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Abstract. The increase of mathematical knowledge during the last few hundred
years and its development towards greater precision has led to the formalization
of large parts of mathematics. There are currently several systems that allow the
formalization of mathematics and that are able to formally check the correct-
ness of mathematical proofs. However, they are based on different foundations
of mathematics which means that their libraries of formal mathematics are com-
pletely independent and not translatable from one system to another. Here we
give translations from Isabelle/HOL and Mizar’s Tarski-Grothendieck set theory
to ZFC that formalize the set theoretical semantics of Isabelle and Mizar. The
translations are represented in the Edinburgh logical framework LF and include
representations of ZFC, Isabelle, Isabelle/HOL, Mizar and Tarski-Grothendieck
set theory in LF.

1 Introduction and Related Work

1.1 Formalized Mathematics

The 20" century saw significant advances in formal set theory mostly stimulated by
the discovery of paradoxes in naive set theory. The most famous paradox was found
by Russell in 1901 and roughly arises from unlimited set comprehension. To conform
with our intuition about logic, set theories must ensure that truth and falsity are disjoint,
meaning that the theory is free of contradiction (consistent).

Despite its conceptual beauty naive set theory was not consistent and Russell’s para-
dox, although simple, did not suggest an immediate fix. As a result several foundations
were developed by mathematicians over many years but this process did not lead to a
commonly accepted solution but to a continuous branching of set theories.

The two most important classes of foundations are axiomatic set theory and type
theory.

Axiomatic set theory [31] assumes a universe of sets and that all mathematical
objects that can be introduced are sets. A number of propositions (axioms) are chosen
as fundamental truths and then (usually) first-order logic is used as a language to com-
pose propositions about the sets and reason about them. Provided that the axioms were



chosen correctly they must not lead to contradiction and at the same time be powerful

enough to generate the whole of mathematics.

Type theory [38] challenges the assumption that all objects in the universe are sets
and creates a universe containing a hierarchy of types and then assigns each object
to a type. In their simplest form, type theories have two classes of objects, terms and
types. Intuitively, in type theory, each term x has (usually) one type A and the set
theoretical reasoning is constrained to terms of the same type. This is employed by
many programming languages where each variable has a certain type and functions
(sum, multiplication etc.) are only valid if applied to argument of the proper type (e.g.
cannot add a string to an integer).

Both set and type theory have led to many distinct foundations of mathematics. The
most widely used axiomatic set theory today is Zermelo-Fraenkel [46/9](optionally
with choice) but there are other relevant variants like Tarski-Grothendieck [32], von
Neumann-Bernays-Godel or Morse-Kelley [36]. For type theory, the most common to-
day is Church’s simple theory of types [7] also called higher-order logic(HOL) and
other variants include Russel’s ramified theory of types [30]], dependent type theory and
System F.

With the development of computer science several systems were developed with the
purpose of allowing the representation of mathematical knowledge and mathematical
proofs in a computer environment so that a program can check their correctness or find
proofs automatically. Some of these systems were quite successful and there is a large

amount of theorems that were formalized in such a way.

The Mizar project [35/42] started in 1973 and is “an attempt to reconstruct math-
ematical vernacular in a computer-oriented environment”. Thus it is designed to be
similar to the natural language of mathematics and part of its purpose is to provide a
large library of mathematics. A major project is the translation to Mizar language of a
mathematics book: “A Compendium of Continuous Lattices” [39/20]. Another reason
Mizar is particularly interesting in that it is also based on untyped set theory — very sim-
ilar to ZFC — and only has types implicitly through its inner syntax. This is in contrast
to most other computer-based formalizations of mathematics, which are typically based

on typed formalisms.

One such formalization is Isabelle [24], which is a generic proof assistant. Is-
abelle is a logical framework, and the most important logic formalized in it is HOL.
Isabelle/HOL has proved quite successful and is currently the most widespread instance
of Isabelle [41].



1.2 Integrating Foundations

Many mathematical results and proofs are formalized in each of the above systems,
but since some of them start from axiomatic set theory, and some from various type
theories, these proofs are not or not easily translatable from one system to another.

Our goal is to provide a framework for such translations by using theory mor-
phisms [8l4] which are truth preserving maps between mathematical theories. There-
fore, we formalize three foundations — ZFC, Isabelle/HOL and Mizar’s Tarski-Grothendieck
set theory — and provide translations between them in LF. For this we are using the Twelf
system which provides an implementation of the LF logical framework and also has a
module system which enables the formalization of theory morphisms [28]].

Isabelle/HOL and Mizar are interesting because they currently have the largest li-
braries of formalized mathematics while Zermelo Fraenkel is the set theory most com-
monly used by mathematicians. Ideally we should create morphisms between each of
these theories so we can translate proofs from one to the other.

In this thesis we will describe an implementation of ZFC based on FOL and then
the recovery of typed reasoning within the ZFC framework [13]]. In addition we will
present morphisms (views) to ZFC from other important foundations of mathematics:
Isabelle/HOL and Mizar’s Tarski-Grothendieck set theory. From a mathematical per-
spective this will provide a proof that the primitives in other typed systems can be also
seen as entities within ZFC. This is also a step towards the integration of these systems
with the ultimate purpose of providing a universal library of mathematics containing
all the mathematical knowledge. Morphisms between theories and views - the Twelf
specific implementation of this - will be explained further in Section 2]

Related Work Scunak [3] is a small, stand-alone, in-
dependent system for formalizing mathematics. It is
implemented in Common Lisp and is designed to sup- ~MIZAR < » Isa/HOL

port a logical framework ’just strong enough’ to sup-
port natural versions of formal set theory [44]]. Scu-
nak’s purpose is similar to ours since it also starts from
an axiomatic set theory and attempts to provide a plat-
form for formalizing mathematics [6].
A big success of such projects was for example ZFC

the proof of the four color theorem which was fully
checked by the Coq proof assistant [10]]. It was the first
long-standing mathematical problem to be solved us-

ing a computer program.



