

to obtain the face shown in Figure 6.11.

Curating Realms through Alignments As already mentioned above, the face generation (elab-
oration) algorithm we described is just a heuristic and does not always produce the intuitive re-
sult. For instance, the intuition is that it would merge equivalent constants in different pillars.
But, occasionally, constants that are essentially equivalent will appear as different because of
slightly different formalizations. A common case is identical theorems but with different proofs
as is the case of inv thm in Example 22.

In [CFK14] realm faces are meant to be manually generated and curated to avoid such issues.
However, we propose an alternative method of curating faces by giving alignments between pillar
theories to establish symbols as being equivalent. This idea is inspired from [KRSC11], and is
further discussed in [KKMR16] but in the context of equivalent concepts across formal libraries.

Definition 23 (Alignment). An alignment is a view pair v1 : Ŝ → T and v2 : T̂ → S where Ŝ
is is a copy of S but which omits all definitions in S. We call Ŝ the abstraction of S.

The abstraction operation ·̂ is needed to allow us to assign a new interpretation for defined sym-
bols which would otherwise be translated automatically by IMMT/MMT via definition expan-
sion. We will concentrate on the case where S and T are in different pillars here. Note that, in
[KRSC11], the idea of generalizing MMT views to allow giving assignments for already defined
constants was proposed. This is not yet realized in the implementation but would allow us to skip
the abstraction step and just give the views directly.

In IMMT we can represent alignments using a binary structural feature Alignment where the
two arguments are the global names of the theories. Then, the validity predicate checks that
its pragmatics are a pair of views as described above. We add it as a subfeature of Realm and
enhance the elaboration function to make use of it as described above.

For instance, take the situation in Figure 6.11 where the (trivial) theorem inv thm proving that e
is its own inverse appears in each pillar. Still, the proofs are different over the translation so that
both symbols appear different at the IMMT level. However, we can fix the problem by giving
an alignment between the two theories containing the theorem. Listing 6.13 below shows the
alignment and the resulting, curated face.

The central idea here is that the algorithmic procedure for generating the face does not preclude
manual curation. On the contrary, by adding these knowledge items (such as alignments) it
makes the process more transparent and systematic. Therefore, it potentially allows other, future
applications to make use of this information as it is now explicitly present in the diagram.

82

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

inv thm = Alignment circ, slash {
view a/ : ˆinv thm◦ → inv thm/ = {inv thm := inv thm}
view a◦ : ˆinv thm/ → inv thm◦ = {inv thm := inv thm}
}
theory group = {G : type, e : G, . . . , / : G→ G→ G . . . , inv thm :
 (inv e)

.
= e}

Figure 6.13: Alignment Example

6.1.5 Recaps

Acknowledgement. The results in this section are collaborative work with Michael Kohlhase
and have been published in [IK15a].

In this Section we look more closely at the examples for recaps from Section 2.1 and how each
can be represented using theory graphs and structural features in IMMT.

First, we look at the aspects common to all papers we analyzed to form an intuition of the theory
graphs structures that are needed. In every example, recaps aggregate definitions and theorems
from similar developments to establish a common ground. The result is typically referred to as
“the literature” and is used in two ways.

First, the paper uses the literature as the basis upon which the results of the paper are built. We
call this process aggregation, where the knowledge from the various sources is integrated, with
the irrelevant details abstracted away. Then, the paper makes use of definitions, theorems and
notations from the literature to produce its result.

Second, the results from the paper implicitly contribute back to the literature and can be used
in further papers within that field. We call this process dissemination which, in mathematical
practice, happens implicitly when the paper is published.

In this thesis we claim that the processes described above can be adequately modeled in IMMT

based on realms as defined above. The central idea is that we represent the literature as a realm
with the aggregation that the paper makes use of as the face of the realm. Then, dissemination is
modeled as a process of extending the realm with the results from the current paper. The basic
theory behind extending realms was already introduced in [CFK14], and we refer to that for
details. Here we just apply it to modeling dissemination as part of representing recaps in IMMT.

Realms as a Model for Dissemination & Aggregation Figure 6.14 shows the typical case for
the representation of a paper as part of a theory graph. The “literature” for the mathematical
theory to which the paper contributes is represented as a realm with a face and several pillars.
The paper references a document within the field, that is naturally part of a pillar and grounds
the recap theory. The contribution of the paper is a theory in itself that includes the recap theory
and is a conservative extension of it. Again, the fact that we are representing the contribution in
a single theory is a simplification for presentational simplicity which does not lead to a loss of

83

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

generality. The view v ensures that the paper can make use of concepts and theorems from the
realm, as they can be accessed via v.

Realm

Paper

Pillar1 Pillarn

Recap

Contrib.

>

CPaper

⊥

>

⊥

Realm Facev

v1 v2

r

Figure 6.14: General Case for Recaps

In our analysis we first restrict ourselves to the case
where there is a single recap for simplicity and ex-
positional clarity. This already covers the majority
of research papers we have analyzed; they mainly
build on one earlier paper and extend it. Indeed,
three of the four examples sources from Section 2.1
fall into this category, they import the definitions
and terminology from a central cited paper, but call
on others from the same realm for results, context,
and support.

We recognize four special cases for (single) recaps
based on the nature of r and discuss each individ-
ually below. First we have to decide the home the-
ory of the symbols that the recap introduces. If the
home is the cited theory then r is an import and we have a plain recap. Otherwise, we have
new symbols in the recap theory that are somehow related with the ones in the cited one. In that
situation we have two sub-cases depending on the relation between the recap and cited theory:
equivalence recap and specialization recap. Finally, we have the case where the paper builds on
several others and, therefore, has multiple recaps.

Special case: Plain Recaps One situation is that of plain recaps where the relation r is an
inclusion into the recap from the cited paper. Typically the include r is a conservative extension
of the cited paper. For instance the “covers of the multiplicative group” from Example 2.39
directly uses the concept from the cited paper (CPaper), but gives a concise verbalization of its
definition. This allows it to make use of the results in two other papers higher up in the pillar of
the cited paper. The situation is shown in Figure 6.15a. Note that, if r is conservative, then we
have a pillar extension for the realm which justifies the new paper becoming part of the realm’s
literature (see Figure 6.15b). It also makes v exist as induced by v1 modulo conservativity.

84

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

Realm

Paper

Pillar1 Pillarn

CACF

MToCACF

>

CPaper

⊥

>

⊥

Realm Facev

v1 v2

r

(a) Publication Graph
Realm

Pillar1 Pillarn

CACF

MToCACF

>

· · ·

CPaper

⊥

>

⊥

Realm Face
v1 v2

r

(b) Aggregation Graph

Figure 6.15: Plain Recaps (Example 2.39)

Plain recaps can also model the formal examples (e.g. Example 3) but in that situation it is not
too interesting as we have the degenerate case for the realm itself.

Special Case: Equivalence Recap Another common situation is that of equivalence recaps
where the relation r is an equivalence (isomorphism) between the two theories. We can represent
the relation r, in this case, as two views vto and vfrom, one in each direction between the recap
and the cited paper that ensure their isomorphism. Then, the view v is induced by vfrom ◦ v1
modulo conservativity. Moreover, the contribution of the paper carries over to the realm via the
view vto.

This occurs, for instance, in Example 2.40 where this intuition is explicitly written down in the
paper as “There are several equivalent ways to define multinets.” (although not proved). In
fact it is the most common situation in the sample papers we studied.

Note that adding an equivalent definition corresponds to a realm extension, where the face is
fixed, and the view from the face to the current theory can be postulated. Therefore, in Figure
6.16a the paper effectively extends the realm (or the current pillar) as introduced in Section
6.1.4. This corresponds to the mathematical practice of “contributing to” a field (or mathematical
theory). This resulting realm after knowledge aggregation is shown in Figure 6.16b, where the
new paper contributes a new pillar to the realm. The equivalence is ensured by vfrom and vto as
we take into account conservativity to reduce them to the ⊥ theory.

85

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

Realm

Paper

Pillar1 Pillarn

MNets

ICMnets

>

CPaper

⊥

>

⊥

Realm Facev

v1 v2

vfrom

vto

(a) Publication Graph

Realm

Pillarn+1 Pillar1 Pillarn

MNets

ICMnets >

CPaper

⊥

>

⊥

Realm Face
v

v1 v2

vfrom

vto

(b) Aggregation Graph

Figure 6.16: Equivalence Recaps (Example 2.40)

Special Case: Specialization Recap Thirdly, we have the case where r is a specialization
relation that can be represented as a view vfrom from the cited theory to the recap. Same as in
the previous case, this ensures the existence of v as vfrom ◦ v1 modulo conservativity. However
it does not directly contribute the results of the paper back to the (same) realm as they concern
only a special case of the concepts in the realm.

This is the case in Example 2.41 where the definition from the paper is a specialization of the one
in the literature. In [CS09], the definition of the accelerated Turing machine involves a concrete
step size (2−n), whereas the definition it recaps allows arbitrary sequences of step sizes as long
as their sum remains finite. Thus we have the situation in Figure 6.17. There is a view from
atm to ATM that fixes the step size to 2−n, but there cannot be a reverse view from ATM to atm

as that is more general. However, we do have a view to atm(2−n), which naturally arises in
treatments of accelerated Turing machines as an example. That special case can form a realm of
its own, namely the realm of accelerated Turing machines with step size 2n. Then we can talk
about aggregation with that realm (via the view vto) but we omit that here for simplicity – the
aggregation is similar as for equivalence recaps, except with the specialization realm.

86

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

Paper

R1 R2

Contrib.

Realm1 Realm2

Face1 Face2v1 v2

(a) Publication Graph Union Realm

R1 ∪R2

Contrib.

Faceu

v

Realm1 Realm2

Face1 Face2v1 v2

(b) Aggregation Graph

Figure 6.18: Multiple Recaps (Examples 2.42 and 2.43)

Realm1

Realm2

Paper

Pillar1 Pillarn

ATM

ATMhalt

atm(2−n)

vto

>

atm

⊥

>

⊥

Realm Facev

v1 v2

vfrom

Figure 6.17: Publication Graph for Specialization Recaps (Example 2.41)

Multiple Recaps Up to now we have only treated cases with single recaps to ease the exposi-
tion. But papers and especially textbooks often recap from different realms and base the rest of
the exposition on them.

This is the situation in Figure 6.18a inspired by Examples 2.42 and 2.43 from Rudin’s book.
Note that the two recaps import directly from the faces rather than from a specific pillar or paper.
This is intended and covers the typical case of recaps in textbooks and survey articles. For
instance, as mentioned in Section 2.1 (P8a), Rudin does not directly cite literature in the recaps,
but aggregates the vast literature in an appendix.

For the aggregation phase the multiple recaps situation begs the question of where the contri-
bution should be placed. In the common ground part of Rudin’s book we have separate recaps
of vector spaces and topological spaces (2.42), and we analyze them as theory morphisms from
their respective realms. In this case, there is the realm of topological vector spaces (2.42) which
imports from both realms, this is the natural place for the contributions. In the case such a realm
does not exist yet, the paper can be used as the natural starting point for (first pillar of) the realm.
Actually, the “union realm” concept in Figure 6.18b is a bit simplified. The contribution of the
paper will usually add some conditions – like conditions (a) and (b) in (2.43) – and use that for

87

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

the base theories of the realms. This does not invalidate our claim that there is always a natural
realm – which may have to be created – for the contribution of the “paper”.

6.1.6 Foundational Ambiguity

As observed in Section 2.1 (P8b), establishing common ground in papers has two parts. We
discussed one of them, recaps, above in Section 6.1.5. However, the other, foundational ambi-
guity, while similar in most respects, is more complex. Foundations are not typically explicitly
mentioned, and papers routinely use concepts and theorems without analyzing the foundational
assumptions they require. It is then left to the reader to infer an appropriate foundation in which
the results from the paper work. To an extent, this is similar to recaps above, as papers built upon
a aggregation of foundational assumptions from various logics or set theories. However, in the
case of foundations, the premise of equivalence between them does not hold. Some foundations
are more expressive than others and that expressivity may or may not be used in a particular
paper.

Therefore, to represent foundational ambiguity we generalize the concept of realms introduced
above to the case where the pillars are not necessarily isomorphic. Concretely, we allow having
(total) views in only one direction, in which one pillar is a special case of another. Then, the face
has the expressivity of the most general pillar which gives a powerful set of concepts and axioms
for library developers. However, in case the full expressivity is not used, some results might hold
in the weaker pillars also and there are heuristics to determine that. Therefore, the foundation
can be established ambiguously as the face of such a pre-realm, and, possibly, refined later to a
concrete pillar.

Pre-realms The intuition is that pre-realms are realms where for each pair of views vl, vr be-
tween two pillars, one of them may be partial. Partial views are described in [RK13a] and we
refer to that for more details. However, the central idea is that the requirement that there must
exist an assignment for every undefined constant in the source theory is dropped. This implies
that the empty view containing no constant declarations is always a valid partial view.

Concretely a pre-realm is a structural feature 〈PreRealm, IF, 0,V , E〉. Its pragmatics are either
instances of the Pillar or PartialMorph features. PartialMorph is a binary subfeature where
its two arguments are references to the two views (one of which may be partial). It corresponds to
Isomorphism subfeature for realms. The validity predicate V ensures that these well-formedness
conditions hold.

The face generation algorithm remains unchanged, but the consistency of the resulting theory
is no longer guaranteed by IMMT. In fact, the resulting theory may often be inconsistent. This
conforms, however, with mathematical practice where the foundation is typically unspecified.
Instead, the author assumes as a foundation any and all theories where the necessary concepts
and theorems exist or can be derived. As mentioned in Section 2 the situation is particularly
interesting since the individual foundational options may be incompatible with each other.

88

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

theory PL = {
B : type
I : type
¬ : B→ B
∧ : B→ B→ B
...
}

theory FOL = {
B : type
I : type
¬ : B→ B
∧ : B→ B→ B
∀ : (I→ B)→ B
...
}

theory HOL = {
tp : type
tm : tp→ type
B : tp
I : tp
∀ : ΠA.(tm A→ tm B)→ tm B
...
}

φ

ψ
φ ◦ ψ

ψ :=



B 7→ tm B
I 7→ tm I
¬ 7→ ¬
∀ 7→ ∀ I
...



φ :=


B 7→ B
¬ 7→ ¬
∧ 7→ ∧
...


Figure 6.19: PL, FOL and HOL in IMMT

89

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

PL FOL HOL

theory r/face = {
B : type
I : type
¬ : B→ B
∧ : B→ B→ B
∀ : (I→ B)→ B
...
}

theory T1 = {
c :
 ∀x.∃y.p(x, y)
}

theory T2 = {
c :
 ∃p.∀y.p(y)
}

theory T3 = {
c :
 ∀f.∃g.∀x.f(g(x))
}

Figure 6.20: A pre-realm in IMMT

Example 24. Figure 6.19 shows a IMMT development of propositional logic, first-order logic
and higher-order logic. We omit much of the details for brevity but refer to the formalizations
from the LATIN project [CHK+11] for details. The views φ from PL to FOL and ψ from FOL to
HOL are total and straightforward. The reverse ones φ−1 from HOL to FOL and ψ−1 from FOL
to PL are also straightforward but partial. Therefore the three logics do not form a realm but they
do form a pre-realm.

Figure 6.20 shows the pre-realm formed from the three logics together with three developments
on top of it. The first one only uses PL-induced concepts and theorems and therefore is valid in
all three logics. The latter two use quantifiers and higher-order quantifiers and are therefore only
valid in FOL or HOL and, respectively, just HOL. By inspecting the theorems themselves we can
deduce the valid logics, but the development happens in a possibly inconsistent union-like theory
that offers maximum expressivity. This conforms with the way development happens in actual
mathematical practice where the necessary foundational assumptions are not made explicit at the
beginning of the development process, if at all.

