
Management of Change in the

Web Ontology Language

by

Figen Füsun Horozal

A thesis for conferral of a

Master of Science in Computer Science

Smart Systems Program

School of Engineering and Science

Prof. Dr. Michael Kohlhase

Name and title of first reviewer

Dr. Christoph Lange

Name and title of second reviewer

Date of submission: September 18, 2012

Declaration

I hereby declare that the work presented in this Master’s Thesis contains orig-
inal and independent results, except where sources and collaborations acknowl-
edged, and it has not been submitted elsewhere for the conferral of a degree.

Figen Füsun Horozal
Bremen, September 18, 2012

i

Acknowledgments

I would like to thank my supervisors Prof. Dr. Michael Kohlhase and Dr.
Christoph Lange for providing me this thesis topic and their supervision. Also, I
would like to thank Dr. Andrea Kohlhase and Dr. Florian Rabe for their valuable
discussions.

iii

Abstract

Ontologies are formal representations of knowledge from various fields that
range from artificial intelligence to semantic web and biomedical informatics.
They often change and evolve over time. It is crucial to manage changes when
working with ontologies to prevent inconsistencies that might arise from the
changes made. However, it is difficult to predict and track down consequences
of changes in large ontologies.

Changes and their impacts have been recently studied systematically in the
research area called management of change. One of the frameworks that has been
developed is a generic management of change service for the Module System for
Mathematical Theories (MMT).

This thesis addresses management of change in the Web Ontology Language
(OWL). Our goal is to investigate whether generic MMT services can be applied
to specific domains, specifically, to apply the generic MMT management of change
(MMT MoC) service to OWL, and thus to provide a management of change service
for OWL ontologies.

As requirements of management of change in OWL, we determine dependency
relations between elements in OWL, identify change impacts and represent them.
In particular, we conceptually apply change impact analysis to an ontology cov-
ering all relevant change cases, and mark change impacts as annotations in the
ontology. Representing change impacts as annotations permits us to visualize
change impacts in existing OWL tools like Protégé.

We implement a system to apply the MMT MoC service to OWL. It detects
changes, identifies impacts of the changes, and marks impacted elements. The
key idea is to translate OWL ontologies to MMT, to apply the MMT MoC ser-
vice to them, and then to translate them back to OWL. Thus, the MMT-based
implementation is hidden from OWL users.

Our work demonstrates that it is possible to apply the generic MMT MoC
service to OWL ontologies, and thus provides management of change in OWL
via MMT. Similarly, future investigations can cover applying other generic MMT
services to OWL, e.g., applying MMT search engine to OWL.

v

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Web Ontology Language . 5

2.1.1 OWL Web Ontology Language 5
2.1.2 OWL 2 Web Ontology Language 6
2.1.3 OWL/XML Syntax . 7

2.2 Services for OWL . 7
2.3 OMDoc Markup Language . 8
2.4 The MMT Language . 9
2.5 Services for MMT . 9
2.6 Management of Change . 10

3 Related Work: Management of Change in OWL 13

4 Requirements for Management of Change in OWL 17
4.1 Dependency Relations . 17

4.1.1 Entities . 17
4.1.2 Expressions . 21
4.1.3 Axioms . 21

4.2 Changes and their Impacts . 22
4.2.1 Renaming . 24
4.2.2 Deletion . 25
4.2.3 Addition . 26
4.2.4 Updating . 27
4.2.5 Multiple Changes . 29

4.3 Representing Change Impacts . 29
4.3.1 Change Impacts as Annotations 30
4.3.2 Renaming . 31

vii

4.3.3 Deletion . 33
4.3.4 Addition . 33
4.3.5 Updating . 34
4.3.6 Multiple Changes . 35

5 Representation of OWL in MMT 37
5.1 Formalizing OWL in Twelf . 37

5.1.1 Twelf Module System . 37
5.1.2 Representing Web Ontology Language in Twelf 38

5.2 Bi-Directional Translation between OWL and MMT 40
5.2.1 Translation from OWL to MMT 41
5.2.2 Translation from MMT to OWL 42

5.3 Plugin for MMT . 42

6 Implementation of Management of Change in OWL via MMT 45
6.1 Workflow . 45
6.2 Improving Results . 48
6.3 Adding Identifiers to OWL Axioms 48
6.4 Applying MMT Diff . 53

6.4.1 Renaming . 53
6.4.2 Deletion . 55
6.4.3 Addition . 57
6.4.4 Updating . 59

6.5 Marking Change Impacts . 64
6.6 Visualization of Changes and their Impacts 70

7 Conclusion 79
7.1 Summary . 79
7.2 Discussion . 80
7.3 Future Work . 82

A An Extended Family Ontology 89

viii

Chapter 1

Introduction

Ontologies are formal representations of knowledge from various fields that range
from artificial intelligence to semantic web and biomedical informatics. They often
change and evolve over time to meet requirements. For example, United Nations
Standard Products and Services Code (UNSPSC) [UNS11], which is a real world
ontology, was updated 16 times in 8 months and each update contained between 50
to 600 changes [Hug06]. There are several factors that cause changes in ontologies.
Some of those are domain changes and adaptations to different applications. The
lack of adaptations to changes in ontologies may cause incompatibilities with
dependent ontologies and applications. Therefore, it is crucial to manage changes
when working with ontologies to prevent inconsistencies that might arise from the
changes made. However, it is difficult to predict and track down consequences of
changes in large ontologies.