A similar project is Flyspeck which attempts to produce a formal proof of the Kepler
conjecture [40]. It uses HOL Light which is a HOL system implemented in Ocaml [[12].

The Logosphere project [26] focuses on developing a Formal Digital Library for
managing and sharing mathematical knowledge. It has formalizations of HOL, Nuprl
and PVS in LF and a trabslation from HOL to Nuprl [21]].

There are also translations between HOL systems [19122]] as well as an interpre-
tation of HOL-Light in Coq [15]. The OpenTheory project [[14] is designed to allow
proofs to be shared between the different theorem prover implementations of higher
order logic, including HOL4, ProofPower/HOL and HOL Light.

A newer project is the LATIN project [17] — Logic ATlas and INtegrator — which
aims at developing methods, techniques, and tools for interfacing logics and proof sys-
tems.

This thesis is organized as follows. In section 2] we will introduce LF and Twelf’s
module system. Section (3| will discuss the representation of ZFC in Twelf and the re-
covery of type theoretic semantics in untyped set theory. Section 4] will focus on the
representation of the syntax of Isabelle/HOL in Twelf and the theory morphism from
Isabelle to ZFC. Similarly section[5|will analyze the morphism from Mizar (using Tarski
set theory) to ZFC as well as the Twelf representation of the Mizar syntax. Finally[6| will
present possible future work related to this thesis.

The code that will be described here spans over several thousands of lines of code so
we will only present simplified snippets when needed and rarely entire proofs as some
of them are quite long. The full Twelf sources are available at [45].

Acknowledgments This thesis was done with the strong support of and in collaboration
with Florian Rabe. In particular, the formalization of Isabelle/HOL described in sec-
tions 4.2 and .3 was done entirely by him and is presented here only as an introduction
for the interpretation of Isabelle/HOL in ZFC presented in section [4.4]

2 LF

A logical framework is a meta-language used for the formalization of deductive sys-
tems.

LF [11] is a logical framework based on dependent type theory and the judgement
as types methodology. It is related to Martin-Lof type theory [[18] and the corner of the
lambda cube [2] that extends simple type theory with dependent function types. We will
work with the Twelf implementation of LF.

The declarations in Twelf are kinded type family symbols a : K and typed constants
c : A. Both can carry definitions, ¢ : A = ¢ means that c is an abbreviation for ¢. The



objects of Twelf are kinds K, kinded type families A : K, and typed terms ¢ : A. type
is the kind of types and A — type is the kind of type families indexed by terms of type
A.

We use the Twelf notation for binding and application:

- II,.2B(z)is {zx : A} B x (we write A — B, when « : A does not occur in B)

- Apat(z)is[z] tz

We can also omit the types of bound variables if they can be inferred.

The Twelf module system [29] is based on the notions of signatures and signa-
ture morphisms. Given two signatures Sig S = {X} and Sig S’ = {X’} a signature
morphism from S to S’ is a type and kind preserving map from X symbols to X’ ex-

pressions.

The modular declarations are signatures and explicit morphisms called views. Sig-

natures can be nested and may import other signatures via inclusions and structures.

Signatures X u=.|X, sigT = {X} | X, viewv : § —- T ={o}
| X, include S| X, structs : S ={o}
| X, c:A[=t]| X, a: K[= 4]

Instantiations ¢ ::=-| o, c:=t|o, a:= A| o, struct s :=p
Kinds K:=type| A— K

Type families A ::= S.a* | At|{x: A} A

Terms t w=Set|x|[z: Attt

Morphisms  p ::= (v | T.s)*

For constants, the notation S.c* as a constant in signature 7" means that c is a con-
stant in signature S and p is a morphism from S to T. This means that if the type of ¢
in signature S is A then the type of S.c# in signature 7" is p1(A). Basically S.c* is the
projection of the constant ¢ from signature S through morphism .

Consider {o : S — T} to be an explicitly given signature morphism. If declared on
toplevel, it is called a view. Because judgments are represented as types and proofs as
terms, signature morphisms must map axioms and inference rules to proofs and derived
rules. Thus, views have the flavor of a theorem expressing the judgment-preserving

representation of one signature in another.

Example 1 (Representation of FOL in LF).



sig FOL =1
set : type.
prop : type.
ded :prop — type.

true :prop.

false : prop.

not  :prop — prop.

imp  :prop — prop — prop.

and :prop — prop — prop.

or . prop — prop — prop.

forall : (set — prop) — prop.

exists : (set — prop) — prop.

eq . set — set — prop.

equiv : set — set — prop = [a][b](aimpb)and(bimpa).

3.

This introduces two types set and prop. Intuitively prop stands for propositions (true
or false), set for sets and ded A for proofs of A.

3 Zermelo Fraenkel Set Theory

3.1 Preliminaries

Zermelo Fraenkel set theory (commonly abbreviated ZFC when including axiom of
choice and ZF without choice) is one of the axiomatic set theories presented in the
beginning of the 20 century in response to the discovery of Russel’s paradox. ZFC
has a single ontological notion, that of a hereditary set meaning that all elements of
every set are also (hereditary) sets. In fact ZFC assumes that all objects in the domain
of discourse are such sets. Its signature consists only of equality and set membership.