Pre-realms are useful because they allow library developers using IMMT to do mathematics in
a manner similar to current mathematical practice. They can work in an environment where a
rich tool-chest of primitive and derived concepts as well as axioms and theorems is available
to them. Then, after they develop concrete results, they can refine their developments to use
a consistent foundation with minimal assumptions. The refinement process can benefit from

90

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

algorithmic support such as dependency analysis (see [IR12a] for more details) but we leave
that as future work. However, we emphasize that, currently, developing good theory graphs or
refactoring existing ones is a very difficult, tedious process. This is a major obstacle in producing
large libraries of deeply interconnected, theory-graph structured formal libraries. We believe
that pre-realms can be a major contributor to simplifying this not only by supporting a more
natural development process. But, also, because they allow separating development from the
refinement process. Then, for instance, while developers produce new results, we can have
dedicated librarians that oversee the refinement process in organizing the library. However, at
this point, we leave that discussion for future work.

6.2 Formal Mathematics

Acknowledgement. Part of the results in this Section, in particular in Sections 6.2.1, 6.2.2, and
6.2.3 are based on collaborative work with Michael Kohlhase and Florian Rabe and have been
prepared for publishing in [IKR].

Narrative information and a rich set of structuring constructs are not exclusive to informal math-
ematics. In fact, as discussed in Section 2.2, narration and structure are common in formal
mathematical languages and libraries. Most formal languages have their own primitives for rep-
resenting statement-level constructs such as definitions, theorems or lemmas as well as module-
level elements such as documents or sections. While formal content is checked by computers,
it is often written and read by humans which benefit from organizing knowledge using such
constructs. Therefore, while typically machine-processed, formal mathematics is (partially) nar-
rative in practice.

As already discussed, the main function of structural features is to allow language designers
(logics, logical frameworks) in IMMT to declare and implement their own declaration-level con-
structs. This means that structural features and IMMT also allow for a more adequate represen-
tation of formal languages and their libraries.

In this Section we define a set of basic such constructs that are common in other formal lan-
guages. In the process, we develop an initial kernel of structural features that language designers
can reuse and extend. We also recover the relevant parts of MMT’s original expressiveness by
re-defining MMT-style documents and structures in IMMT using structural features.

6.2.1 Local Scopes

Structuring mathematical developments by grouping similar or related declarations together is
common in both informal and formal mathematics. For example, LATEX uses sectioning and
environments, OMDOC uses <tgroup> elements, and many proof assistants use modules.

The structural feature Scope of arity 0 yields the simplest special case. It is defined by Θ `T s =

91

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

Scope {Σ} ; [s/]Σ. Here the strict declarations are the same as the pragmatic ones except
for qualifying them with the name of the scope.

6.2.2 Sections

Sections are similar to local scopes except they may contain local variables, i.e., constants which
are in scope only inside the section but not visible from the outside. This is well-known from
informal mathematics and also part of some proof assistants like Coq (which allows declaring
Variables in a Section). The idea is that some constants (the local variables) (i) behave like
normal constants from the perspective of the pragmatic declarations, (ii) but do not appear among
the strict declarations because all of them abstract over local variables.

We use a structural feature Section with arity 0 and define Θ `T s = Section {Σ0} ; Σ2

as follows. First, let Σ1 be the recursive elaboration of Σ0. We define Σ2 by induction on the
declarations in Σ1:

• For every constant without definiens, nothing. These are the local variables.
• For every constant declaration C of the form c[: E1] = E2, let Γ be the context contain-

ing all local variable declarations that precede C. Then Σ2 contains c[: Π Γ.t(E1)] =
λ Γ.t(E2) where t is defined below.

Abstracting away local variables is not foundation-independent: It requires a foundation with a
Π and λ binder such as LF. This is necessary to bind the local variables as seen above. Thus, the
feature Section must be defined in a foundation that imports a theory for a dependently-typed
λ-calculus.

Moreover, because every constant c elaborates to a function that takes the local variables as
arguments, every reference to it must be applied to these local variables. This is the purpose
of the translation t: It translates every reference to a Σ1-constant c that is not a local variable to
@ c c1 . . . cn, where the ci are the names of the constants in Γ. Here @ is the constant for function
application that goes with Π and λ.

There are multiple variants of this feature. Firstly, Σ2 does not use the name of the section as
a qualifier for the strict declarations. Alternatively, we could qualify the declarations as with
Scope. Secondly, Σ2 abstracts over all local variables that precede a constant declaration C.
Alternatively, we could abstract only over those that actually occur in C. Thirdly, we could
also use local definitions, i.e., specially marked defined constants that are eliminated during
elaboration, namely by expanding their definitions.

6.2.3 MMT Structures

Structures are a primitive of the MMT language [RK13a], where their name is inspired from the
SML module system. We can now recover them as a special unary structural feature Structure.

The intuition behind the elaboration function Θ `T s = Structure E {Σ1} ; Σ2 is that

92

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

• E is an expression evaluating to some theory, say with body Σa,
• Σ1 is then interpreted as a partial morphism from Σa to T , say with domain Σb,
• adding Σ2 to T yields the pushout of Σ1 and the inclusion Σb ↪→ Σa.

Concretely, Σ2 arises from [s/]Σa by merging in all declarations in Σ1. For example, if Σa

contains c : E1 and Σ1 contains c = E2, then Σ2 contains s/c : [s/]E1 = E2. We refer to
[RK13a] for the details.

6.2.4 Documents

In MMT documents are primitives constructs and are effectively defined as a named list of mod-
ules or module references. In IMMT we omit the document layer (see Section 5.2) because it can
be recovered in greater expressivity using structural features. Concretely, we use derived mod-
ules to represent documents because they elaborate to lists of modules. Therefore, we can define
dedicated features for each particular kind of document and then define associated subfeatures to
represent the document elements.

For example we can define OMDOC-style documents [Koh10] using a structural feature ODoc
together with the following subfeatures:

• a nullary structural feature OGroup corresponding to the OMDOC omgroup element which
is used for sectioning. Its pragmatics are either strict modules or other instance of OGroup.
Then, the elaboration function returns the strict modules as given and elaborates nested in-
stances of OGroup recursively.

• three unary structural features OToc, OBiblio and OIndex corresponding to the OMDOC

tableofcontents, bibliography and, respectively, index elements. They each have
empty pragmatics and elaboration as they only needed by IMMT exporters (i.e. presenters)
when preparing the document for presentation (e.g. as HTML to be shown in a browser).
The single argument encodes parameters for the respective elements as defined in [Koh10]
and may be used by exporters to adjust presentation (e.g. bibliography style).

The validity predicate checks that the pragmatic declarations are either IMMT strict modules
(i.e. theories or views) or instances of the subfeatures given above. The elaboration is recursive,
meaning that it is defined as the concatenation of the elaborations of each document element.

OMDOC documents are just one example of documents that can be represented using IMMT

structural feature and derived modules. In Chapter 7 we discuss concrete importing existing
mathematical libraries into IMMT and, in the process, define IMMT structural features for repre-
senting Mizar and, respectively, OEIS (Open Encyclopedia of Integer Sequences) documents.

Note that a key feature of the IMMT language is that we can use narrative URIs (using the
“!” separator) to refer to the individual document elements (i.e. pragmatics in IMMT). This is
important on its own as it allows referring to previous narrative elements within the document
which is particularly relevant for large documents such as books or course notes. The need

93

REPRESENTING FLEXIFORMAL PHENOMENA IN IMMT

for such a referencing mechanism is discussed more in [Koh15] which served as one of the
motivations and design goals for IMMT URIs.

94

Part III

Flexiformal Knowledge Management

95

Chapter 7

Flexiformal Mathematical Libraries

In this Chapter we describe a case study in building a large flexiformal library of mathemat-
ical knowledge. We realize this by importing several pre-existing mathematical libraries into
IMMT. To obtain a comprehensive library and to better evaluate the IMMT language we choose
libraries at different levels of formality. Concretely, we import 1. the Mizar Mathematical Li-
brary (MML) [TB85, MML] as a fully formal corpus, 2. the STEX-based SMGloM and GenCS
libraries [Koh16, GIJ+15] for the semi-formal case, 3. and the Open Encyclopedia of Integer
Sequences (OEIS) [OEI15] for the informal case.

For each of the above-mentioned libraries, the process of importing them into IMMT is similar
and involves two steps. First, we design an IMMT foundation that declares the primitive symbols
(as MMT constants) and language constructs (as IMMT structural features) of the target language.
Second, we implement an IMMT importer that processes files from the original corpus (or an ex-
port of it) and produces IMMT content. It uses the foundation above whenever primitive symbols
or language constructs appear.

Figure 7.1 shows an overview of the resulting library as an IMMT theory graph. Note that IMMT

and the logical frameworks are technically two separate levels as frameworks are declared as
theories in IMMT. However, we conflate them in 7.1 for simplicity. We declare Mizar , sTeX
and ISF (Integer Sequences Foundation) as IMMT theories corresponding to the base languages
of the libraries discussed above. The informal foundation IF developed in the previous Chapter
opens the door for importing a more conventional informal library such as ARXIV. However,
this remains future work at this point. Once the foundations exist, we import their libraries to in-
tegrate the mathematical knowledge represented in them into one (IMMT) system and language.
Since the libraries are at different levels of formality we effectively create a large flexiformal
library of mathematical knowledge represented in IMMT. This permits interoperability between
the libraries and also enables better machine support. Additionally, the key novelty of the IMMT

imports is that we can now adequately represent the primitive language constructs using struc-
tural features. That means we can provide more accurate, structure-preserving imports, instead
of de-constructing the knowledge by discarding narrative and structural information. Such infor-
mation is essential for building valuable, user-facing services and applications for (or based on)

96

FLEXIFORMAL MATHEMATICAL LIBRARIES

IMMT &
Frameworks

Foundations

Libraries

IMMT/LF

Mizar sTeX ISF IF

MML SMGloM GenCS OEIS arXiv

Figure 7.1: Overview of the IMMT Flexiformal Theory Graph

these libraries. We discuss the applications perspective in more detail in Chapter 8.

Below we discuss each of the aforementioned languages and imports individually. We focus on
the narrative, structural aspects as this represents the key representational novelty enabled by the
IMMT system and language.

7.1 Importing the Mizar Library into IMMT

Acknowledgement. The results in this section are based on collaborative work with Michael
Kohlhase and Florian Rabe as well as Joseph Urban that was published in [IKR11] and, re-
spectively [IKRU13]. However, here, we focus on the work done by the author and significantly
revise and extend it to re-frame it in terms of IMMT and structural features.

As introduced in Chapter 3 and Section 2.2, Mizar is a formal language for representing math-
ematics whose design goal is to stay as close as possible to the mathematical vernacular. A
consequence of this goal that is relevant here is that the Mizar language has a breadth of in-
teresting statement-level constructs to capture mathematical intuitions. The Mizar community
develops and maintains a library of mathematical knowledge in the Mizar language called the
Mizar Mathematical Library (MML). Currently, The MML consists of over 1000 articles that
contain over 50000 theorems and around 10000 definitions.

In this Section, we present an import of the Mizar Mathematical Library into IMMT and focus
on representing the rich set of statement-level constructs used to represent mathematics in Mizar
and the MML. For a full overview of the statement-level constructs of Mizar and their represen-
tation in this import see [IKR11] and for a more concise and high-level description we refer to
[IKRU13]. The base logic of Mizar which we use to ground our import is in the LATIN library
and is described in [IR11].

To represent Mizar articles we define a dedicated structural feature MizArticle with a series of

97

FLEXIFORMAL MATHEMATICAL LIBRARIES

subfeatures corresponding to Mizar statement-level constructs. Then the validity function for
MizArticle checks that its pragmatic declarations are all instances of its subfeatures. Finally,
the elaboration function, simply elaborates each pragmatic declaration recursively. We give the
central subfeatures below and give their elaboration inline as part of their definition.

Justified Theorem Justified theorems are propositions together with a proof of correctness.
For example, the listing below, shows a proof that if a set is not the empty-set ({} in Mizar) then
it has at least one element.

1 theorem
2 X <> {} implies ex x st x in X
3 proof

We represent this by defining a binary structural feature JustThm where the first argument E1

is the proposition and the second argument E2 is the proof. The validity constraints require that
the proof given has the correct type, namely that E2 is of type
 E1.

Then, a derived declaration t = JustThm E1 E2 {·} elaborates to a statement t :
 E1 = E2.

Definition Definitions in Mizar can be used to introduce predicates, functions, attributes,
modes and structures. The first four are structurally very similar and the distinctions between
are mostly at the level of the underlying logic (which is discussed in [IR11]). For instance, they
require specific primitives such as the description operator for implicit definitions or predicate
types for attributes and modes. However, Mizar structure definitions are more complex because
they can contain several internal declarations (i.e. pragmatics). This distinction corresponds to
the plain statements versus structured statements observation from Section 2.1.

Simple Definitions give the type of the concept being defined and its definition. The listing below
shows an example predicate definition that introduces the subset relation (c= in Mizar). The let

keyword binds the local variables for the definition and also determines the type. Since there are
two arguments, and c= is a predicate, its type is set → set → bool.

1 definition
2 let X, Y be set ;
3 pred X c= Y means
4 for x being set st x in X holds x in Y ;
5 end;

We define a binary structural feature MizDef where the first argument E1 is the type and the
secondE2 is the definition. The validity constraints require a well typing relation betweenE1 and
E2. Then, a derived declaration d = MizDef E1 E2 {·} elaborates to a statement d : E1 = E2.

Structure Definitions follow the same pattern as the others but are structurally more complex
as, internally, a structure definition has declarations for each selector. One can think of struc-
tures as Mizar’s implementation of record types or, from an informal perspective, mathematical
structures. From that perspective, the selectors represent the members of the structure (fields of

98

FLEXIFORMAL MATHEMATICAL LIBRARIES

a record type). Structure definitions may define new selectors as well as extend existing struc-
tures. For example, the structure definition below defines a new structure 2-sorted that extends
1-sorted and adds a new selector of type set namely carrier’.

1 definition
2 struct (1-sorted) 2-sorted(#carrier,carrier’ -> set#);
3 end;

Therefore, we define first two unary subfeatures StructRef for extending an existing structure
and Selector for declaring a new selector. For the former, the argument is a reference to the
structure being extended. For the latter, the argument is the type of the selector.

Then, we can define MizStruct as a nullary structural feature. Its validity function requires
that its pragmatics are either instances of StructRef or or Selector. Then a derived declaration
s = MizStruct {Σ} elaborates to a set of declarations Σ′ be elaborating each declaration d in
Σ as follows:

• if d is a c = Selector E {·} we add s/c : E to Σ′

• if d is a c = StructRef s2 {·}we add s/ci : E to Σ′ for each selector ci : E of the structure
s2

Notation In Mizar, notations introduce a new name for a pre-existing symbol and may be
synonymic or antonymic. For example, as seen in the listing below, one can denote odd as an
antonymic notation of even (provided even is previously defined):

1 notation
2 let i be Integer;
3 antonym i is odd for i is even;
4 end;

We define two unary structural features MizSyn and MizAnt where the argument is the refer-
ence to a symbol and the validity constraints require the reference to be valid. Then, a derived
declaration n = MizSyn s {·} elaborates to a constant n = s. Correspondingly, a derived dec-
laration n = MizSyn s {·} elaborates to a constant n = ¬s
Note that the pragmatic declarations that encode the Mizar constructs and their structure roughly
corresponds to the Mizar pattern level. Meanwhile, the strict (elaborated) declarations roughly
correspond to the constructor-level syntax. The former is useful for users and applications that
can understand and make use of structure. The latter is simpler and is useful for applications
such as type and proof checking or for meta-theoretical reasoning. This shows how IMMT can
be used to capture dual aspects of mathematical knowledge not just in informal but also in for-
mal mathematics. While we omit some details here for brevity, we were able to represent all
significant statement-level language constructs of Mizar using structural features.

Implementation The Mizar importer is implemented in Scala as an IMMT extension and is
available at https://github.com/KWARC/MMT/tree/master/src/mmt-mizar. It

99

https://github.com/KWARC/MMT/tree/master/src/mmt-mizar

FLEXIFORMAL MATHEMATICAL LIBRARIES

contains about 4100 lines of code and over 200 classes. First, Mizar runs over the whole library of
miz files and produces the Mizar xml files which serve as input for our importer. Our code parses
the xml files and then uses the resulting data to construct the corresponding IMMT declarations
(e.g. theories, constants, bipartite or derived declarations). This takes about 2 hours on an Intel
i5 processor and 16GB of RAM and results in over 1GB of data. The parsing algorithm is tedious
but straightforward. We omit the details here and refer to [IKR11] and the importer code itself
for details.

7.2 Importing STEX Libraries into IMMT

STEX [Koh08, sTe] is a LATEX-based surface syntax for OMDOC that is optimized for narrative-
oriented, semi-formal mathematical content. The language comes with a parser implemented as
a plugin [SLP] for the LATEXML system [Mil] which produces STEX-flavored OMDOC files.

In the MathHub system [IJKW14], we have over 5000 semi-formal STEX source files split over
several libraries. Most notably, they contain 3000 files from course notes introducing basic
concepts of computer science and another 2000 files from the SMGloM project (Semantic
Multilingual Glossary of Mathematics) [GIJ+15, SMG] containing definitions in multiple lan-
guages for important mathematical concepts.

We use the STEX content as a representative example to evaluate our language with respect to rep-
resenting semi-formal content. Additionally, due to STEX being a surface syntax for OMDOC,
we also evaluate IMMT with respect to the original goal of recovering OMDOC’s expressivity
on top of the MMT language.

7.2.1 Object Level

STEX declarations are formed using CMP and, occasionally, FMP elements. CMP’s or commented
mathematical properties are effectively a native format (typically HTML) mixed with OPEN-
MATH terms. FMP elements or formal mathematical properties are OPENMATH terms. In terms
of IMMT objects, CMP’s and FMP’s naturally correspond to the narrative and, respectively, to the
content aspect. In fact, since the terms are represented using OPENMATH which is subsumed by
IMMT terms, their representation in IMMT is straightforward.

In the common case where the FMP is missing, we extract the objects from the CMP to obtain a
more interesting content term. Them in the IMMT import, each term from original the CMP is
added as an argument to the opaque term, and replaced with a matching realization spec in the
narration (see Example 25 below).

Example 25. Consider a definition d with no FMP and the CMP being:

L0 E1 L1 E2 . . . En Ln

100

FLEXIFORMAL MATHEMATICAL LIBRARIES

where ~E are terms and ~L are plain text literals (i.e. strings). Then, the corresponding IMMT term
is :

L1 ρ(1; ·) L2 ρ(2; ·) . . . ρ(n− 1; ·) Ln ‖ [·](~E)

7.2.2 STEX primitives as IMMT declarations

Symbol Declarations In STEX, symbol declarations introduce a new symbol with a name but
without a type or definiens. Definitions (discussed below) are then standalone declarations that
can define one or more pre-declared symbols. Therefore, we represent STEX symbol declarations
as plain IMMT constants with no type or definiens.

For instance, the STEX symbol declaration \symi{subset} (OMDOC shown in listing below)
corresponds to a plain IMMT constant subset.

1 <omdoc:symbol name="subset" stex:srcref="smglom/sets/source/subsupset.tex#
textrange(from=4;0,to=4;48)"/>

Notations STEX notations, or more generally OMDOC notations are defined by two child el-
ements, prototype and rendering. The prototype is an OPENMATH object with dedicated
elements for the arguments. The rendering is MathML with dedicated elements for referring to
the arguments from the prototype. From the perspective of IMMT notations presented in Chapter
6 the prototype corresponds to the content representation and the rendering to the narration. The
argument placeholders in the rendering (omdoc:expr) are represented as IMMT variables with
their name attribute used as the variable name. Then, the references in the rendering (omdoc:
render) are represented as realization specs with their additional attributes (e.g. precedence)
added to the presentation context. The main difference, is that omdoc:render elements use the
name attribute for referencing, in IMMT we translate that to a position instead. Then, the trans-
lation to IMMT becomes straightforward. This is expected since IMMT notations were designed
based on OMDOC notations. Example 26 below shows the IMMT representation of a simple
OMDOC notation from the SMGloM library.

Example 26. The listing below shows the OMDOC notation x ⊆ y for the symbol subset from
the theory subsupset1:

1 <omdoc:notation cd="subsupset" name="subset" stex:srcref="smglom/sets/source
/subsupset.tex#textrange(from=5;0,to=5;63)">

2 <omdoc:prototype>
3 <om:OMA>
4 <om:OMS cd="subsupset" cr="fun" name="subset"/>
5 <omdoc:expr name="arg1"/>
6 <omdoc:expr name="arg2"/>
7 </om:OMA>
8 </omdoc:prototype>

1The source file used in this example is available at https://gl.mathhub.info/smglom/sets/
blob/master/source/subsupset.tex.

101

https://gl.mathhub.info/smglom/sets/blob/master/source/subsupset.tex
https://gl.mathhub.info/smglom/sets/blob/master/source/subsupset.tex

FLEXIFORMAL MATHEMATICAL LIBRARIES

9 <omdoc:rendering precedence="300">
10 <omdoc:render name="arg1" precedence="300"/>
11 <m:mo cr="fun">⊆</m:mo>
12 <omdoc:render name="arg2" precedence="300"/>
13 </omdoc:rendering>
14 </omdoc:notation>

The prototype on lines 2-8 contains the applied symbol with omdoc:expr elements for the place-
holder arguments. The omdoc:expr are given (generated) unique names, arg1 and arg2 in this
case. Then, the names are used in the rendering to refer to the arguments. The rendering (lines
9-13) is MathML with placeholders for the argument references. They are represented using
omdoc:render elements on lines 10 and 12 both of which additionally set the argument prece-
dence to 300. The corresponding IMMT notation term is:

PO ‖ (subsupset?subset arg1 arg2)

where the presentation PO is:

ρ(1; 〈prec 7→ 300〉) <m:mo cr="fun">⊆</m:mo> ρ(2; 〈prec 7→ 300〉)

Definitions STEX definitions are standalone, declaration-level primitives that introduce a def-
inition for one or more pre-declared symbols. Separating symbol declaration from definitions
has several representational advantages. First, symbols can have more than one definition. Sec-
ond, definitions can be added later, even in another theory, refining the meaning of pre-existing
symbols. Finally, the same definition can define more than one symbol, which happens often
in narrative math. For instance, defining concepts together with their components such as graph
together with edge and vertex. Similarly dual concepts such as prime and composite numbers
are often introduced together.

In IMMT we represent STEX definitions as derived statements while the OMDOC symbols being
defined are IMMT statements and typically constants. Concretely, we define a flexary structural
feature Definition where its term parameters represent references to the statements being defined
followed by a term encoding the definition as a proposition about them. The validity predicate
ensures the references are valid and that the list of pragmatics is empty.

Then, the elaboration is defined as Θ `T d = Definition ~E E1 {·} ; {Σ} where Σ con-
tains the single statement d :
 E1. Therefore, semantically, the definition is seen as an axiom
involving the defined symbols. However, the definitional nature encoded by the feature is used
by other IMMT services such as the QMT [Rab12] query language (which uses an index of re-
lations). Therefore we can add the appropriate isDefinedBy binary relations for each instance
of Definition. Then, IMMT can correctly answer QMT queries about definitions, which are used
in several services, most importantly in the definition lookup service. We discuss this in more
detail in Chapter 8.

Example 27. The listing below gives an STEX definition for the symbol subset. The for at-
tribute gives the target being defined and the omdoc:CMP child gives the body of the definition.

102

FLEXIFORMAL MATHEMATICAL LIBRARIES

1 <omdoc:definition for="subsupset?subset" xml:id="subset.def" >
2 <omdoc:CMP>
3 <p>A set <om:OMOBJ><om:OMV name="A"/></om:OMOBJ> is a
4 <omdoc:definiendum cd="subsupset" name="subset">subset</omdoc:

definiendum> of a set
5 <om:OMOBJ><om:OMV name="B"/></om:OMOBJ> (written
6 <om:OMOBJ><om:OMA><om:OMS cd="subsupset" name="subset"/><om:OMV name

="A"/><om:OMV name="B"/></om:OMA></om:OMOBJ>),
7 iff all <om:OMOBJ ><om:OMA><om:OMS cd="set" name="inset"/><om:OMV name

="x"/><om:OMV name="A"/></om:OMA></om:OMOBJ>
8 are members of <om:OMOBJ><om:OMV name="B"/></om:OMOBJ>.
9 </p>

10 </omdoc:CMP>
11 </omdoc:definition>

For the IMMT representation we use the xml:id attribute as the IMMT name of the declaration.
Then, the IMMT constant is : subset .def :
 E where E is the IMMT representation of the
omdoc:CMP element above.

Other STEX declarations such as Examples or Exercises are treated analogously with two addi-
tional subfeatures Example and Exercise. They are semantically represented as constants while
their narrative structure is used by the query service and, therefore, dependent applications.

Proofs To represent STEX proofs, we reuse the Proof structural feature introduced in Section
6.1.3. Since it covers OMDOC proofs and STEX is a surface syntax for OMDOC it proves
sufficient to represent the proofs encountered in STEX libraries.

Glossary Modules Glossary modules are not primitive STEX constructs but are a central part
of the data model for the SMGloM library described in [Koh14a]. There, narrative definitions
in different languages for glossary entries are organized into glossary modules with the implicit
contract that the definitions are semantically equivalent. Here we frame the data model described
in [Koh14a] as a special case of a realm.

Glossary modules consist of a signature theory that declares the concept being defined and a set
of language bindings that declare its definition. There is exactly one binding for each language.
The implicit requirement is that the definitions in each language are semantically equivalent.
Therefore, the entire module can be seen semantically as one concept with alternative definitions.

Figure 7.2 shows a glossary module M as a realm. The signature theory M .sig is a common
base theory that lives outside the realm. Then, each language binding M.Lk is a pillar consisting
of exactly one theory. Finally, the face corresponds to the intuitive view of the glossary module
as one concept with alternative definitions.

103

FLEXIFORMAL MATHEMATICAL LIBRARIES

M /face

M .sig

M.L1 M.L··· M.Ln

M/v1 M/v... M/vn
i1 in

Figure 7.2: SMGloM modules as Realms

7.2.3 Implementation

Like in the Mizar case, the STEX importer is implemented as an IMMT extension and does not
directly parse the source files but an XML syntax produced after some pre-processing. In the
STEX case, the pre-processor is LATEXML which returns the standard OMDOC-XML syntax.
The parsing algorithm is mostly straightforward following the OMDOC specification and then
the IMMT data structures are constructed as described above. The source code for the importer is
available at https://github.com/KWARC/MMT/tree/master/src/mmt-stex and
contains about 2400 lines of code and around 40 classes.

It parses the files while checking well-formedness with respect to IMMT-level validity. Both
the STEX content and format itself are currently under active development and there is no other
full checking of the well-formedness of the content. Therefore, importer errors can be caused
by either source errors, issues with the LATEXML STEX-plugin or finally issues with the STEX-
importer itself. As a result, evaluating the correctness of the importer can be difficult because
the resulting errors often have to be manually sorted into the three categories by inspecting the
relevant files. In fact, during and after its development the importer became the de-facto checker
for STEX source files and was used to improve all components of the compilation workflow (see
Section 8.2 for more details).

7.3 Importing the OEIS Library into IMMT

Acknowledgement. The results in this section are based on collaborative work with Enxhell
Luzhnica and Michael Kohlhase that was published in [LIK15]. However, we only present here
the part of the work done by the author and refer to [LIK15] for the rest.

The On-line Encyclopedia of Integer Sequences (OEIS) [OEI15] is a publicly accessible database
storing and documenting sequences of integers that are mathematically or practically meaning-
ful. The effort was started in 1964 by N. J. A. Sloane and led to a book [Nei73] describing
2372 sequences which was later extended to over 5000 in [NS95]. The online version started
in 1994 [Nei94] and currently contains over 250000 documents from thousands of contributors

104

https://github.com/KWARC/MMT/tree/master/src/mmt-stex

FLEXIFORMAL MATHEMATICAL LIBRARIES

with 15000 new entries being added each year [Nei12]. Documents contain various information
about each sequence such as the beginning of the sequence, its name or description, formulas
describing it, or computer programs in various languages for generating it.

The OEIS database is stored as a collection of text documents (one for each sequence) written
in the internal format of OEIS. The internal format only defines the document-level structure
of the sources. Specifically, it provides dedicated markup to distinguish between text snippets
that represent different kinds of information about the sequence (e.g. formulas, program code,
examples or references). Therefore, parsing the document structure is straightforward. Inside
the actual text snippets the format is not standardized which makes parsing them, particularly the
formulas, non-trivial. Still, in practice, the syntax used in the text snippets is somewhat regular
and, in [LIK15], we were able to build a formula parser that succeeds on most formula snippets
in the OEIS.

In the context of this thesis the OEIS library is interesting because it is natively informal, but
can be partially semanticized (i.e. by the formula parser). Therefore, it provides a very rough
blueprint for a (fragment of) a more typical library of informal mathematics such as ARXIV.
In that case, more complex semantic analysis and natural language processing tools would for
semanticizing but the general work-flow would be similar.

The OEIS document format The internal format [OEI] is line-based in the sense that each
line starts with a marker that represents the kind of content found in that line. We briefly introduce
the relevant kinds below but refer to [OEI] for details.

1. The identification line gives the unique ID of the sequence declared in that document.
2. The start values lines give the beginning of the sequence. It is used for searching as well

as lexicographic ordering of the sequences.
3. The name line gives the name, a brief description or the definition of the sequence.
4. The references lines contain references to papers which in turn refer to or are concerned

with the sequence described in the current document.
5. The formula lines give formulas that define or hold for the sequence described in the cur-

rent document. The formulas are in plain text ASCII syntax that is similar to LATEX math
markup and can contain text as part of the formula or as comments.

6. The author line gives the document author typically containing the name and e-mail ad-
dress.

7. The examples lines give examples and additional information about the initial terms of the
sequences

The actual document-level syntax of the internal format is presented in Figure 7.3 where we use
◦ for required lines, [◦] for optional parts, ◦∗ for repetitions and ◦1 | ◦2 for alternatives. Moreover
we use italic for grammar productions, typewriter font for fixed syntax and normal font
for informal descriptions.

The import is relatively straightforward once the formulas have been parsed. First we define a
OeisDoc structural feature for representing OEIS documents, then we define subfeatures for its

105

FLEXIFORMAL MATHEMATICAL LIBRARIES

Ident. ::= %I ID [Mn] [Nn]
ID ::= Identification number in [OEI15]
Mn ::= Identification number in [NS95]
Nn ::= Identification number in [Nei73]
Values ::= %S ID nr∗ [%T ID nr∗ [%U ID nr∗]]
Name ::= %N ID text
References ::= %D ID text
Formula ::= %F ID formula
Author ::= %A ID text
Examples ::= %E ID text

Figure 7.3: Grammar of OEIS Internal Format

pragmatics in correspondence with the kinds of lines described above. For each OEIS document,
we use the OEIS sequence ID as the name of the derived module instantiating the OeisDoc
feature. Then the subfeatures are straightforward following the definitions of the lines given
above :

1. The identification line is a subfeature OeisId that elaborates to an IMMT constant decla-
ration representing the sequence (as a function from integers to values).

2. The start values lines as well as example lines are both represented using the subfeature
Example introduced for STEX in Section 7.2. Specifically, the starting values are consid-
ered as examples of sequence elements.

3. For the name, reference and author lines we do not use features as there is no real structure
or sensible elaboration. Instead they are represented as metadata using the Dublin Core
standard.

4. For the formula lines we use an unary subfeature OeisForm whose argument E is the term
representing the parsed formula. Then, the elaboration function E to IMMT constant whose
type is
 E. Effectively each formula is an proposition about the sequence symbol so we
represent it as an assertion stating that the proposition holds (hence using
 E).

The OEIS formula format OEIS formulas are written in an ASCII-inspired syntax but there
is no standardized grammar for it. However, in practice the language is regular enough that a
partial parser and interpreter is realizable. The formula parser is outside the scope of this thesis
and we refer to [LIK15] for details. Instead, the relevant parts for this document is that the result
of the parser is a partially formal expression mixing content and narrative aspects. Therefore, we
use the same approach for representing formulas as for STEX formulas described above in 7.2.

Implementation The OEIS importer is implemented as an IMMT extension that produces an
IMMT document from each OEIS file. The code is available at https://github.com/
UniFormal/MMT/tree/master/src/mmt-oeis. It contains around 2500 lines of Scala

106

https://github.com/UniFormal/MMT/tree/master/src/mmt-oeis
https://github.com/UniFormal/MMT/tree/master/src/mmt-oeis

FLEXIFORMAL MATHEMATICAL LIBRARIES

code and 60 classes but that includes the formula parser which is not directly part of the work
described here. The result of the import is available online at https://gl.mathhub.info/
oeis/oeis and amounts to 740MB for the 250000 OEIS files.