For the axioms of ZFC there are many equivalent formulations so for the sake of
clarity we will present the one we used here:

— Axiom of extensionality
VaVy(Vz(z €ex &z €y) = x =y)
— Axiom of set existence
Jx true
— Axiom of unordered pairing
VaVyda(Vz(z =xVz=1y) = 2z € a)



— Axiom of union
VedaVz(Fz(x € X Nz € X) = z € a)
— Axiom of power set
VrIaVz((Vt(t € z =t € x)) = 2z € a)
— Axiom schema of specification
VX3a(Vz((z € XA(p 2)) © z € a)) foraunary predicate ¢ (possibly containing
free variables).
— Axiom schema of replacement :
Va(Vz(r € a) = 'y(p = y)) = I(Vy@r(r €aNgp xy)) &y €b) fora
binary predicate ¢ (possibly containing free variables).
— Axiom of regularity
Ve (3t(t € x)) = (Fy(y € x Anot(3z(z € x Az € y)))).
— Axiom of choice
Va((Vx(zx € a) = Vy(ly € a) = (x =y Vnot(Iz(z € x Az € y)))) A (Va(x €
a) = (3t(t € x)))) = Be(Va(r € a) = (F'y(y € c Ay € 2)))).
— Axiom of Infinity
@ exAVyly ez = (yU{y}) €x))

Note that there no terms except for the variables. Concrete sets and operations on
them are introduced as abbreviations after proving their unique existence. This kind of
abbreviations cannot be formalized in FOL, which is why we will introduce a descrip-
tion operator below.

3.2 Untyped Set Theory

In our case, the First Order Logic and the axioms of ZFC are already defined, and
provide a backbone for building the untyped and typed reasoning. For the sake of clarity,
some of the Twelf declarations in this paper are slightly simplified to make it easier to
understand. The rest of the Twelf listings presented in the here will thus be consistent
with the simple FOL presented in section 2]

For example, Axiom of extensionality can be written in Twelf as:

az_extensionality : ded forall [x] forall [y]

(forall ([z] z in x equiv z in y)imp © eq y).

Starting from FOL and the axioms of ZFC we can define all notions of set theory.
On this basis we can build the untyped set theory by defining union, pair, cartesian
product, functions and even natural numbers.

This is in contrast to Mizar where primitive function symbols are used for singleton,

unordered pair, and union [35)34], and to Isabelle/ZF where primitive function symbols



are used for empty set, powerset, union, infinite set, and replacement [25]]. Since we
are using this particular axiomatization we have no primitive function symbols which
means that there are no terms except variables. Therefore, we add the (definite) descrip-
tion operator 6 : {F : set — prop} + 3'([z] F x) — set, which takes a formula F(z)
with a free variable 2 and a proof of 3'z.F(z) and returns a set (where the binder 3'
means unique existence and is defined as an abbreviation). Because a proof is passed as
an argument, the LF type system guarantees that 4 encodes the accepted mathematical
practice of giving a name for a uniquely determined object. § is axiomatized using an
axiom scheme F'(6 F' P) (from which we can derive proof irrelevance)

Using this operator for implicit definitions (which we name ¢mipDef in our LF
signature) we can introduce unordered pair, big union, powerset and other function

symbols. Firstly we introduce two more theorems:

— spec_unique : if a class ¢ : set — prop defines a set then that set exists uniquely
— shrink : if there is a set X larger then the class ¢ : set — prop then that class is a

set .

We won’t present the proofs here as they are quite long but they roughly result from
axiom of extensionality and axiom schema of specification.

spec_unique :  ded (exists [x] forall ([z] (Phi z) equiv z in x))

— ded existsU [z] forall ([z] (Phi z) equiv z in x) = - - -
shrink : ded (exists [X] forall ([z] (Phi z) imp z in X))

— ded (exists [z] forall ([z] (Phi z) equiv z in x)) = - - -

Now we can define, for example, unordered pair in the following way:

1S_uopair : set — set — set — prop
= [z][y][a](forall [2] (z eq x or z eq y) equiv z in a).
p_uopair : ded existsU (is_uopair A B)
= spec_unique(shrink (forall2E ax_pairing A B)).
uopair . set — set — set
= [a][b] implDef (is_uopair a b) p_uopair.
Union of two sets A B which is defined as the bigunion of the unordered pair of A
and B.
unton : set — set — set
= [z][y] bigunion (uopair z y).
(Ordered) Pair of two sets A and B is defined as the set {{ A}, {{ B}, 0}} Note that
we are not using the common Kuratowski pair: {{a, b}, {a}} because reasoning about

Kuratowski pairs requires the law of excluded middle and even though we assume that,
we avoid using it if possible to make our development more reusable.



pair : set — set — set
= [a][b] uopair (singleton a)

(uopair (singleton b) empty).

Product of two sets A and B is defined as the set containing pair = y for every
r € Aandy € B.

prod : set — set — set
= [a][b] bigunion
(image ([z] image ([y] pair x y) b) a).
We can define the set of all relations between two sets A and B as the powerset of
the product of A and B:

rel : set — set — set = [a][b] (powerset (a prod b)).

Now we can define a function functional that takes 3 sets as arguments: A, B and
R and returns true if and only if R is a relation on A B and for every x € A there is at

most one y € B such that pair z y is in R.

functional : set — set — set — prop
= [a][b][r] (r in rel a b) and
(forall [x] forall [y] forall [y']
((pair x y) in r and (pair x y') inr) imp y eq y').