107

https://gl.mathhub.info/oeis/oeis
https://gl.mathhub.info/oeis/oeis

Chapter 8

Applications for Flexiformal Knowledge

As libraries of machine-processable mathematical knowledge (such as the ones discussed in the
previous chapter) grow, so does the benefit of building knowledge-management applications and
semantics services for them. But, so far management support for and semantic services de-
ployed on such libraries have been essentially insular. Large libraries like the MML (Mizar
Mathematical Library) come with some pre-built tools but existing cross-library methods remain
experiments, and have not been implemented into usable systems. In particular, applications for
formalized content are mostly limited to proof-checking. This limits the value of mechanizing
mathematics and, therefore, restricts the growth of associated systems, libraries and communi-
ties. In fact, as mentioned in Chapter 1, in [Wie07b], Freek Wiedijk identified the lack of a “killer
application” as one of the major reasons for the failure of the QED project.

In this chapter we look at building such services and applications on top of the IMMT system
based on the libraries we imported in the previous chapter. In the process we evaluate both the
IMMT language and system with respect to their suitability for designing and implementing such
tools. In a sense, the current formal representation languages for mathematics contribute to this
problem as their machine-oriented, semantics-focused design makes them less suitable for build-
ing user-facing applications. This is the problem we tackled in the design of the IMMT language
by focusing on being able to adequately represent (and reference) the narrative structure of math-
ematical knowledge alongside its semantics. Therefore, the IMMT language allows representing
(and referencing via URIs) at least some of the mathematical constructs that mathematicians
write about or think with. This means that within the IMMT system we can explore a wider
range of human-oriented potential applications for (possibly partially) formalized mathematical
knowledge. While we do not claim to have developed a “killer application” as part of this thesis,
we do a substantial case study from the services and application-building perspective to evaluate
the IMMT language and system. Within our case study we distinguish two distinct application
domains with a different but correlated set of problems.

First we analyze the perspective of the library developer in the context of a heterogeneous, inte-
grated flexiformal library. Even though there is one deep language where knowledge is integrated
(i.e. IMMT in our case) there are multiple surface syntaxes in which content is written (e.g. STEX,

108

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

Application

Service1

Service2

Service3

IMMT

Plugin1

Plugin2

Libraries
Library1

Library2

Library3

Figure 8.1: Basic Architecture of an IMMT-based Application

Mizar, etc.). This means that, in order to realize cross-library support in practice, a generic so-
lution for integration, compilation, and error reporting must be realized within a universal build
system for flexiformal libraries.

Second we explore the perspective of library users who are looking to find and read knowledge
encoded within. But, underneath there are multiple source libraries describing and relating dif-
ferent concepts, focusing on distinct aspects of the mathematical knowledge and encoding it
in various surface languages. For example the MML focuses on formalizing high-school and
college-level mathematics while SMGloM has a broader scope but focuses on the narrative defi-
nitions in multiple languages. Therefore, even accessing knowledge in this heterogeneous, multi-
format context is non-trivial. In order to build practical, user-facing applications for browsing
and searching IMMT libraries, we need to realize a generic, uniform gateway for accessing IMMT

knowledge.

Figure 8.1 shows the central components of a prototypical IMMT-based application. The libraries
as a whole represent a data store containing the source files and the IMMT documents generated
by the imports and, therefore, integrating multiple libraries written in different surface languages.
Then, the IMMT system functions as a semantic database that makes the data available uniformly
to services via a variety of queries. It may additionally write back to the data store, for example
if used within authoring application. The application is the container that the user interacts with
and it often integrates a series of different but related services. The services query IMMT as
needed to provide the desired functionality. IMMT plugins can be used to extend IMMT queries
and results where needed by particular services. For example, a web-based application that has a
service for browsing IMMT documents, may implement (and use) a particular HTML-presenter
as an IMMT plugin.

This chapter is organized as follows. First, in Section 8.1 we discuss the IMMT system as a se-
mantic database enabling services to access and process the knowledge encoded in the libraries.
Then, in Section 8.2 we present the MathHub system a generic IMMT-based application con-
tainer that integrates several different applications and a wide variety of web-based services.

109

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

8.1 The IMMT System as a Semantic Database

In Chapter 7 we discussed imports for various libraries into IMMT. Specifically, we imported
the Mizar Mathematical Library (Section 7.1), the SMGloM and GenCS libraries (Section 7.2)
and,partially, the OEIS library (Section 7.3). Additionally, we also have the LATIN library
[CHK+11] as a native MMT library in IMMT. LATIN (Logic Atlas and Integrator) is a relatively
small, highly-modular library containing logics, foundations (e.g. Mizar) and basic mathematical
concepts (such as numbers and algebraic structures).

By importing and integrating these libraries we effectively create one, heterogeneous, flexiformal
mathematical library in IMMT. This is due to the genericity of IMMT which permits representing
content that is heterogeneous not only with respect to the source language but also the level of
formality. Then, applications can leverage the fact that, even though the libraries are indepen-
dent, they often describe the same mathematical concepts. For example, the concept of group
is defined in Mizar (see [GpM]), in LATIN (see [GpL]), as well as in SMGloM in both En-
glish (see [GpSa]) and German (see [GpSb]). These definitions represent different facets of the
mathematical concept (for more discussion on this see [KKMR16]). The Mizar and LATIN ones
are different formalizations in distinct logics while the SMGloM ones are narrations in different
languages.

Therefore, the integrated IMMT library we build through imports in the previous chapter is gen-
uinely flexiformal and provides a unique knowledge base on top which to build practical, user-
facing applications. From the perspective of applications and services the IMMT system is a gate-
way to this knowledge encoded in IMMT libraries. As discussed above, this is essential because
uniform access to the underlying knowledge is necessary for building cross-library applications.
In practice, such access can only be provided at the IMMT level due to the heterogeneity of the
libraries and surface languages.

In this regard, the basic functionality of the IMMT system is providing direct access based on
IMMT URIs. However, it can be extended using plugins to answer complex queries or process
the result in complex ways such as presenting it into particular formats (e.g. HTML). We discuss
this in more detail in Section 8.1.1 below.

But the IMMT system can do more, by providing access to knowledge that is not explicitly
represented in the libraries but that can be inferred through arbitrarily complex reasoning steps.
We call this induced material and discuss below in Section 8.1.2 how the IMMT system can
generate it and then make it accessible to services and applications.

8.1.1 Accessing Explicitly Represented Content

The IMMT system implements the IMMT language (by extending the MMT system) and provides
an API for accessing and processing its knowledge base. The basic mechanism is retrieving
knowledge items by using their IMMT URI but more complex queries and processing are possible
via IMMT plugins. This is where the constraint discussed in Section 5.2.2 that each declaration,

110

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

including narrative ones, must have its own URI is especially relevant. It allows building user-
facing applications that work with those (typically narrative) constructs that humans understand
and are familiar with.

URI-based Retrieval Having an URI for each knowledge item is an MMT invariant which we
preserve in IMMT. Therefore, any item can be retrieved by the IMMT system given its IMMT

URI, assuming it is valid. The service making use of URI-based retrieval can further process the
item before returning it to its user or client application. For example definition lookup is a basic
application using URI-based retrieval. Typically, it additionally presents the retrieved definition
with a given presenter depending on the context in which it is used. We discuss definition lookup
as a service in Section 8.2.2 below.

Querying Relational Knowledge MMT provides the QMT [Rab12] query language which is
implemented as a query engine in the MMT system. Since the IMMT system is build by extending
the MMT system and because we preserve the central MMT invariants (most importantly the
existence of URIs) we can make use of QMT naturally in IMMT. This enables services and
applications to build complex queries involving standard unary and binary relations between
URIs.

As part of this thesis, we extend the QMT implementation by adding relational extractor as new
type of IMMT plugin. Instances of this plugin can be loaded at startup and can be associated
with IMMT theories such as logical frameworks or foundations. They add new kinds of rela-
tions to the IMMT ontology and implement methods to extract their instances from imported
knowledge. Therefore, by declaring the right relational extractor, we can build applications
that make use of domain-specific queries and relations. For example, the SMGloM-specific
“isTranslationOf” or “isHypernymOf” relations between concepts can be added to
the ontology and extracted during importing. Relational extractors allow language designers
in IMMT to extend the IMMT ontology of relations and use that for their applications. Therefore,
they achieve for relational information, what structural features achieve for language constructs:
enabling a more adequate representation of the underlying knowledge.

Then, we can enhance existing applications such as browsing the libraries with new relation-
based services such as adding interactive links, information about related concepts or dedicated
graph-based presenters for visualizing relational information. Additionally, we can build appli-
cations such as a dictionary using the translation relation or a thesaurus using the hypernymy
(and synonymy) relations. We discuss concrete services in Section 8.2.2.

8.1.2 Accessing Induced Material

Acknowledgement. Part of the results in this Section are based on collaborative work with
Michael Kohlhase and have been published in [IK15b].

111

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

As mentioned in Chapter 1, math literate MKM services are those that make use of the entire
space of mathematical knowledge rather than just the part that is explicitly represented. We
consider the mathematical knowledge space (MKS) as the knowledge that can be induced from
the explicit one by using arbitrarily complex inference methods. Then, to build math literate
MKM services we need to be able to generate (part of) the MKS within IMMT and make that
available to services and applications.

In the context of theory graphs, we model the process of generating the knowledge space as an
operation on theory graphs. Specifically, one that takes a theory graph Θ and returns an enriched
graph Θ where a new part of the mathematical knowledge space is explicitly represented. We
call Θ the induced theory graph.

Once the induced theory graph is generated, it can be made available by IMMT in the same way
as explicit knowledge. This includes for instance relational information and exporting content.
The key is that applications are able to work with the part of the knowledge space that is relevant
for them, regardless of what (or how) it is explicitly represented. Additionally, a key aspect
of IMMT (and MMT) is that its URI language is expressive enough to produce URIs for the
induced statements that are not only unique but also informative. Specifically, we can compute
the induced knowledge items from the induced theory graph by their URI and the original graph
alone. Furthermore, we can generate explanations for the existence of each induced statement in
terms of the original theory graph. We call this property of generated IMMT URIs information
completeness.

Below we present two potential applications that can make use of induced knowledge. In the first
case we model elaboration of derived declarations as generating part of the knowledge space. We
apply that to realms, where realm faces represent the part of the knowledge space most relevant
for practitioners or developers. In the second case, we generate the part of the knowledge space
induced by views, which carry over defined concepts and theorems from their source to their
target theory. In Section 8.2.2 we show a concrete implementation of a MATHWEBSEARCH-
based search engine that searches statements induced by views in a highly modular library.

Inducing Realm Faces

The concept of realms in the context of theory graphs was introduced in [CFK14] and, in Section
6.1.4, we already briefly described realms and framed them in terms of elaborating structural
features and derived declarations. Additionally, we gave a concrete algorithm for generating
realm faces as induced by the underlying pillars (in [CFK14] they were meant to be manually
produced and curated).

Realms were motivated by the intuition that users of a knowledge collection can have different
roles and therefore want to see different kinds of materials. For instance, practitioners only need
access to the face that supplies all the useful facts about a mathematical domain, whereas the
librarian only wants to know how these are established and needs to access the “development
history” in each of the pillars. Finally, the developer wants to develop the knowledge about the
domain by extending one (or more) pillar, and the development of the face is just regarded as a

112

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

side effect.

practitioner developer librarian

· · · · · · · · ·

Figure 8.2: Realms and User Roles

In Figure 8.2 we visualize these idea by graying out the parts of the realms the users in their
respective roles will not be able to see. We see each of the restricted theory graphs as the relevant
part of the knowledge space for that particular class of users: i) the face graph – the faces inherit
the graph structure of the developments – for the practitioners, ii) the graph of faces with selec-
tively opened developments for the developer iii) the original theory graph for the knowledge
librarian – a “user” of the library who maintains the library, e.g. refactoring theories, renaming
theorems to avoid name clashes, etc.

In this section, we model this perspective using theory graphs and our interpretation of realms as
structural features. The induced theory graphs for the practitioner and librarian case are defined
below in Definition 28.

Definition 28. Given a theory graph Θ, the knowledge space of the practitioner is a theory
graph Θp that contains for every realm r in Θ a theory r/face containing the declarations
from the elaboration of r. Conversely, the knowledge space of the librarian is a theory graph
containing for each realm r in Θ, every theory and view referenced in any of the pillars of r.

For the developer view described above we need the operation of opening a pillar. It allows the
developer to access the “implementation details” (i.e. definiens) of the symbols and axioms in
the face as formalized in one of the pillars. We model this by extending the elaboration function
for realms. We create a new theory for each pillar that combines the symbol aggregation and
name abstraction of the face theory with the implementation details of that pillar.

Concretely, given a realm r and a pillar p we induce a theory r/p that is generated following
the same procedure as the face (i.e. from Definition 21) but without omitting the definitions.
For symbols in a different pillar we generate the definition by translating it over the view from
that pillar into p. Effectively, we obtain the symbol definitions as seen from pillar p which
corresponds to the intuition of opening a pillar.

In the theory graph, we represent this as 1. a structure s from the pillar p that adds its symbols to
r/p but with the renamings used in the face generation and, 2. a view v : r→ r/p that formalizes
the relation that r/p is an implementation for the face.

113

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

theory group/circ = {
G : type, ◦ : G→ G→ G, e : G, inv : G→ G,
/ : G→ G→ G = λa, b.a ◦ (inv b),
circ/inv thm :
 (inv e)

.
= e = trans eright invax,

slash/inv thm :
 (inv e)
.
= e = eax2 e,

...
}

Figure 8.3: Developer View Example

Figure 8.3 shows the theory group/circ representing the opening of pillar circ in the realm
of groups introduced above in Section 6.1.4. It has the same symbols as the face but with all
symbols that are non-primitive in circ having a definition. For the two symbols originating in
the second pillar (/ and slash/inv thm) their definition is obtained by translating over v◦.

group◦ group/

slash◦ circ/

inv thm◦ inv thm/

group/circ group/slash

group

v/v◦

i◦ i/

f◦ f/

s◦ s/

Figure 8.4: Opening a Pillar

The resulting theory graph is shown in Figure 8.4 where
the content of each theory is omitted. Note that the the-
ories group, group/circ, group/slash as well as the
structures s◦ and s/ and the views i◦, i/, f◦ and f/ are
all induced.

Induced Knowledge using Views

Below, we define theory graph flattening as an instance
of generating (part of) the implicit knowledge space.
Specifically, it produces those statements induced by
framing which we model with IMMT (i.e. MMT) views.

Definition 29. Given a theory graph Θ the flattening of
a theory T in Θ is a theory T with the same URI as T

containing:

• all constant declarations that are in T.

• all constant declarations that are imported into T.

• for every view v : S → T the projection of every S-based declaration over view v. Here,
by S-based declaration we refer to the declarations in S and in conservative extensions of
S.

Note that checking whether a theory T importing a theory S is actually a conservative extension
of S is not straightforward in general. We omit a discussion here but note that in some particular

114

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

cases it can be done automatically and in other cases (e.g. the SMGloM library) it is done
manually by the library authors.

The URIs of the induced declarations are based on the definition of IMMT URIs from Section
5.2.2 and permit recovering the origin of the induced declarations (i.e. are information com-
plete as defined above. Specifically, constant declarations from T or imported in T by an include
preserve their name. Meanwhile constant declarations induced by a view are additionally names-
paced with the name of that view (in the same way as some of the statements from Figure 8.3 are
namespaced with the pillar names).

Now we can define flattening of a theory graph based on the flattening of a theory defined above.

Definition 30. The flattening of diagram Θ is a diagram Θ with the same URI as Θ containing
the following module declarations:

• for every theory T in Θ the theory T

• a copy of every view v : S→ T from Θ

Note that, since theory flattening preserves theory URIs and does not add new axioms (only new
theorems), every view v in Θ is also a view in Θ so flattening can be iterated (infinitely many
times if the theory graph has cycles) but the induced knowledge becomes less and less useful
with every iteration.

8.2 The MathHub System

Acknowledgement. Part of the results in this section are based on collaborative work with Con-
stantin Jucovschi, Michael Kohlhase, and Tom Wiesing and have been published in [IJKW14].
However, we focus here only on the work done by the author.

Motivated by our work with building and importing libraries as well as, more generally, the rela-
tive lack of applications for mechanized mathematics, we built the MathHub system with a dual
goal. First, it aims to provide a basis for our own library development efforts. This includes
supporting the contribution of new content to internally-developed libraries (e.g. SMGloM) but
also the development and testing of importers for external libraries (e.g. MML) and providing
a platform for archiving and publishing the result. Second, the MathHub system is a generic
container that supports developing and deploying IMMT-based semantic services and applica-
tions. Concretely, in addition to implementing common aspects of most applications (such as
user management) it provides an API for interacting with the IMMT system and an abstraction
layer for IMMT archives and documents. Then, user-facing services and applications can be
rapidly prototyped on top and deployed either as experiments or as practical tools for knowledge
management.

115

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

Therefore, the MathHub system is a case study for the flexiformal vision by building a standalone
ecosystem of flexiformal knowledge, services and applications. At the same time, it evaluates
the IMMT language and system both from the perspective of representing content (libraries) and
from the perspective of building applications.

8.2.1 System Architecture and Realization

MathHub is realized as an instance of the Drupal-based Planetary System [Koh12], which we
have substantially extended in the course of the work reported here.

The system architecture has three main components: i) a versioned data store holding the source
documents ii) a semantic service provider that imports the source documents and provides ser-
vices for them iii) and a frontend that makes the sources and the semantic services available to
users. Specifically, we use the GitLab repository manager [Git] as the data store, the IMMT API
as the semantic service provider and Drupal as the frontend.

Figure 8.5 shows the detailed architecture.

Browser Drupal

IMMT

GitLab

library

convert to
OMDoc/MMTload

read
interact

REST

JOBAD
present

edit

local
editimport

Figure 8.5: The MathHub Architecture

In this setup, Drupal serves as a container management system1 that supplies uniform theming,
user management, discussion forums, etc. GitLab on the other hand, provides versioned storage
of the content documents, and organizes them into repositories owned by users and groups. On
the user side, we use the JavaScript library JOBAD [GLR09, KGLZ09] to enhance the HTML
delivered to the browser where needed.

Building an application for MathHub typically involves three implementation steps:

1. an IMMT plugin that processes the underlying knowledge and answers the queries as
needed by the application

2. a Drupal module that interacts with IMMT (using the APIs provided by MathHub in Dru-
pal) and builds the page(s), assembles the response(s) from IMMT, and renders the result
as HTML

1Drupal and similar systems self-describe as content management systems, but they actually only manage the
documents without being aware their internal structure.

116

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

3. a JOBAD module that provides in-browser interactivity and which may query IMMT itself
as a response to user actions.

A concrete deployment of the MathHub system can be instantiated by providing (using a con-
figuration file) the IMMT archives that should be available, the location (URL) of the associated
IMMT instance, and a list of (identifiers of) implemented applications that should be enabled.
The most interesting part here, is the abstractions for the archives which facilitate application
building and support library development within MathHub.

8.2.2 Services and Applications

In this section we present several concrete examples of applications and services built on top of
the IMMT API. Most are developed as part of the MathHub system except for the search systems
which are standalone applications. However, these are also loosely integrated into MathHub via
links.

Browsing Documents

The ability to browse the documents from the data store in a uniform interface is one of the basic
applications of MathHub. As mentioned above, this is non-trivial because the content from the
data store may come from various libraries, be written in different languages and, finally, be
presented to the user using different IMMT exporters. Therefore, in order to provide such an
uniform interface we need to build a generic application that abstracts over the libraries and their
formats as well as the importers or exporters that are used to process the documents.

Concretely, we describe each archive by a set of formats for the kind of source languages it con-
tains. Typically this is one format such as mizar for the Mizar Mathematical Library (MML) or
stex for the two STEX libraries: SMGloM and GenCS. But archives can use additional formats
such as auxiliary files for organization or documentation. For instance, we consider folders used
for organizing knowledge within an archive as an additional such format folder. Then, each
folder represents an IMMT document consisting of document references for each file inside the
folder.

Formats themselves are characterized by a set of compilers which define how content in that for-
mat will be processed by the IMMT system. Compilers are split into two categories, importers
and exporters. The former process source documents to produce, possibly in multiple stages,
IMMT content. The latter process IMMT content to produce documents that are consumed by
external applications such as web browsers (html) or image viewers (svg). Each format is there-
fore associated with a chain of importers and a set of exporters. For example the mizar format
has two importers: one into xmlabs XML documents and the second from xmlabs into IMMT.
The exporters are mostly format-independent as they work on already-imported IMMT content.
Rather, they are application-dependent so the exporters are determined by the requirements of
the desired services and applications.

117

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

immt elf

miz

stex

SMGloM

GenCS

Mizar

LATIN

SMGloM

GenCS

Mizar

LATIN

latexmlstex-immt

omdoc

xsl4mizmiz-immt

xmlabs

lf-immt

nar-html

html

con-html

html

graph

svg

Figure 8.6: Compiler Chain for IMMT Archives

Figure 8.6 shows the compilers and formats for the main IMMT archives. Conceptually, each
processing stage represents the same IMMT document with a different and possibly partial seri-
alization. Therefore, we consider each intermediate format as a different aspect for one IMMT

document. For instance, for STEX files, there is a source aspect (in stex) and a presentation
aspect (in html) as well as an OMDOC aspect for the result of latexml processing.

Based on these abstractions we implement a crawler in MathHub that traverses archives and cre-
ates the corresponding MathHub documents for each relevant file in the data store. The MathHub
system then automatically aggregates the aspects of each document and presents them as tabs in
the web page allowing users to easily cycle between them. For instance, the example in Figure
8.7 shows an SMGloM document for which the aspects are the HTML presentation (default), the
SVG graph of dependencies, the result of the OMDOC compiler, and, finally, the original STEX
source. Therefore, not only the content in each tab but also the tabs themselves are generic and
are instantiated for each format using the configuration described above. This allows MathHub
to realize the uniform interface for browsing despite the heterogeneity of the source documents.

Figure 8.7: Rendering Aspects in MathHub

Additionally, we enhance the HTML-based
browsing interface with services for interac-
tivity. We build interactive documents by us-
ing a context menu in the web page that pro-
vides access to specific services which we dis-
cuss individually below. As mentioned above,
we use the JOBAD JavaScript library for the
context menu and interactivity.

To realize each of the services we implement
two things. First we write a ServerPlugin for
the IMMT API that implements the server-side

118

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

Figure 8.8: Definition Lookup in MathHub

Figure 8.9: Relational-based Navigation

functionality. Then we write a JOBAD module that adds the relevant context menu entries and
then interfaces with the IMMT server to retrieve the result and render it for the user. The code
implementing the services on the IMMT side is available at [IDi]. The corresponding JOBAD
modules are available at [IDJ].

For the IMMT API, definition lookup (shown in Figure 8.8) is a basic service using URI-based
retrieval. But, it also uses domain-specific relational information. For example, in SMGloM,
due to the multilingual design there are multiple definitions which may each be in a different
document or theory. Additionally, IMMT presents the retrieved definition with a given presenter.

Another example of a basic service is relational navigation which uses the relational index and
the QMT query language [Rab12]. For instance, Figure 8.9 shows the relational information
integrated into the context menu, that can be used to navigate the relational graph.

Authoring Content

In terms of authoring content MathHub builds upon existing services provided by the IMMT

system and the Drupal framework. Concretely, IMMT provides a semi-automatic build system
for processing (importing and exporting) documents and Drupal provides basic editing func-

119

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

Figure 8.10: Aggregating Errors in MathHub

tionality. Effectively, we develop a basic and experimental web IDE (Integrated Development
Environment) for developing IMMT knowledge on the web. Note that MathHub also supports
offline authoring by integrating with the LMH tool [LMH15] which is more practical for bulk
editing jobs (however LMH is outside the scope of this thesis).

At this point, the editing support is basic and minimally extends pre-existing Drupal functionality.
Features such as IMMT-powered generic syntax highlighting, auto-complete, type inference or
semantic high-lighting remain future work.

For the build system we develop an administration interface that allows updating the sources
and libraries as well as rebuilding selected documents or archives by sending them to the build
queue. Additionally, we produce, parse and store error information and make it available in the
interface. We aggregate common errors in a dedicated page (see Figure 8.10) where developers
can filter and inspect common errors for specific compilers and libraries.

We also show errors as annotations to the source of each document. Figure 8.11 shows an exam-
ple STEX document from the GenCS library defining abstract data types. The source references
are carried over and used to align errors on the sidebar and highlight the location where they
occur according to the compiler. Clicking on the error opens the editor line in question and
highlights the relevant text region. The sidebar infrastructure that we use is part of the JOBAD
library.

The MathHub build system was heavily and routinely used in developing the SMGloM library
and improving related STEX tools. However, most of the editing was done offline in bulk jobs
and deployed regularly to MathHub.

120

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

Figure 8.11: Error Annotations in MathHub

Figure 8.12: An Entry in the SMGloM Thesaurus

Mathematical Thesaurus and Dictionary

As part of developing the SMGloM library, we built two applications that make specific use
of the kind of knowledge encoded in it. The SMGloM (Semantic Multilingual Glossary of
Mathematics) library has mathematical terms together with narrative definitions and notations
in multiple languages (typically English and German). Based on that we built a mathematical
thesaurus and a dictionary.

Figure 8.12 shows an entry in the SMGloM thesaurus where the definition is annotated with links
to expand its definition, concept graph or terminological relations such as hyper- and hypo-nymy.
The relations are extracted from the STEX sources during the import by looking at metadata en-
coding this information. The STEX importer comes with an associated relational extractor that
declares the isHypernym and isHyponym binary relations and implements the extraction
algorithm. Then, the thesaurus application makes use of the relations during presentation. Ad-
ditionally, on the right, the entry links to the corresponding definitions in other languages are
shown (in this particular case only the German version).

Figure 8.13 shows the dictionary application built on top of SMGloM knowledge. It uses the

121

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

Figure 8.13: The SMGloM Dictionary

verbalization notations of the concepts together with the language associated with each of them
to do the translation. The interface is straightforward and a basic auto-complete function based on
available verbalizations is implemented for the input. A similar approach can be used to provide
auto-complete while authoring IMMT content online in MathHub but, as mentioned above, this
remains future work.

Note that the particular applications presented here (as well as the library on which they are
based) are just examples. The key insight here is that MathHub and IMMT are generic enough to
allow building and deploying such domain-specific applications that leverage the particularities
of the original knowledge bases. Therefore, they provides a platform for future development and
experimenting with application design.

Text and Formula Search

Being able to adequately search large corpora of mathematical knowledge requires being able
to construct queries that involve both text and formulas. But, the problem of mathematical in-
formation retrieval is an important and complex, standalone research question that is outside the
scope of this thesis. Therefore, we do not attempt to solve that here as a standalone IMMT plugin
and refer to [AKOS14] for a recent overview of systems for mathematical information retrieval.
Instead, we take an existing solution (the MATHWEBSEARCH system – discussed below) and
integrate it with IMMT.

MathWebSearch At its core, the MATHWEBSEARCH system [PK11, KMP12] is a content-
oriented search engine for mathematical expressions. It indexes formula-URL pairs and provides
a web interface for querying the formula index via unification. In [Pro14] it was extended with
a text component to allow search for both textual and formula queries at the same time. In that
case the frontend has two text fields for both the text and formula components of the queries.

122

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

Figure 8.14: Text and Math Search for SMGloM and GenCS

Then, the query components and results are aggregated by the MATHWEBSEARCH system. The
input for MATHWEBSEARCH is a MATHWEBSEARCH harvest which is a set of XHTML files
containing text and formulas as MATHML. The files need to contain specific metadata such as
author and title and the formulas need to have unique identifiers and their content MATHML
representation (not just presentation MATHML).

Therefore, to realize the integration between IMMT and MATHWEBSEARCH, we wrote an ex-
porter from IMMT content to MATHWEBSEARCH harvests. The code is integrated into the
IMMT API and is available at [MEx]. Based on that we can develop concrete instances of
the MATHWEBSEARCH system that allow querying IMMT knowledge through the MATHWEB-
SEARCH interface.

Concretely, as part of the MathHub experiment we have developed a reusable deployment of
the MATHWEBSEARCH infrastracture integrated with the IMMT system. It is realized as a
Docker [Mer14] build and installation script that can be used to instantiate concrete search ap-
plications. The code is available at https://github.com/KWARC/TEMA_docker and
the specific instances that were built and deployed are available as docker virtual machines at
https://hub.docker.com/r/kwarc/tema_search/. Within the MathHub project
we have created and deployed two such systems.

The first is a search instance for the LATEX and STEX based libraries in the MathHub system,
in particular the SMGloM and the GenCS libraries. An example query is shown in Figure
8.14 and the demo is available at http://jupiter.eecs.jacobs-university.de/
mathhub/.

The second instance is for the OEIS library and, improving on the search system already provided
by the OEIS community, it also allows searching for formulae. An example query is shown in

123

https://github.com/KWARC/TEMA_docker
https://hub.docker.com/r/kwarc/tema_search/
http://jupiter.eecs.jacobs-university.de/mathhub/
http://jupiter.eecs.jacobs-university.de/mathhub/

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

Figure 8.15: Text and Math Search for the OEIS library

Figure 8.15 and the demo is available at http://oeissearch.mathweb.org/.

MATHWEBSEARCH exemplifies how pre-existing, standalone applications can be loosely inte-
grated with MathHub. The index used by MATHWEBSEARCH is produced by IMMT once, then
the MATHWEBSEARCH service can load it and answer queries. The MATHWEBSEARCH inter-
face is integrated in MathHub only as a link but uniform theming makes the transition seamless.

Math Literate Search

Acknowledgement. Part of the results in this Section are based on collaborative work with
Michael Kohlhase and Corneliu Prodescu and have been published in [IKP14]. However we
only focus here on the work done by the author.

As a first application of the concepts described above in Section 8.1.2 we build a system for
searching the knowledge space (i.e. flattened diagram) of the highly modular LATIN [CHK+11]
library.

Induced statements in the LATIN library LATIN (Logic Atlas and Integrator) is written
in an extension of the Twelf implementation [RS09] of LF [HHP93]. So it is natural to use
an extension of LF notation with query variables as the input language for the query formula.
Therefore, we use the IMMT notation language and interpretation service described in [IR12b]
to transform LF-style input into IMMT objects and subsequently to MWS queries.

We implemented library flattening for inducing knowledge via views as described in Section
8.1.2 in IMMT and applied it to the LATIN library. The flattening (one iteration) of the LATIN
library increases the number of declarations from 2 310 to 58 847 (a factor of 25.4) and the total
size of the library from 123.9 MB to 1.8 GB (a factor of 14.8). As expected, the multiplication
factor depends on the level of modularity of the library. For instance, the highly modular math
sub-library containing mainly algebraic structures increases from 2.3 MB to 79 MB thus having
a multiplication factor of 34.3, more than double the library average. The size of the MWS
harvests also increases considerably, from 25.2 MB to 539.0 MB.

124

http://oeissearch.mathweb.org/

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

Figure 8.16: The FLATSEARCH Web Interface for LATIN

Explaining the origin of induced statements The induced constants are produced by trans-
lating a constant c in a theory (or sub-theory of) S over a view v : S → T. This induces a new
constant in T with the intuition that it is a constant from (the sub-theory of) S as seen when
interpreting via view v. We encode this origin of the new constant by using the name of the
view as part of its local name. Therefore the new constant has local name v/c and therefore,
global name (i.e. IMMT URI) T?v/c. Note that, for the URI T?v/c to be valid the view URI v
is string-escaped to be a valid local name fragment and then un-escaped by the application when
needed. This means that, when presenting the induced constant in the application we can use its
IMMT URI to produce a human-understandable justification for its existence. The explanation
is generated from the IMMT URI by a straightforward template-based algorithm following the
intuition above.