We can now proceed to defining functions but for that we need another two notions;
tmage and filter. For the sake of simplicity we won’t present the Twelf definitions for

them here but just their mathematical meaning:

- filter X p={x:2x € X ANp(x)} where X is aset and ¢ : set — prop is a unary
predicate

- tmage FF A={F(z) : * € A} where Aisasetand F' : set — set is a unary
function

Now we define partial functions as relations that are functional and total functions
as partial functions that are also defined in every point.

[b] filter (rel a b)([r] functional a br).
[b] filter (pfuncabd)

([r] forall [x] x in a imp exists [y] (pair x y) in ).

pfunc: set — set — set = [a

func : set — set — set =[a

Finally, we can continue with lambda and apply :

- lambda a f = {(z, f(z)) : z € a}



— apply f a = f(a) value unspecified unless de finedAt f a

lambda : set — (set — set) — set = [a][f] image ([z] pair z (f x)) a.

apply : set — set — set = [f][a] bigunion (img [ a).

Since we are starting from just the axioms, we can thus infer the validity of all
the concepts defined and type-check all the proofs and definitions. Consequently, every
such definition is accompanied by functions that capture their properties. We prove the
usual conversion rules for pairs and functions (3, 7).

For example for pair we have pil ( and pi2) which, when applied to an ordered
pair, returns the first ( and second) element of the pair. For each of these we need to
prove that the properties we associate with it hold. For example we need to prove that
pil (pair X Y)is X.

This means that the definitions contain more than the syntax of the functions defined

but also allow us to recover their meaning.

3.3 Typed Set Theory

In Computer Science, for practical reasons typed set theory is much more appealing
than untyped. Types are needed for efficiency and decidability and the systems that use
typing like Mizar and HOL are very successful. We define typed set theory by first
defining classes. They are represented in LF using proof-catrying terms, pairs of a set

and a proof that the set is in the class.

Class : (set — prop) — type.

celem :{a: set} ded P a — Class P.
cwhich : Class P — set.

cwhy :{a:Class P} ded (P (cwhich a)).

Elem : set — type = [a] Class [z] x in a.

elem :{a:set} ded ain A — Elem A=la]p] celem a p.
which : Elem A — set = [a] cwhich a.

why  :{a: Elem A} ded (which a) in A = [a] cwhy a.

Class P simulates Y,.; (ded P x); From this perspective, celem corresponds to
pair, cwhich to pil and cwhy to pi2. Elem A specializes Class to those classes that
are sets and thus gives the intuitive symbols specific to typed set theory.

Then :

X : Elem A

means that X contains an element x and a proof that x is in A. This requires us to
redefine the concepts from untyped set theory but we can use those definitions here.

10



For example, the equality of two Elems is defined as the equality of the elements they
encode :

Eq: ElemA — ElemA — prop = [a][b] (which a) eq (which b).

Now Eq takes two arguments which are both Elem A so it behaves it a way con-
sistent with typed set theory, it can only be applied to arguments of the same type. By
raising the other operations from untyped to this level using Elems we can define all the
other functions of typed set theory within ZFC and prove their properties, thus allowing
for typed reasoning within untyped set theory.

We can consider func A B as the set of functions from A to B and then define
Lambda, App, Forall, Filter, Eq and i fte.

func : set — set — set = ...
Lambda : (Elem A — Elem B) — Elem(func A B)
= [Fl[z] elem (apply (which F)(which x))(funcE (why F)(why x)).
App : Elem(func A B) — Elem A — Elem B= ...
Forall : (Elem A — prop) — prop = ...
Filter : (Elem A — prop) — set = ...

Eq : Elem A — Elem A — prop
= [a][b] (which a) eq (which b)
ifte : {F:0}(+ F— Elem A) - (+ = F — Elem A) — Elem A= ...

4 Isabelle/HOL

4.1 Preliminaries

Isabelle is a logical framework and a generic interactive theorem prover based on poly-
morphic higher order logic [37]. It is a grown and widely used system, which has led to
a rich ontology of Isabelle declarations.

In this paper we will only consider the core and module system declarations and
even among those we will focus on a proper subset of Isabelle’s power.

The inner syntax of for terms, types, propositions and proof terms — called the Pure
language — is given by an intuitionistic higher order logic with shallow polymorphism.

For the full syntax of Isabelle we refer to [37].

4.2 Formalizing Isabelle

The representation of Isabelle in LF proceeds in two steps. In a first step, we declare an
LF signature Pure for the inner syntax of Isabelle. This syntax declares symbols for
all primitives that can occur (explicitly or implicitly) in Pure expressions. In a second

11



step, every Isabelle expression FE is represented as an LF expression " E™. Finally we
have to justify the adequacy of the encoding. In this section we will only sketch the

definition of " E™. A full definition is given in the appendix.

sig Pure = {
tp : type.
= tp—1ip — tp. infixright 0 =.
tm :tp — type. prefix 0tm.
A :(tm A—tm B) —tm (A= B).
Q@ :tm(A=B)—>tmA—tmB. infix left 1000 Q.
prop : tp.
N (tm A — tm prop) — tm prop.
= :tm prop — tm prop — tm prop. infixright | =
= itm A —tm A — tm prop. infix none?2 =.
= :tm prop — type. prefix 0F.

Al (z:tmAF (Bz)) —F A([z]B ).

NE :FA(z]Bz) — {z:tm A} + (B z).
—Il:+FA -+B) -+ A= B.

—E:+A=—B —-+FA —+ B.

refl FX=X.

subs ({F:tm A - tmB}FX=Y -FFX=FY.
exten : {z:tm A} F (Fz)=(Gz) - FAF =)\G.

beta :F (Nz:tmAJFz)QX =F X.

eta FA(z:tmAJFQz)=F.

Fig. 1. LF Signature for Isabelle

For the inner syntax, the LF signature Pure is given in Fig.[I] This is a rather typical
encoding of higher-order logic in LF. Pure types 7 are encoded as LF-terms "7 : tp
and Pure terms ¢t :: 7 as LF-terms "¢ : tm "7. Note that contrary to the encoding
of HOL in Isabelle, the LF function space A — B with A-abstraction [« : A]t and
application f t is distinguished from the encoding tm ("¢ = "77) of the Isabelle
function space with application ™ f7 @ "¢™ and A-abstraction A\([x : tm "77|"¢7). Pure
propositions ¢ are encoded as LF-terms "' : prop, and derivations of ¢ as LF-terms
of type = "¢ . Where possible, we use the same symbol names in LF as in Isabelle,
and we can also mimic most of the Isabelle operator fixities and precedences.

12



The signature Pure only encodes how composed Pure expressions are formed from
the atomic ones. The atomic expressions — variables and constants etc. — are added when
encoding the outer syntax as LF declarations. For the non-modular declarations, this is
straightforward, and overview is given in the following table:

Expression Isabelle LF

base type, type operator Q1. .,ap)tltitp— ... > tp—tp
type variable Q a:tp

constant cuT c:tm"r!

variable T T ritm T
assumption/axiom/definition|a : ¢ a:k-"p!

theorem a:pP a:FTpl="rp7t

For a proof of the adequacy of this formalization we refer to [27].

4.3 Formalizing HOL

The fragment arising from translating only the primitive declarations of HOL is given in
the upper part of Fig.|2l For readability, we have added the auxiliary functions T, =’ and
—. These have the effect that, e.g., A — B in Isabelle can be encoded as A — B
in LF, which abbreviates —' Pure.@Q A Pure.@ B. We also use an open declaration
to use some Pure symbols without qualification. (Note that the defined constants true,
false, and disjunction | are not expanded in the axiom of excluded middle.)

We refer to [27] for the details of the Formalization of Isabelle/HOL in LF.

4.4 Interpreting Isabelle/HOL in ZFC

We interpret Isabelle in ZFC by creating a view from our Isabelle signatures (Pure and
HOL to ZFC). The basic idea is that we map Isabelle types as non-empty sets and
Isabelle propositions as booleans. Thus - x can be interpreted in ZF'C' as ded x eq 1

Isabelle |ZFC

a:tp PureSem(a) : Class non-empty.

t:a PureSem(t) : Elem (cwhich PureSem(a)).
p : ded F|PureSem(p) : ded PureSem(F).

The rest of the Pure signature is interpreted in a straightforward way as presented in
Fig. 4] The mapping of Isabelle propositions to booleans does not seem natural as they
seem the equivalent of propositions in set theory. However Isabelle considers prop to
be a regular type which means that it should be interpreted as a set. For this reason

13



sig HOL ={
include Pure opentptmb = prop A Q A = =.

bool :tp.
trueprop . tm bool = prop.
T . tm bool — tm prop
= [z] trueprop Qx. prefix 3 1.
the : tm (A = bool) = A.
eps : tm (A = bool) = A.

= :tm A= A= bool.

= :tm A — tmA — tm bool

=[z][y] = @z @y. infix left 50 =.
—’ : tm bool = bool = bool.
— : tm bool — tm bool — tm bool
= [z][y] —' @z Qy. infix left25 —.
refl HX =X,
subst T HTS=T —PQS=PQT.
ext tFE(Az:tm AT FQr =GQz) =1 (\[z] FQz) = (A\[z] GQux).
the_eq_trivial : F] the@ (A[z]z = A) = A.
somel FT (PQX) —1 (PQ(epsQP)).
impl FOP=1Q)=1(P— Q).
mp CH(P—Q)=TP=170Q.
iff L (P — Q) — (Q — P) — (P = Q).
true_or_false : F1 (P = true) | (P = false).

Fig. 2. LF signature for HOL

we use booleans which are an LF encoding of the set {0, 1} where 1 = {0}. The fact
that Isabelle types map to non-empty sets means we need to write definitions in ZFC for
functions between non-empty sets. In other words for each function that we need for the
Isabelle interpretation we have to prove that when taking non-empty sets as arguments
it also returns non-empty sets. For that we create another LF signature which includes
ZFC and where we defined the extra operators needed just for this translation in order
to simplify the view. First we need a specific type for non-empty sets:

neset : type = Class nonempty.

elems : neset — type = [a] Elem (cwhich a).

Next we can define function only for this type using the ones we have for all sets. For
example for lambda and apply we have :
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lam : (elems A — elems B) — elems(fun — A — B)
= [f] elem (which (Lambda f))
(congP (sym ceq_which) ([z] (which (Lambdaf)) in x)(why (Lambda f))).
app : elems (fun A B) — elemsA — elems B
= [f][a] elem (which (Apply (cast (subset_eq subset_refl ceq_which) f) a))
(why ((Apply (cast (subset_eq subset_refl ceq_which) f) a))).

view PureSem : Pure — ZFC = {

tp = neset.