The resulting search interface is shown in Figure 8.16 and is available at [FS]. In the example
query from Figure 8.16, the associativity of addition is induced from the theory AbelianGroup

when interpreting over a view that maps ◦ to +. The application inspects the induced IMMT URI
as discussed above to produce the justification shown in the figure.

8.2.3 Implementation Overview

The libraries, systems and applications described above come together to form an integrated
management system for flexiformal knowledge. Figure 8.17 shows an overview of the software
components that were implemented or extended. For each concrete service or system, we use
colors to mark the cases where only part of the implementation was done as part of this thesis.

In the case of library imports, the importer framework was already in IMMT and, as mentioned
in Section 7.3, the formula parser of the OEIS importer was implemented separately [LIK15].
Moreover, while the authoring and search applications described here were implemented as part
of MathHub, they rely on pre-existing systems to do the heavy-lifting. In the case of search that is

125

APPLICATIONS FOR FLEXIFORMAL KNOWLEDGE

MathHub
Browsing

Thesaurus

Search

Authoring

IMMT

Struct. Feat.

Rel. Extractor

Lib. Plugins

Importers

SMGloM

Mizar

OEIS

Figure 8.17: The MathHub Ecosystem

the MATHWEBSEARCH system, while for authoring it is the Drupal content management system.
Finally, the IMMT system is, as described in previous Chapters, an extension of the MMT system.
We extended it with support for structural features, the relational extractor described above as
well as various library-specific plugins (e.g. web-server plugins) used by the MathHub services.

A list of the individual implementations and extensions with links to the respective code reposito-
ries can be found in [Imp]. In particular, the code for the MathHub system is available at https:
//github.com/KWARC/MathHub and a Docker configuration for easily deploying new
MathHub instances is available at https://github.com/KWARC/MathHub_docker. The
extensions we contributed to the code as part of this thesis amount to around 4500 lines of
code. There are currently four instances of MathHub that are publicly deployed. One is re-
stricted to the SMGloM libraries and project (deployed at smglom.mathhub.info), the
second is restricted to the ODK project [ODK, DIK+16] and related libraries (deployed at
odk.mathhub.info). The third is restricted to the fully formal libraries with the OAF
project [OAF] (deployed at oaf.mathhub.info) and, finally, the main MathHub instance
is deployed at http://mathhub.info and has reached a state where it can be used for ex-
periments and accessing its resources. It currently has around 10 000 documents and a couple
dozen users and repositories.

Therefore, we consider it a significant case study for developing flexiformal mathematical con-
tent as well as services and applications based on it. Concretely, the currently deployed libaries
are: i) the SMGloM termbase with ca. 1500 small STEX files containing definitions of math-
ematical terminology and notation definitions. ii) ca. 6500 files with STEX-encoded teaching
materials (slides, course notes, problems, and solutions) in Computer Science, iii) the LATIN
logic atlas with ca. 1000 meta-theories and logic morphisms, iv) the Mizar Mathematical Li-
brary of ca. 1000 articles with ca. 50.000 theorems, definitions, and proofs, and v) a part of the
HOL Light Library with 22 theories and over 2800 declarations.

While the implementation itself still an experiment, the MathHub system is already unique in the
sense that it gives a unified interface to multiple mathematical libraries and provides a platform
for using, building and deploying applications and services for them.

126

https://github.com/KWARC/MathHub
https://github.com/KWARC/MathHub
https://github.com/KWARC/MathHub_docker
smglom.mathhub.info
odk.mathhub.info
oaf.mathhub.info
http://mathhub.info

Chapter 9

Conclusion and Future Work

Meaningful mechanization of mathematics requires most mathematical knowledge to be repre-
sented in machine-understandable formats. A current limitation is the effort required for con-
verting mathematical knowledge into such formats, either by natural language processing or by
formalization. Moreover, most current formats focus on one aspect of mathematics, be it either
narration, computation or formal semantics. But mathematical practice leverages all of these
aspects together, so focusing on just one reduces the range of potential applications and, there-
fore, decreases the incentive for producing such machine-understandable knowledge. We iden-
tified flexiformality [KK11, Koh13] as a potential solution to alleviate both of these problems,
by lowering the cost of converting mathematical knowledge, and by co-representing narration
and semantics to expand the space of potential applications. In this thesis, we have conducted
an initial, comprehensive case study in flexiformality and explored the three objectives that we
established in Chapter 1.

The first was representing flexiformal knowledge and we started by surveying existing formal
and informal mathematics in Chapter 2. We observed that narration and structure are consequen-
tial components of mathematical knowledge and, therefore, essential for adequately representing
mathematics. Moreover, we identified a set of flexiformal phenomena that occur in practice
which together function as a specification for a flexiformal representation language. Then, in
Chapter 5 we introduced the IMMT language and system as an experimental solution by extend-
ing the MMT language and system with a narrative aspect and an extensible declaration level.
Finally, in Chapter 6 we evaluated it with respect to this flexiformal specification by describing
how to represent each of the outstanding flexiformal phenomena from Chapter 2 in IMMT.

Second, we addressed flexiformalization in Chapter 7 by importing existing mathematical li-
braries into IMMT as a generic, uniform, flexiformal representation format. The main result is
establishing a large, flexiformal knowledge base to enable future experiments in flexiformaliza-
tion. We chose representative libraries at different levels of formality, to show that the IMMT

language and system are suitable in practice for representing the entire spectrum of flexiformal
knowledge. The libraries in question, the Mizar Mathematical Library [TB85, MML] (fully for-
mal), the SMGloM [GIJ+15] (and GenCS) library (semi-formal), and the OEIS library [OEI15]

127

CONCLUSION AND FUTURE WORK

(informal) are each among the largest in their class. Therefore, importing them into the same
representation language and effectively creating a large, heterogeneous, flexiformal library, is a
major step forward on its own.

Third, in Chapter 8, we tackled flexiformal knowledge management by designing and implement-
ing the MathHub system as a generic framework for building and deploying practical user-facing
applications. Moreover, we explored the breath of potential applications by implementing and
integrating several concrete instances for browsing, authoring and searching IMMT knowledge.
In the process we validated the library imports as forming a valuable knowledge base as well
as the central design ideas of the IMMT language. In particular, we observed that the ability
of IMMT to represent and reference the narrative constructs that human users understand was
essential for each of these applications. As mentioned in Section 1, Freek Wiedijk identified in
[Wie07b] the lack of a “killer application” as one the major reasons for the failure of the QED
project, alongside the small size of the formalized mathematics community. But, in the Math-
Hub system, library development is incentivized by integration with applications that can make
immediate use of additional knowledge. Therefore, while still an experiment, MathHub aims to
become a driving force for future development of both applications and libraries.

But, as mentioned above, the work presented in this thesis represents only an initial case study
and the first step towards flexiformal mathematics. Within the language design objective, future
work includes a more in-depth study of structural features and representing their translation at
the pragmatic level within views. Moreover, a more practical and scalable solution for under-
specification will be needed for applying IMMT to represent, on a large scale, alternative parses
of complex expressions. Additionally we have not yet fixed a concrete surface syntax for IMMT–
since we, instead, relied on imports to collect mathematical knowledge. Some work in this di-
rection has been started in [IKRY] by mixing the MMT and STEX syntaxes but it is still work in
progress.

With respect to libraries, many remain to be imported, in particular large informal archives par-
tially formalized by natural language processors. Moreover, within the already imported ones
more integration of their content is desirable. Along this direction the work in [KKMR16] may
prove fruitful.

On the system side, more concrete services and applications are still to be developed. In partic-
ular a major current shortcoming is the lack of a powerful semantic editor for IMMT content in
MathHub. One approach to solve this is to scale the backend of the existing jEdit-based editor
for MMT [Rab14a] to IMMT and the web. An implementation for this is currently underway
within the IMMT system. Also, generally, the evaluation of applications presented here was
from a developer perspective, exploring what kind of services can be built effectively. But a
comprehensive case study from a users perspective, focusing on which flexiformal services and
applications are practically useful for mathematicians remains future work.

128

Bibliography

[ABC+10] Ron Ausbrooks, Stephen Buswell, David Carlisle, Giorgi Chavchanidze, Stéphane
Dalmas, Stan Devitt, Angel Diaz, Sam Dooley, Roger Hunter, Patrick Ion, Michael
Kohlhase, Azzeddine Lazrek, Paul Libbrecht, Bruce Miller, Robert Miner, Murray
Sargent, Bruce Smith, Neil Soiffer, Robert Sutor, and Stephen Watt. Mathematical
Markup Language (MathML) version 3.0. W3C Recommendation, World Wide
Web Consortium (W3C), 2010.

[ACR+08] Serge Autexier, John Campbell, Julio Rubio, Volker Sorge, Masakazu Suzuki, and
Freek Wiedijk, editors. Intelligent Computer Mathematics, number 5144 in LNAI.
Springer Verlag, 2008.

[AFP] Archive of formal proofs. https://www.isa-afp.org/. seen June 2016.

[AKOS14] Akiko Aizawa, Michael Kohlhase, Iadh Ounis, and Moritz Schubotz. NTCIR-
11 Math-2 task overview. In Noriko Kando, Hideo Joho, and Kazuaki Kishida,
editors, NTCIR 11 Conference, pages 88–98, Tokyo, Japan, 2014. NII, Tokyo.

[And02] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Springer, second edition, 2002.

[APS] Art of Problem Solving. https://www.artofproblemsolving.com/
community/c13_contests. seen July 2016.

[ARCT11] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi.
The matita interactive theorem prover. In Nikolaj Bjørner and Viorica Sofronie-
Stokkermans, editors, Automated Deduction - CADE-23 - 23rd International Con-
ference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011.
Proceedings, volume 6803 of Lecture Notes in Computer Science, pages 64–69.
Springer, 2011.

[ArX] arxiv.org e-Print archive. http://www.arxiv.org. seen June 2016.

[ASC06] Serge Autexier and Claudio Sacerdoti Coen. A formal correspondence be-
tween omdoc with alternative proofs and the λµµ̃-calculus. In Jon Borwein and
William M. Farmer, editors, Mathematical Knowledge Management (MKM), num-
ber 4108 in LNAI, pages 67–81. Springer Verlag, 2006.

129

https://www.isa-afp.org/
https://www.artofproblemsolving.com/community/c13_contests
https://www.artofproblemsolving.com/community/c13_contests
http://www.arxiv.org

BIBLIOGRAPHY

[Avi08] Jeremy Avigad. Understanding proofs. In Paolo Mancosu, editor, The Philosophy
of Mathematical Practice, pages 317–353. Oxford University Press, 2008.

[Ban03] Grzegorz Bancerek. On the structure of Mizar types. Electronic Notes in Theoret-
ical Computer Science, 85(7), 2003.

[Bar15] Jeremiah Bartz. Induced and Complete Multinets. ArXiv e-prints, February 2015.

[Bau99] Judith Baur. Syntax und semantik mathematischer texte – ein prototyp. Master’s
thesis, Fachrichtung Computerlinguistik, Universität des Saarlandes, Saarbrücken,
Germany, 1999.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment — Coq’Art: The Calculus of Inductive Constructions. Texts in Theo-
retical Computer Science. An EATCS Series. Springer Verlag, 2004.

[BCC+04] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar, Marc
Gaëtano, and Michael Kohlhase. The Open Math standard, version 2.0. Tech-
nical report, The OpenMath Society, 2004.

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - A functional
language with dependent types. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics,
22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20,
2009. Proceedings, volume 5674 of Lecture Notes in Computer Science, pages
73–78. Springer, 2009.

[Ber91] Paul Bernays. Axiomatic Set Theory. Dover Publications, 1991.

[Bou74] Nicolas Bourbaki. Algebra I. Elements of Mathematics. Springer Verlag, 1974.

[BP64] Paul Benacerraf and Hilary Putnam, editors. Philosophy of mathematics: Selected
readings. Cambridge University Press, 2nd edition 1983 edition, 1964.

[CAL+13] Jacques Carette, David Aspinall, Christoph Lange, Petr Sojka, and Wolfgang
Windsteiger, editors. Intelligent Computer Mathematics, number 7961 in Lecture
Notes in Computer Science. Springer, 2013.

[CCK09] Merlin Carl, Marcos Cramer, and Daniel Kühlwein. Chapter 1 from Landau in
Naproche. https://korpora-exp.zim.uni-duisburg-essen.de/
naproche/downloads/2009/landauChapter1.pdf, 2009.

[CDSCW09] Jacques Carette, Lucas Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt,
editors. MKM/Calculemus Proceedings, number 5625 in LNAI. Springer Verlag,
July 2009.

130

https://korpora-exp.zim.uni-duisburg-essen.de/naproche/downloads/2009/landauChapter1.pdf
https://korpora-exp.zim.uni-duisburg-essen.de/naproche/downloads/2009/landauChapter1.pdf

BIBLIOGRAPHY

[CF08] Jacques Carette and William M. Farmer. High-level theories. In Autexier et al.
[ACR+08], pages 232–245.

[CFK+10] Marcos Cramer, Bernhard Fisseni, Peter Koepke, Daniel Kühlwein, Bernhard
Schröder, and Jip Veldman. The Naproche project controlled natural language
proof checking of mathematical texts. In Norbert E. Fuchs, editor, Controlled Nat-
ural Language, Workshop on Controlled Natural Language, CNL 2009. Revised
Papers, number 5972 in LNCS, pages 170–186. Springer, 2010.

[CFK14] Jacques Carette, William Farmer, and Michael Kohlhase. Realms: A structure for
consolidating knowledge about mathematical theories. In Watt et al. [WDS+14],
pages 252–266. MKM Best-Paper-Award.

[CH88] Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information
and Computation, 76(2/3):95–120, 1988.

[CHK+11] Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, and Florian
Rabe. Project abstract: Logic atlas and integrator (LATIN). In Davenport et al.
[DFRU11], pages 289–291.

[Chr03] Jacek Chrzaszcz. Implementing modules in the Coq system. In David A. Basin
and Burkhart Wolff, editors, Theorem Proving in Higher Order Logics, 16th In-
ternational Conference, TPHOLs 2003, Rom, Italy, September 8-12, 2003, Pro-
ceedings, volume 2758 of Lecture Notes in Computer Science, pages 270–286.
Springer, 2003.

[CIM14] David Carlisle, Patrick Ion, and Robert Miner. Guidelines for graphics in MathML
2. W3C Note, 2014.

[CMR16] Mihai Codescu, Till Mossakowski, and Florian Rabe. Selecting colimits for pa-
rameterisation and networks of specifications. In Workshop on Algebraic Devel-
opment Techniques, 2016.

[Coh81] Paul M. Cohn. Universal Algebra. D. Reidel Publishing, revised edition, 1981.

[Coq96] Projet Coq. The Coq proof assistant (version 6.0) — reference manual. Technical
report, ENS Lyon – INRIA Rocquencourt, 1996.

[CS09] Cris Calude and Ludwig Staiger. A note on accelerated turing machines.
CDMTCS Research Report 350, Centre for Discrete Mathematics and Theoret-
ical Computer Science, Auckland University, 2009.

[dB87] Nicolaas Govert de Bruijn. The mathematical vernacular, a language for mathe-
matics with typed sets. In P. Dybjer et al., editors, Proceedings of the Workshop
on Programming Languages, 1987.

131

BIBLIOGRAPHY

[DFRU11] James Davenport, William Farmer, Florian Rabe, and Josef Urban, editors. Intel-
ligent Computer Mathematics, number 6824 in LNAI. Springer Verlag, 2011.

[DIK+16] Paul-Olivier Dehaye, Mihnea Iancu, Michael Kohlhase, Alexander Konovalov,
Samuel Lelièvre, Dennis Müller, Markus Pfeiffer, Florian Rabe, Nicolas M.
Thiéry, and Tom Wiesing. Interoperability in the opendreamkit project: The math-
in-the-middle approach. In Michael Kohlhase, Moa Johansson, Bruce R. Miller,
Leonardo de Moura, and Frank Wm. Tompa, editors, Intelligent Computer Mathe-
matics - 9th International Conference, CICM 2016, Bialystok, Poland, July 25-29,
2016, Proceedings, volume 9791 of Lecture Notes in Computer Science, pages
117–131. Springer, 2016.

[dMKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob
von Raumer. The lean theorem prover (system description). In Amy P. Felty and
Aart Middeldorp, editors, Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Pro-
ceedings, volume 9195 of Lecture Notes in Computer Science, pages 378–388.
Springer, 2015.

[DT00] Marc Dymetman and Frédéric Tendeau. Context-free grammar rewriting and the
transfer of packed linguistic representations. In COLING 2000, 18th International
Conference on Computational Linguistics. Morgan Kaufmann, 2000.

[EFT94] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical
Logic. Springer, second edition, 1994.

[EuD] The european digital mathematics library. https://eudml.org/. seen July
2016.

[Far07] William M. Farmer. Biform theories in Chiron. In Manuel Kauers, Manfred
Kerber, Robert Miner, and Wolfgang Windsteiger, editors, Towards Mechanized
Mathematical Assistants. MKM/Calculemus, number 4573 in LNAI, pages 66–79.
Springer Verlag, 2007.

[Far08] William M. Farmer. The seven virtues of simple type theory. Journal of Applied
Logic, 6(3):267–286, September 2008.

[FGT92] William M. Farmer, Josuah Guttman, and Xavier Thayer. Little theories. In D. Ka-
pur, editor, Proceedings of the 11th Conference on Automated Deduction, number
607 in LNCS, pages 467–581, Saratoga Springs, NY, USA, 1992. Springer Verlag.

[FGT93] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An Inter-
active Mathematical Proof System. Journal of Automated Reasoning, 11(2):213–
248, October 1993.

132

https://eudml.org/

BIBLIOGRAPHY

[FS] FlatSearch demo. http://cds.omdoc.org:8181/search.html. seen
July 2016.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Co-
hen, Fran/cois Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor,
Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi,
and Laurent Théry. A machine-checked proof of the odd order theorem. In San-
drine Blazy, Christine Paulin-Mohring, and David Pichardie, editors, Interactive
Theorem Proving - 4th International Conference, ITP 2013, Rennes, France, July
22-26, 2013. Proceedings, volume 7998 of Lecture Notes in Computer Science,
pages 163–179. Springer, 2013.

[Gan13] Mohan Ganesalingam. The Language of Mathematics, A Linguistic and Philo-
sophical Investigation, volume 7805 of LNCS. Springer Verlag, 2013.

[GAP16] GAP system for computational discrete algebra. http://www.gap-system.
org/, 2016. seen August 2016.

[Gel04] Gijs Geleijnse. Comparing two user-friendly formal languages for mathematics:
Weak Type Theory and Mizar. Master’s thesis, Technische Universiteit Eindhoven,
2004.

[GIJ+15] Deyan Ginev, Mihnea Iancu, Constantin Jucovschi, Andrea Kohlhase, Michael
Kohlhase, Heinz Kröger, Jürgen Schefter, and Wolfram Sperber. The SMGLoM
project and system. 2015.

[GIJ+16] Deyan Ginev, Mihnea Iancu, Constantin Jucovshi, Andrea Kohlhase, Michael
Kohlhase, Akbar Oripov, Jürgen Schefter, Wolfram Sperber, Olaf Teschke, and
Tom Wiesing. The SMGloM project and system. towards a terminology and on-
tology for mathematics. In Gert-Martin Greuel, Thorsten Koch, Peter Paule, and
Andrew Sommese, editors, Mathematical Software - ICMS 2016 - 5th Interna-
tional Congress, volume 9725 of LNCS. Springer, 2016.

[Gin11] Deyan Ginev. The structure of mathematical expressions. Master’s thesis, Jacobs
University Bremen, Bremen, Germany, August 2011.

[Git] GitLab system. https://about.gitlab.com/. seen July 2016.

[GLR09] Jana Giceva, Christoph Lange, and Florian Rabe. Integrating web services into
active mathematical documents. In Carette et al. [CDSCW09], pages 279–293.

[GpL] Definition of “Group” in the LATIN logic atlas. https://gl.mathhub.
info/MMT/LATIN/blob/master/source/math/magmas.elf#L173.
seen August 2016.

133

http://cds.omdoc.org:8181/search.html
http://www.gap-system.org/
http://www.gap-system.org/
https://about.gitlab.com/
https://gl.mathhub.info/MMT/LATIN/blob/master/source/math/magmas.elf#L173
https://gl.mathhub.info/MMT/LATIN/blob/master/source/math/magmas.elf#L173

BIBLIOGRAPHY

[GpM] Definition of “Group” in the Mizar Mathematical Library. http://www.
mizar.org/version/current/html/group_1.html#NM1. seen Au-
gust 2016.

[GpSa] “English” definition of “Group” in the semantic multilingual glossary of math-
ematics (SMGloM). https://gl.mathhub.info/smglom/algebra/
blob/master/source/group.en.tex. seen August 2016.

[GpSb] “German” definition of “Group” in the semantic multilingual glossary of math-
ematics (SMGloM). https://gl.mathhub.info/smglom/algebra/
blob/master/source/group.de.tex. seen August 2016.

[GS90] Jeroen Groenendijk and Martin Stokhof. Dynamic Montague Grammar. In
L. Kálmán and L. Pólos, editors, Papers from the Second Symposium on Logic
and Language, pages 3–48. Akadémiai Kiadó, Budapest, 1990.

[GS91] Jeroen Groenendijk and Martin Stokhof. Dynamic predicate logic. Linguistics &
Philosophy, 14:39–100, 1991.

[HAB+15] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison,
Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat
Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Ja-
son Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu,
Josef Urban, Ky Khac Vu, and Roland Zumkeller. A formal proof of the kepler
conjecture. CoRR, abs/1501.02155, 2015.

[Har84] David Harel. Dynamic Logic. In D. M. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic, volume II, pages 497–604. Reidel, Dordrecht, 1984.

[Har11] John Harrison. The HOL Light theorem prover. http://www.cl.cam.ac.
uk/˜jrh13/hol-light/, 2011. seen September 2016.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining log-
ics. Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

[HK15] Tapani Hyttinen and Kaisa Kangas. On model theory of covers of algebraically
closed fields. http://arxiv.org/pdf/1502.01042.pdf, 2015. seen
June 2016.

[HKR12] Fulya Horozal, Michael Kohlhase, and Florian Rabe. Extending MKM formats at
the statement level. In Jeuring et al. [JCC+12], pages 65–80.

[IDi] iMMT code for interactive documents. https://github.com/
UniFormal/MMT/blob/master/src/planetary-mmt/src/info/
kwarc/mmt/planetary/ServerPlugin.scala. seen August 2016.

134

http://www.mizar.org/version/current/html/group_1.html#NM1
http://www.mizar.org/version/current/html/group_1.html#NM1
https://gl.mathhub.info/smglom/algebra/blob/master/source/group.en.tex
https://gl.mathhub.info/smglom/algebra/blob/master/source/group.en.tex
https://gl.mathhub.info/smglom/algebra/blob/master/source/group.de.tex
https://gl.mathhub.info/smglom/algebra/blob/master/source/group.de.tex
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://arxiv.org/pdf/1502.01042.pdf
https://github.com/UniFormal/MMT/blob/master/src/planetary-mmt/src/info/kwarc/mmt/planetary/ServerPlugin.scala
https://github.com/UniFormal/MMT/blob/master/src/planetary-mmt/src/info/kwarc/mmt/planetary/ServerPlugin.scala
https://github.com/UniFormal/MMT/blob/master/src/planetary-mmt/src/info/kwarc/mmt/planetary/ServerPlugin.scala

BIBLIOGRAPHY

[IDJ] JOBAD code for interactive documents. https://github.com/KWARC/
MathHub/tree/master/sites/all/modules/mmt/jobad. seen Au-
gust 2016.

[IJKW14] Mihnea Iancu, Constantin Jucovschi, Michael Kohlhase, and Tom Wiesing. Sys-
tem description: Mathhub.info. In Watt et al. [WDS+14], pages 431–434.

[IK15a] Mihnea Iancu and Michael Kohlhase. A flexiformal model of knowledge dis-
semination and aggregation in mathematics. In Kerber et al. [KCK+15], pages
137–152.

[IK15b] Mihnea Iancu and Michael Kohlhase. Math literate knowledge management via
induced material. In Kerber et al. [KCK+15], pages 187–202.

[IKP14] Mihnea Iancu, Michael Kohlhase, and Corneliu-Claudiu Prodescu. Representing,
archiving, and searching the space of mathematical knowledge. In Hoon Hong
and Chee Yap, editors, Mathematical Software - ICMS 2014 - 4th International
Congress, volume 8592 of LNCS, pages 26–30. Springer, 2014.

[IKR] Mihnea Iancu, Michael Kohlhase, and Florian Rabe. Understanding the pragmat-
ics of module systems for mathematics.

[IKR11] Mihnea Iancu, Michael Kohlhase, and Florian Rabe. Translating the Mizar Math-
ematical Library into OMDoc format. KWARC report, Jacobs University Bremen,
2011.

[IKRU13] Mihnea Iancu, Michael Kohlhase, Florian Rabe, and Josef Urban. The Mizar
Mathematical Library in OMDoc: Translation and applications. Journal of Auto-
mated Reasoning, 50(2):191–202, 2013.

[IKRY] Mihnea Iancu, Michael Kohlhase, Florian Rabe, and Hang Yuan. Mixing sur-
face languages for OMDoc. http://kwarc.info/kohlhase/submit/
mmt-stex16.pdf.

[Imp] Thesis implementation: Overview of systems and extensions. https://
kwarc.info/miancu/papers/thesis-code.html. seen April 2017.

[IR98] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Number
Theory. Springer, second edition, 1998.

[IR11] Mihnea Iancu and Florian Rabe. Formalizing foundations of mathematics. Math-
ematical Structures in Computer Science, 21(4):883–911, 2011.

[IR12a] Mihnea Iancu and Florian Rabe. Management of change in declarative languages.
In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge, and M. Wen-
zel, editors, Intelligent Computer Mathematics, pages 325–340. Springer, 2012.

135

https://github.com/KWARC/MathHub/tree/master/sites/all/modules/mmt/jobad
https://github.com/KWARC/MathHub/tree/master/sites/all/modules/mmt/jobad
http://kwarc.info/kohlhase/submit/mmt-stex16.pdf
http://kwarc.info/kohlhase/submit/mmt-stex16.pdf
https://kwarc.info/miancu/papers/thesis-code.html
https://kwarc.info/miancu/papers/thesis-code.html

BIBLIOGRAPHY

[IR12b] Mihnea Iancu and Florian Rabe. (work-in-progress) an MMT-based user-interface.
In Workshop on User Interfaces for Theorem Provers, 2012.

[JCC+12] Johan Jeuring, John A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka,
Makarius Wenzel, and Volker Sorge, editors. Intelligent Computer Mathematics,
number 7362 in LNAI. Springer Verlag, 2012.

[Joj05] Gueorgui I. Jojgov. Translating a fragment of weak type theory into type theory
with open terms. In Michael Kohlhase, editor, Mathematical Knowledge Manage-
ment, MKM’05, number 3863 in LNAI, pages 389–403. Springer Verlag, 2005.

[JOM] JOMDoc project — Java library for OMDoc documents. seen Aug. 2015.

[KCK+15] Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker
Sorge, editors. Intelligent Computer Mathematics, number 9150 in LNCS.
Springer, 2015.

[Ker10] Manfred Kerber. Proofs, proofs, proofs, and proofs. In Serge Autexier, Jacques
Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and
Alan P. Sexton, editors, Intelligent Computer Mathematics, number 6167 in LNAI,
pages 345–354. Springer Verlag, 2010.

[KGLZ09] Michael Kohlhase, Jana Giceva, Christoph Lange, and Vyacheslav Zholudev.
JOBAD – interactive mathematical documents. In Brigitte Endres-Niggemeyer,
Valentin Zacharias, and Pascal Hitzler, editors, AI Mashup Challenge at KI Con-
ference, September 2009.

[KI14] Michael Kohlhase and Mihnea Iancu. Co-representing structure and meaning of
mathematical documents. Sprache und Datenverarbeitung, International Journal
for Language Data Processing, 38(2):49–80, 2014. Special Issue “The language
of mathematics – computational, linguistic and logical aspects”.

[KK09] Andrea Kohlhase and Michael Kohlhase. Spreadsheet interaction with frames:
Exploring a mathematical practice. In Carette et al. [CDSCW09], pages 341–356.

[KK11] Andrea Kohlhase and Michael Kohlhase. Towards a flexible notion of document
context. In Proceedings of the 29th annual ACM international conference on De-
sign of communication (SIGDOC), pages 181–188, New York, NY, USA, 2011.
ACM Special Interest Group for Design of Communication, ACM Press.

[KKMR16] Cezary Kaliszyk, Michael Kohlhase, Dennis Müller, and Florian Rabe. A standard
for aligning mathematical concepts. In Intelligent Computer Mathematics – Work
in Progress Papers, 2016.

[KKP96] Michael Kohlhase, Susanna Kuschert, and Manfred Pinkal. A type-theoretic se-
mantics for λ-DRT. In P. Dekker and M. Stokhof, editors, Proceedings of the 10th

Amsterdam Colloquium, pages 479–498, Amsterdam, 1996. ILLC.

136

BIBLIOGRAPHY

[KMP12] Michael Kohlhase, Bogdan A. Matican, and Corneliu C. Prodescu. MathWeb-
Search 0.5 – Scaling an Open Formula Search Engine. In Jeuring et al. [JCC+12],
pages 342–357.

[KMR08] Michael Kohlhase, Christine Müller, and Florian Rabe. Notations for living math-
ematical documents. In S. Autexier, J. Campbell, J. Rubio, V. Sorge, M. Suzuki,
and F. Wiedijk, editors, Mathematical Knowledge Management, pages 504–519.
Springer, 2008.

[KMR13] Michael Kohlhase, Felix Mance, and Florian Rabe. A universal machine for bi-
form theory graphs. In Carette et al. [CAL+13].

[KMW04] Fairouz Kamareddine, Manuel Maarek, and J. B. Wells. Mathlang: Experience-
driven development of a new mathematical language. Electr. Notes Theor. Comput.
Sci., 93:138–160, 2004.

[KN04] Fairouz Kamareddine and Rob Nederpelt. A refinement of de Bruijn’s formal lan-
guage of mathematics. Logic, Language and Information, 13(3):287–340, 2004.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical documents
[Version 1.2]. Number 4180 in LNAI. Springer Verlag, August 2006.

[Koh08] Michael Kohlhase. Using LATEX as a semantic markup format. Mathematics in
Computer Science, 2(2):279–304, 2008.

[Koh10] Michael Kohlhase. OMDoc version 1.3. http://omdoc.org/OMDoc1.3,
2010.

[Koh12] Michael Kohlhase. The Planetary project: Towards eMath3.0. In Jeuring et al.
[JCC+12], pages 448–452.

[Koh13] Michael Kohlhase. The flexiformalist manifesto. In Andrei Voronkov, Viorel
Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu, Stephen M. Watt, and Daniela
Zaharie, editors, 14th International Workshop on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC 2012), pages 30–36, Timisoara, Roma-
nia, 2013. IEEE Press.

[Koh14a] Michael Kohlhase. A data model and encoding for a semantic, multilingual termi-
nology of mathematics. In Watt et al. [WDS+14], pages 169–183.

[Koh14b] Michael Kohlhase. Mathematical knowledge management: Transcending the one-
brain-barrier with theory graphs. EMS Newsletter, pages 22–27, June 2014.

[Koh15] Michael Kohlhase. Modular documents, document URIs and late binding.
https://gl.kwarc.info/omdoc/blue/blob/master/docuris/
note.pdf, 2015. KWARC Blue Note.

137

http://omdoc.org/OMDoc1.3
https://gl.kwarc.info/omdoc/blue/blob/master/docuris/note.pdf
https://gl.kwarc.info/omdoc/blue/blob/master/docuris/note.pdf

BIBLIOGRAPHY

[Koh16] Michael Kohlhase. sTeX: Semantic markup in TEX/LATEX. Technical report, 2016.

[KR93] Hans Kamp and Uwe Reyle. From Discourse to Logic: Introduction to Model-
Theoretic Semantics of Natural Language, Formal Logic and Discourse Represen-
tation Theory. Kluwer, Dordrecht, 1993.