= = func.

tm = elem.

A := lambda.

Q@ :=app

prop := bool

/\ =

= ==,

= =eq.
Foi=[z]F eqal

Fig.4. Pure — ZFC View

Similarly, we obtain a view
from HOL to ZFC. Again we

only give a fragment: Note that

ZFC Pure

Isabelle’s bool is also mapped PureS

to booleans. The mapping for

the basic operators is shown in Typed ZFC < HOLSem

HOL
Fig.[3]
For the full encoding we re- Fig. 3. Isabelle/HOL — ZFC
fer to [17].

The mapping we described is shown if Fig. 5] where double arrows represent views.
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view HOLSem : HOL — ZFC = {

bool := bool.
trueprop := [x] x.
the = [f : Elem (func A bool)]ifte (3'[x]z € (filter f))

([p] (choice (elem (filter f)(=giim P p))))
([p] choice A).

the :=[f : Elem (func A bool)]ifte (nonempty (filter f))

([p] (choice (elem (filter f) p)))
, ([p] choice A).

= = Fq.

;fypedef :=[A][f : Elem (func A bool)] [p] elem (filter f)p.

Fig.5. HOL — ZFC View

5 Mizar

5.1 Preliminaries

Mizar is a language designed in the seventies with the purpose of representing mathe-
matical proofs in the computer. The proof checker is written in Pascal and the Mizar lan-
guage is very similar to that of formal written mathematics which makes the system all
the more impressive. Besides the system itself a major achievement of the Mizar project
is the MML (Mizar Mathematical Library) which currently contains over 50000 theo-
rems and 9500 definitions [43]. Because the Mizar language is so similar to the math-
ematical vernacular, the articles in the MML can be translated to IZIgX automatically
while also remaining close enough to the mathematical language to be understood by
people that are not familiar with Mizar. There is even a Journal of Formalized Mathe-
matics which is quite consistent and made up entirely of such translated Mizar articles.

Mizar is based Tarski-Grothendieck set theory which is more general than ZFC due
to it’s Tarski axiom [33] which implies the axioms of infinity, choice and powerset but
also implies the existence of inaccessible cardinals which makes the ontology of Tarski-
Grothendieck set theory richer. This is relevant when creating a view from Mizar to ZFC
because the Tarski Axiom cannot be defined within ZFC. However the fact that TG is
richer than ZFC means that we can create a view from ZFC to Mizar and since we have
one from Isabelle to ZFC we can infer the view from Isabelle to Mizar.

Mizar proof checker is based on classical logic which thus implies the law of ex-
cluded middle, De Morgan’s laws and double negative elimination. Mizar includes by
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default a type any to which any other type expands. It also allows the definition of new
types. The basic ones are defined in the Hidden article which is automatically included
in the every Mizar article.

The basic types in Mizar are: Any, set, Element of X,DOMAIN, Subset of D,
SUBDOMAIN ofD, Real and Nat. Here X denotes a set and D a domain. The
type any is the broadest type in Mizar and every other types expands to it. set is
the set of all sets and is identical to any. DOMAIN is the set of all non-empty sets.
SUBDOMAINofD denotes all subsets of a domain D that are also domains ( non-
epmty). Real and Nat are real and natural numbers respectively.

One of Mizar’s most interesting parts is the Mizar attributes and mode. This allows
the definition of new types. The definition of an attribute has the following form:

definition let 27 be ¥4, ..., let x,, be ¥,,;

attr A -> (1, ..., x,) means 6(x1, ..., Tp,it);

end;

In the above A is the symbol of the attribute and the types ¥4, ..., 9J,, are called
parameters of the attribute A. it is a placeholder for the result of J(z1, ..., z,, ). Then we
can say 7 is A meaning that §(x1, ..., z,,, 7). For example non — empty is an attribute
of the type set.

This means we can use mode to get a new type:

definition

mode DOMAIN is non-empty set;

end;

Thus, DOMAIN is the type containing all non-empty sets, meaning it’s a subtype
of set and can be expanded to it. This is how Mizar introduces DOMAIN’s ( and also

how we do it here).

5.2 Formalizing Mizar

Our formalization of Mizar starts with separating any and set according to their in-
tuitive meaning. In Mizar the difference between them is rather blurry but their intent
seems rather clear. any is the type that encompasses all the elements in the universe of
discourse and its primary purpose is that any type can be expanded to it. set is simply
the type of all sets which happens to coincide with the type any because the universe of
discourse of the set theory used by Mizar is made entirely of sets. In our implementation
any and set are different types but, as in Mizar, they are isomorphic. Thus we create
a type any and a different type tp for Mizar types like set or DOMAIN. We recover
Mizar typing using terms only we use be instead of the more traditional ¢m to mimic

Mizar’s syntax. We define :
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be : tp — type
And then we can write variable introductions in a similar way to Mizar as shown in
Fig.[6]

Expression Mizar LF

type variable Q@ a:tp

constant let cbe T c:be 717
variable let x be T x:be" 7!
assumption/axiom/definition|de finition ¢ end, a: proofry?
theorem theorem : ¢ proof P end;|a:F T =P

Fig. 6. Mizar-LF type equivalences

The Twelf declaration of the Mizar formal logic is:

Thus prop, tp and any are default types. prop corresponds to it’s FOL equivalent,
any represents the Mizar type and ¢p is the type that allows the declaration of new
types. For example set and DOM AIN will be introduced as being of type tp. be is the
way of using domains for sets. When introducing a new variable (for example of type
set) Mizar uses: Let x be set In our declaration be is a function that takes a ¢p and
returns a type. So we can introduce a variable of type set as : {x : be set} func_def is
used to define functions. It takes a function F' : be A — prop and a proof of correctness
( existence and uniqueness) and returns the (unique) be A that satisfies F'. We can use
that to define functions, for example for unordered pair:

uopair : set — set — set = [x][y] func_def ([it] for [z : be set]

(zinit)iff (teqx orteqy))
(uopair_existence) (uopair_uniqueness)

Another interesting particularity of Mizar’s formal logic is that they don’t consider or
and ¢mp as axioms but they define them using and and not as shown in Fig.[/| In this
sense they use the standard way of defining them, or as —((—a) A (—b)) and imp as
—(a A (—b)). This implies that they are using classical logic since the law of excluded
middle can be immediately inferred:

tnd : proof A or (not A) = proof_by_contradiction ([p] notE
(andEr (proof_by_contradiction ([q] notE p q)))
(andEl (proof_by_contradiction ([q] notE p q)))).
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sig Mizar_FOL ={

prop I type.

tp s type.

any P type.

sub ttp — tp — type.

; sany — tp — type. infixright 30 ;.
be :tp — type.

be! Az any} x; A — be A.

proof : prop — type. prefix 0 proof.
or : prop — prop — prop = [a][b] not((not a) and (not b)).

imp : prop — prop — prop = [a][b] not(a and (not b)).

func_def :{f :be A — prop}(proof ex [x] f x) —
(proof for [z] for [y] (f x and f y) implies (x eq y)) — be A.
func_prop : {FH{EXH{UNQ} proof F (func_def F EX UNQ).

attr :tp — type = [a] (be a — prop).
is :be A — attr A — prop = [z][d] a .

mode :H{a : tp} attr a — tp.

Fig. 7. LF signature for Mizar

sig HIDDEN = {
include MIZ_FOL open.

set :tp.

m : be set — be set — prop. infix right 35 in.
non — empty s attr set = ([y] ex [z] x in y).

FElement_of : be set — tp.

DOMAIN 1 tp = mode set non — empty.

Subset_of :be DOMAIN — tp.

SUBDOMAIN _of : be DOMAIN — tp = [x] mode (Subset_of ) non — empty.
Real :tp.

Nat D ip.

set_ax 1 X; set.

DOMAIN _ax1 :(X;DOMAIN) if f (nonempty X).

DOMAIN_ax2 2 (X; DOMAIN) if f (nonempty X).

Fig. 8. LF signature for the HIDDEN article
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The Hidden signature introduces the types described above. For example set is a tp and
DOM AIN is defined as mode set non — empty which is the type of all non-empty

sets.

5.3 Formalizing Tarski set theory

sig Mizar_Tarski = {
include HIDDEN open.

'fraenkel :{A: be set} P : be set — be set — prop
proof (for [z : be set] for [y : be set] for [z : be set]
((P z y) and (P z z)) implies (y eq z))
— proof (ex [X] for [z] ((zin X) if f (ex [y] y in A and (P y x)))).

pair : be set— > be set— > be set = [z][y] uopair (uopair x y) (singleton x).
isomorphic : be set — be set — prop = [x][y] ex [2] (
for [a] (ain x implies ex [b] bin y and (pair a b) in z) and

al
for [b] (bin yimplies ex [a] a in x and (pair a b) in z) and
al

for [a] (for [b] (for [c] ( for [d](
(pair a b) in Z and (pair ¢ d ) in Z implies (a eq ¢) and (b eq d)

-
subset_closed  :{m} prop=[m] for [x] (for [y] ({ z in m) and (y c = x)) implies (y in m))).
powerset_closed : {m} prop = [m] for [x] (x in m implies (ex [z] z in m and

(for [yl y ¢ = = implies y in z))).
tarski_axiom  :proof for [n] (ex [m] (

n i m and

subset_closed m and

powerset_closed m and

for [z] (x ¢ = m implie ((isomorphic x m) or x in m)))).

Fig. 9. LF signature for Tarski set theory

Tarski set theory is defined in the standard way using Mizar formal logic described
in section[5.2] Since we are planning in creating a view from Tarski to ZFC we only need
to define the axioms and then the other concepts will be inferred from the view. This
means that the declaration of Tarski set theory in Twelf is merely a translation of the
Tarski article [34] from the Mizar Mathematical Library [43] to the Twelf system. The

definitions for singleton, uopair and union are inferred with func_prop and their
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existence and uniqueness are considered axioms. This is formally the same as done
in Mizar, except Mizar offers the possibility to suppress the request for proofs when
defining axioms, while in Twelf the existence and uniqueness proofs themselves must

be given as axioms.

5.4 Interpreting Tarskiin ZFC

Having defined the LF signatures for Mizar base, article hidden and Tarski set theory we
can give the semantics of Mizar as three LF signature morphisms from MIZ_FL, HID-
DEN and MIZ_TARSKI to ZFC. The basic idea if this is interpreting Mizar domains
(tp) as unary predicates that are true for sets that belong to the domain. For example
the predicate p1(z) = true defines sets while the predicate p2(x) = Jy(y € x) defines
non-empty sets, or Mizar’s DOMAIN. This means be maps to [f] Class f.