[KRSC11] Michael Kohlhase, Florian Rabe, and Claudio Sacerdoti Coen. A foundational
view on integration problems. In Davenport et al. [DFRU11], pages 107–122.

[KTP10] Alexander Koller, Stefan Thater, and Manfred Pinkal. Scope underspecification
with tree descriptions: Theory and practice. In Matthew Crocker and Jörg Siek-
mann, editors, Resource Adaptive Cognitive Processes, Cognitive Technologies
Series. Springer, Berlin, 2010.

[KW99] Florian Kammuller and Markus Wenzel. Locales: A sectioning concept for Is-
abelle. In Theorem Proving in Higher Order Logics (TPHOLs 99), number 1690
in LNCS, pages 149–165. Springer, 1999.

[KW08] Fairouz Kamareddine and J. B. Wells. Computerizing mathematical text with
MathLang. Electr. Notes Theor. Comput. Sci., 205:5–30, 2008.

[Lan30] Edmund Landau. Grundlagen der Analysis. Wissenschaftliche Buchgesellschaft,
Darmstadt, Germany; second edition, 1930. Reprint of the edition, Leipzig, 1970.

[Lan68] Serge Lang. Analysis I. Addison-Wesley, world student series edition, 1968.

[Lan10] Serge Lang. Undergraduate Algebra. Springer, third edition, 2010.

[LIK15] Enxhell Luzhnica, Mihnea Iancu, and Michael Kohlhase. Importing the OEIS
library into OMDoc. In Ralph Bergmann, Sebastian Görg, and Gilbert Müller,
editors, Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB,
pages 296–303, October 2015.

[LMH15] The LocalMH system. https://github.com/KWARC/localmh, 2015.

[Mel93] Erica Melis. Analogy between proofs – a case study. SEKI-Report SR-93-13,
Fachbereich Informatik, Unversität des Saarlandes, 1993.

[Mer14] Dirk Merkel. Docker: Lightweight linux containers for consistent development
and deployment. Linux J., 2014(239), March 2014.

[MEx] Code for MathWebSearch exporter in iMMT. https://github.com/
UniFormal/MMT/blob/master/src/mmt-api/src/main/info/
kwarc/mmt/api/archives/MWSHarvestExporter.scala. seen
August 2016.

[Mil] Bruce Miller. LaTeXML: A LATEX to XML converter. Web Manual at http:
//dlmf.nist.gov/LaTeXML/. seen September 2011.

138

https://github.com/KWARC/localmh
https://github.com/UniFormal/MMT/blob/master/src/mmt-api/src/main/info/kwarc/mmt/api/archives/MWSHarvestExporter.scala
https://github.com/UniFormal/MMT/blob/master/src/mmt-api/src/main/info/kwarc/mmt/api/archives/MWSHarvestExporter.scala
https://github.com/UniFormal/MMT/blob/master/src/mmt-api/src/main/info/kwarc/mmt/api/archives/MWSHarvestExporter.scala
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/

BIBLIOGRAPHY

[Miz] Mizar system. http://mizar.org/system/. seen June 2016.

[MML] Mizar Mathematical Library. http://www.mizar.org/library. seen
June 2016.

[Mon74] Richard Montague. The proper treatment of quantification in ordinary English. In
R. Thomason, editor, Formal Philosophy. Selected Papers. Yale University Press,
New Haven, 1974.

[MPD16] MuPAD. http://mathworks.com/discovery/mupad.html, 2016.
seen July 2016.

[Mpl16] Maplesoft. http://www.maplesoft.com/, 2016. seen July 2016.

[MRv] Mathematical reviews. http://www.ams.org/mr-database. seen July
2016.

[MS62] Jan Mycielski and Hugo Steinhaus. A mathematical axiom contradicting the ax-
iom of choice. Bulletin de l’Acadmie Polonaise des Sciences. Srie des Sciences
Mathmatiques, Astronomiques et Physiques, 1962.

[MWd] Wolfram MathWorld. http://mathworld.wolfram.com/. seen July
2016.

[Nei73] Neil J. A. Sloane. A Handbook of Integer Sequences. Academic Press, 1973.

[Nei94] Neil J. A. Sloane. An on-line version of the encyclopedia of inte-
ger sequences. http://www3.combinatorics.org/Volume_1/PDF/
v1i1f1.pdf, 1994.

[Nei12] Neil J. A. Sloane. The on-line encyclopedia of integer sequences. http://
neilsloane.com/doc/eger.pdf, 2012.

[Nel97] Roger B. Nelsen. Proofs without Words: Exercises in Visual Thinking. The Math-
ematical Association of America, 1997.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic. Number 2283 in LNCS. Springer, 2002.

[NS95] Neil J. A. Sloane and Simon Plouffe. The Encyclopedia of Integer Sequences.
Academic Press, 1995.

[OAF] The OAF project & system. http://oaf.mathhub.info.

[ODK] OpenDreamKit open digital research environment toolkit for the advancement of
mathematics. http://opendreamkit.org.

139

http://mizar.org/system/
http://www.mizar.org/library
http://mathworks.com/discovery/mupad.html
http://www.maplesoft.com/
http://www.ams.org/mr-database
http://mathworld.wolfram.com/
http://www3.combinatorics.org/Volume_1/PDF/v1i1f1.pdf
http://www3.combinatorics.org/Volume_1/PDF/v1i1f1.pdf
http://neilsloane.com/doc/eger.pdf
http://neilsloane.com/doc/eger.pdf
http://oaf.mathhub.info
http://opendreamkit.org

BIBLIOGRAPHY

[Odl95] A. M. Odlyzko. Tragic loss or good riddance? the impending demise of traditional
scholarly journals. International Journal of Human-Computer Studies, 42:71–122,
1995.

[OEI] OEIS help. http://oeis.org/eishelp1.html. seen June 2016.

[OEI15] OEIS Foundation Inc. The on-line encyclopedia of integer sequences. http:
//oeis.org/, 2015.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in
LNCS. Springer Verlag, 1994.

[Pau05] Lawrence C. Paulson. Isabelle reference manual. Technical report, Computer
Laboratory, University of Cambridge, October 2005.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In Gérard P.
Huet and Gordon D. Plotkin, editors, Logical Frameworks. Cambridge University
Press, 1991.

[PK11] Corneliu C. Prodescu and Michael Kohlhase. Mathwebsearch 0.5 - open formula
search engine. In Wissens- und Erfahrungsmanagement LWA (Lernen, Wissensent-
deckung und Adaptivität) Conference Proceedings, September 2011.

[Pro14] Corneliu C. Prodescu. Text and formula search on ArXiv documents. M. sc. thesis,
Jacobs University Bremen, 2014.

[Pus98] James Pustejovsky. The semantics of lexical underspecification. Folia Linguistica,
32:323–347, 1998.

[QED95] The QED manifesto. Internet Report http://www.rbjones.com/rbjpub/
logic/qedres00.htm, 1995.

[QED96] The QED project. http://www-unix.mcs.anl.gov/qed/, 1996.

[Rab12] Florian Rabe. A Query Language for Formal Mathematical Libraries. In Jeuring
et al. [JCC+12], pages 142–157.

[Rab13] Florian Rabe. The MMT API: A generic MKM system. In Carette et al.
[CAL+13], pages 339–343.

[Rab14a] Florian Rabe. A Logic-Independent IDE. In C. Benzmüller and B. Woltzenlogel
Paleo, editors, Workshop on User Interfaces for Theorem Provers, pages 48–60.
Elsevier, 2014.

[Rab14b] Florian Rabe. MMT objects. In M. England, J. Davenport, A. Kohlhase,
M. Kohlhase, P. Libbrecht, W. Neuper, P. Quaresma, A. Sexton, P. Sojka, J. Urban,
and S. Watt, editors, Workshops and Work in Progress at CICM 2014: OpenMath
Workshop. CEUR, 2014.

140

http://oeis.org/eishelp1.html
http://oeis.org/
http://oeis.org/
http://www.rbjones.com/rbjpub/logic/qedres00.htm
http://www.rbjones.com/rbjpub/logic/qedres00.htm
http://www-unix.mcs.anl.gov/qed/

BIBLIOGRAPHY

[Rab15a] Florian Rabe. Generic literals. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, and
V. Sorge, editors, Intelligent Computer Mathematics, pages 102–117. Springer,
2015.

[Rab15b] Florian Rabe. Lax theory morphisms. ACM Transactions on Computational Logic,
17(1), 2015.

[Rib96] Paulo Ribenboim. The New Book of Prime Number Records. Springer, third edi-
tion, 1996.

[RK13a] Florian Rabe and Michael Kohlhase. A scalable module system. Information &
Computation, 0(230):1–54, 2013.

[RK13b] Marco Riccardi and Artur Kornilowicz. Fundamental group of n-sphere for n ≥ 2.
Formalized Mathematics, 20(2):97–104, 2013.

[RS09] Florian Rabe and Carsten Schürmann. A practical module system for LF. In J. Ch-
eney and A. Felty, editors, Proceedings of the Workshop on Logical Frameworks:
Meta-Theory and Practice (LFMTP), volume LFMTP’09 of ACM International
Conference Proceeding Series, pages 40–48. ACM Press, 2009.

[Rud73] Walter Rudin. Functional Analysis. McGraw Hill, 1973.

[Rud76] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition,
1976.

[Sag16] SageMath. http://www.sagemath.org/, 2016. seen July 2016.

[Sca] The Scala programming language. http://www.scala-lang.org. seen
July 2016.

[SK08] Heinrich Stamerjohanns and Michael Kohlhase. Transforming the arXiv to XML.
In Autexier et al. [ACR+08], pages 574–582.

[SLP] sTeX plugin for LaTeXML. GitHub repository at https://github.com/
KWARC/LaTeXML-Plugin-sTeX. seen July 2016.

[SMG] SMGloM: A semantic, multilingual terminology for mathematics. http://
smglom.mathhub.info. seen August 2016.

[Spi94] Michael Spivak. Calculus. Cambridge University Press, third edition, 1994.

[sTe] sTeX: An infrastructure for semantic preloading of LaTeX documents. GitHub
repository at https://github.com/KWARC/sTeX. seen July 2016.

[TB85] Andrzej Trybulec and Howard Blair. Computer Assisted Reasoning with Mizar.
In Proceedings of the 9th International Joint Conference on Artificial Intelligence,
pages 26–28, 1985.

141

http://www.sagemath.org/
http://www.scala-lang.org
https://github.com/KWARC/LaTeXML-Plugin-sTeX
https://github.com/KWARC/LaTeXML-Plugin-sTeX
http://smglom.mathhub.info
http://smglom.mathhub.info
https://github.com/KWARC/sTeX

BIBLIOGRAPHY

[TKUG13] Carst Tankink, Cezary Kaliszyk, Josef Urban, and Herman Geuvers. Formal math-
ematics on display: A wiki for Flyspeck. In Jacques Carette, David Aspinall,
Christoph Lange, Petr Sojka, and Wolfgang Windsteiger, editors, Intelligent Com-
puter Mathematics - MKM, Calculemus, DML, and Systems and Projects 2013,
Held as Part of CICM 2013, Bath, UK, July 8-12, 2013. Proceedings, volume
7961 of Lecture Notes in Computer Science, pages 152–167. Springer, 2013.

[Try90] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics,
1(1):9–11, 1990.

[WBB+] Makarius Wenzel, Clemens Ballarin, Stefan Berghofer, Jasmin Blanchette, Tim-
othy Bourke, Lukas Bulwahn, Amine Chaieb, Lucas Dixon, Florian Haftmann,
Brian Huffman, Gerwin Klein, Alexander Krauss, Ondřej Kunčar, Tobias Nip-
kow, Lars Noschinski, David von Oheimb, Larry Paulson, Sebastian Skalberg,
and Christian Sternagel. The Isabelle/Isar Reference Manual.

[WDS+14] Stephan Watt, James Davenport, Alan Sexton, Petr Sojka, and Josef Urban, editors.
Intelligent Computer Mathematics, number 8543 in LNCS. Springer, 2014.

[WG10] Magdalena Wolska and Mihai Grigore. Symbol declarations in mathematical writ-
ing: A corpus study. In Petr Sojka, editor, Towards Digital Mathematics Library,
DML workshop, pages 119–127. Masaryk University, Brno, 2010.

[WGK11] Magdalena Wolska, Mihai Grigore, and Michael Kohlhase. Using discourse con-
text to interpret object-denoting mathematical expressions. In Petr Sojka, editor,
Towards Digital Mathematics Library, DML workshop, pages 85–101. Masaryk
University, Brno, 2011.

[Wie07a] Freek Wiedijk. Mizar’s soft type system. In K. Schneider and J. Brandt, edi-
tors, Theorem Proving in Higher Order Logics, volume 4732 of Lecture Notes in
Computer Science, pages 383–399. Springer, 2007.

[Wie07b] Freek Wiedijk. The QED manifesto revisited. Studies in Logic, Grammar and
Rhetoric, 10(23):121–133, 2007.

[Wik] Wikipedia. https://en.wikipedia.org/. seen July 2016.

[Wol02] Stephen Wolfram. The Mathematica Book. Cambridge University Press, 2002.

[Wol12] Magdalena Wolska. Building a pos-annotated corpus of scientific papers in math-
ematics. In Petr Sojka and Michael Kohlhase, editors, DML and MIR 2012.
Masaryk University, Brno, 2012. in press.

[Wol13] Magdalena Wolska. Student’s Language in Computer-Assisted Tutoring of Math-
ematical Proofs. PhD thesis, ComputerLinguistik, Saarland University, 2013.

[ZBM] Zentrallblatt MATH. https://zbmath.org/. seen July 2016.

142

https://en.wikipedia.org/
https://zbmath.org/

BIBLIOGRAPHY

[Zil03] Boris Zilber. Covers of the multiplicative group of an algebraically closed field of
characteristic zero, 2003.

[Zin04] Claus Zinn. Understanding Informal Mathematical Discourse. PhD thesis, Tech-
nischen Fakultät der Universität Erlangen-Nürnberg, 2004.

143

	1 Introduction
	I Flexiformal Phenomena and State of the Art
	2 Flexiformal Phenomena in Mathematics
	2.1 Phenomena of Mathematical Vernacular
	2.1.1 Phrase Structure
	2.1.2 Discourse Structure
	2.1.3 Document Context
	2.1.4 Level-Independent Phenomena
	2.1.5 Additional Requirements

	2.2 Narration and Structure in Formal Mathematics

	3 State of the Art

	II Representing Flexiformal Knowledge
	4 Preliminaries
	4.1 The OMDoc Format
	4.2 The Mmt Language and System
	4.2.1 The Mmt Language
	4.2.2 Inference System
	4.2.3 The Mmt System

	5 A Formal Language for Flexiformal Knowledge
	5.1 Mmt Extensions for Flexiformal Knowledge
	5.1.1 Opaque Terms
	5.1.2 Bipartite Terms
	5.1.3 Bipartite Declarations
	5.1.4 Derived Declarations

	5.2 The iMmt Language and System
	5.2.1 Grammar
	5.2.2 Referencing Declarations
	5.2.3 Implementation

	6 Representing Flexiformal Phenomena in iMmt
	6.1 Informal Mathematics
	6.1.1 Notations and Verbalizations
	6.1.2 Mathematical Structures
	6.1.3 Structured Proofs
	6.1.4 Dynamic Theories
	6.1.5 Recaps
	6.1.6 Foundational Ambiguity

	6.2 Formal Mathematics
	6.2.1 Local Scopes
	6.2.2 Sections
	6.2.3 Mmt Structures
	6.2.4 Documents

	III Flexiformal Knowledge Management
	7 Flexiformal Mathematical Libraries
	7.1 Importing the Mizar Library into iMmt
	7.2 Importing sTeX Libraries into iMmt
	7.2.1 Object Level
	7.2.2 sTeX primitives as iMmt declarations
	7.2.3 Implementation

	7.3 Importing the OEIS Library into iMmt

	8 Applications for Flexiformal Knowledge
	8.1 The iMmt System as a Semantic Database
	8.1.1 Accessing Explicitly Represented Content
	8.1.2 Accessing Induced Material

	8.2 The MathHub System
	8.2.1 System Architecture and Realization
	8.2.2 Services and Applications
	8.2.3 Implementation Overview

	9 Conclusion and Future Work