Mizar_ LF |ZFC

a:prop  |MizSem(a) : prop

a:any MizSem(a) : set

T:tp MizSem(T) : set — prop
o:beT MizSem(«) : Class MizSem(T)
a:proof PIMizSem(a) : ded MizSem(P)

view MizSem : MIZ_FOL — ZFC = {

prop = prop.

any = set.

tp = set — prop.

sub = [f]lg] ded forall [z] (f ) imp (g z).
; = [a][f] ded f a.

be :=[f] Class f.

be! = [A][x][p] celem x p.

proof :=[a] ded a.

Fig.10. Mizar — ZFC view

A Mizar proof maps to a ZFC ded which makes proofs translatable from one sig-
nature to another.

A small part of the views is presented here as Twelf code. Note that there are other
subtle differences between our ZFC' and Mizar which require some extra attention.
For example in our ZFC'_FOL the introduction and elimination rules for or and imp
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view HiddenSem : HIDDEN — Mizar_ZFC = {
include MizSem.
set = [z] true.

n :=[A][B] (cwhichA) in (cwhichB).
Element_of = [A][z] z in (cwhich A).
Subset_of = [A][z] z in (cwhich A).
SUBDOMAIN _of = [A][z]

Al[x]  in (cwhich A) and (nonempty x).

Fig.11. Hidden — ZFC' view

are given as axioms. However in Mizar or and imp are defined using and and not
as described in section [5.2] This causes some difficulty when doing the view. When
Mizar’s and is mapped to FOL’s and Twelf immediately understands and can translate
it. This makes mapping some other definition that uses and inside considerably easier.
In the case of or and ¢mp however this is not done automatically by Twelf and it needs
to be explicitly proved each time we use it. For example eq! in our Mizar is defined (

as in Mizar) in the following way :
eql :proof for [z : be set] for [y : be set]((for [z : be set]z in x if f zin y) implies (x eq y)).
In our ZF'C, eql is defined quite similarly:
eql : ({z}ded  in A — ded x in B) — ({z}ded x in B — ded z in A) —

ded A eq B.

From this we can easily prove ( in ZFC) that :

eql : ded forall [z] forall [y]((forall [2]z in x equiv z in y) imp (x eq y)).

It is also quite straightfor-

ward to move this from un- ZFC MIZAR_FOL
typed to typed since the Class MizS
for sets is the trivial class —
Classz]true —. Since proof ;
Typed ZFC < LarskiSem TARSKI

maps to ded , for to forall
and eq to eq this looks like the
equivalent of the Mizar state- Fig. 12. Mizar — ZFC

ment. However because 7 f f and

implies are different in Mizar

from ZFC they do not map to equiv and imp respectively. To fix this and other subtle
problems we created a signature Mizar_Z FC ( similarly to what we did in Isabelle)

where we defined some extra theorems to make mappings easier to do and understand.
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For example we defined or M in the same way as the or of Mizar and then proved that

it is equivalent to our or.

orM . prop — prop — prop
= [a][b] not ((not a) and (not b)). infix right 10 orM.
orZM : ded Aor B — ded AorM B

= [p] orE p ([q] notI ([r] notE (andELr) q))
([q] notI ([r] notE (andEr r) q)).
orMZ : ded AorM B — ded A or B
= [p] orE (tnd) ([q] orIr q) ([r] orll
(not_idem(notI ([s] notE p (andI s r))))).
orM _prop : ded (A orM B) equiv (A or B)
=equivl orMZ orZM.

We created similar equivalences for ¢mp and equiv and then used them to infer the
proper mapping from Mizar to ZFC.
This means that the mapping for eq! is :

view TarskiSem : Tarski — Mizar_ZFC = {
eql = Foralll [X] Foralll [Y] (impZM (impI ([p]
eql ([x] equivEl (equivM Z (forallE (forMZ p) x)))
([x] equivEr (equivM Z (forallE (forMZ p) x))))))

Fig.13. Tarski — ZFC view

6 Conclusion

We have formalized three foundations of mathematics in LF: ZFC, Mizar’s Tarski-
Grothendieck set theory and Isabelle/HOL. Moreover, we presented a way to recover
type theory from untyped set theory and two translations from Isabelle/HOL and Mizar’s
Tarski-Grothendieck set theory to ZFC by using the recovered type theoretical seman-
tics. The morphisms are presented in Fig.[T4] where double arrows represent views.

Future work will focus on three research directions.

Firstly, we can formalize more foundations and add more translations by extending
this approach to other systems like Coq [13]], Scunak [S], PVS [23] or Matita [1]].
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Mizar_FOL ZFC Pure

Tarski > Typed ZFC < HOL

Fig. 14. Mizar — ZFC « Isabelle/HOL

Secondly, we can use ongoing work regarding the implementation of hiding in
LF [17] to perform translations with filtering ( or partial morphisms) when a full transla-
tions is not possible because the target theory is simply not strong enough. This would
allow us to do the reverse views for foundations we have presented here ( ZFC' —
Mizar and ZFC — Isabelle) and use morphism composition to infer views to and
from Mizar and Isabelle which would allow us to translate between any two of these
theories in any direction.

Finally, we can integrate our translations with existing and ongoing work. The mor-
phisms described here are only withing the LF logical framework and we still require a
translation from Mizar and Isabelle to LF to be able to use the system. However, Twelf
is able to generate OMDoc — a markup model and data model for Open Mathematical
Documents [16] — from Twelf code as well as Twelf code from OMDoc. In addition
translations from Isabelle and Mizar to OMDoc are currently in progress [17].

In conclusion, together with the work described above we can help provide inter-
operability between existing mathematical libraries and theorem provers resulting in a
unified corpus of mathematical knowledge.
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