Changes and their impacts have been recently studied systematically in the
research area called management of change. In this area, one of the frameworks
is the generic management of change service that has developed for the Module
System for Mathematical Theories (MMT).

MMT (A Module system for Mathematical Theories) [RK12] is a sublanguage
of the OMDoc language [Koh06]. MMT has been designed as a generic declarative
language so that services for MMT can be developed and applied to specific do-
mains. Knowledge management services that are based on MMT, e.g., interactive
browsing, querying and management of change, can be applied to other languages
represented in MMT.

In this thesis, we address management of change in the Web Ontology Lan-
guage (OWL) [MPSP09]. It is a family of formal languages for representing
ontologies in the Semantic Web. Based on Description Logics (DL) [BCM+03],
OWL is a formal language with precise semantics.

1

There are some editing tools, e.g., OilEd [DBL01], OntoView [MHSV04] and
Protégé [Pro11], and some OWL diff tools, e.g., OWLDiff [kri11] and Ecco [GPS12],
which provide change management supports for ontologies. However, their sup-
port for management of change for ontologies is restricted such as lack of repre-
sentation of changes impacts.

Our goal is to investigate whether generic MMT services can be applied to
specific domains, specifically, to apply the generic MMT management of change
service to OWL, and thus to provide a management of change service for OWL
ontologies.

As requirements of management of change in OWL, we 1) determine depen-
dency relations between elements in OWL, 2) identify change impacts, and 3)
represent change impacts. Based on the dependency relations, we identify change
impacts to determine what to expect from an automated change impact analy-
sis for OWL. In addition, we use annotations to represent change impacts. In
particular, we conceptually apply change impact analysis to a use case ontology
covering all relevant change cases, and mark change impacts as annotations in the
ontology.

We provide a system to apply the MMT management of change service to
OWL, which detects changes, identifies impacts of the changes, and marks im-
pacted elements. It is based on our bi-directional translation between OWL and
MMT. The key idea is to translate OWL ontologies to MMT, to apply MMT
management of change service to them, and then to translate them back to OWL.
Thus, the MMT-based implementation is hidden from OWL users. Moreover, we
improved the results of our system by providing a second approach.

Scientific Contribution of this Thesis This thesis presents a broad investi-
gation of management of change in OWL ontologies. In particular, it provides a
comprehensive analysis of dependencies between elements in OWL and changes
and their impacts in OWL ontologies.

Significant contributions of this thesis are 1) our work demonstrates that it
is possible to apply the generic MMT MoC service to OWL ontologies, and thus
provide management of change in OWL via MMT, and 2) our representation of
change impacts as annotations inside OWL ontologies provides visualizing change
impacts to OWL users in existing OWL tools like Protégé.

Thesis Overview This thesis is organized as follows.
In chapter 2, we briefly give an introduction to OWL, OMDoc and MMT,

review the state of the art of services for OWL ontologies and for OMDoc, give a
brief overview of Management of Change.

2

In chapter 3, we discuss related work on management of change in OWL
ontologies.

In chapter 4, we investigate the requirements for change impact analysis using
a use case ontology, and discuss changes and their impacts in OWL ontologies.
Moreover, we present our representation of changes impacts as annotations inside
OWL ontologies, and illustrate our representation for each kind of change using
examples from our use case ontology.

In chapter 5, we present our formalizations of OWL in the logical framework
LF/Twelf, which MMT uses as meta-theory for representing OWL ontologies as
MMT theories. Moreover, we present out bi-directional translation between OWL
and its representation in MMT.

In chapter 6, we describe our system to apply the MMT management of change
service to OWL, which detects changes, identifies impacts of the changes, and
marks impacted elements. We discuss adding identifiers to axioms in OWL, de-
tecting changes and impacts using MMT, marking impacted elements. Moreover,
we describe how to visualize change impacts to OWL authors by existing OWL
tools.

In chapter 7, we draw conclusions on the work we have presented in this thesis,
discuss our work, and mention future work.

3

4

Chapter 2

Preliminaries

2.1 Web Ontology Language

The Web Ontology Language (OWL) [DS04, MPSP09] is a family of formal
languages for representing ontologies in the Semantic Web. It has been developed
by the World Wide Web Consortium (W3C) web ontology working group. It is
designed to be interpreted by computers to process information on the web. It
is an expressive language based on Resource Description Framework (RDF) and
RDF Schema (RDFS). In addition, it includes features from several families of rep-
resentation languages, in particular from Description Logics. The Web Ontology
Language defines classes, individuals, properties and their relationships to repre-
sent knowledge. A class is a set of individuals sharing a common attribute, and a
property is a relationship between individuals or from individuals to datatypes.

There are two versions of the Web Ontology Language currently: OWL Web
Ontology Language [DS04] and OWL 2 Web Ontology Language [MPSP09]. The
OWL Web Ontology Language was published in 2002, and it was extended to the
OWL 2 Web Ontology Language in 2008 by adding several new features.

2.1.1 OWL Web Ontology Language

OWL Web Ontology Language (OWL 1) [DS04] includes three sublanguages that
are OWL Lite, OWL DL and OWL Full with increasing level of expressiveness.
OWL Full was developed by extending of OWL DL, which is an extension of OWL
Lite.

OWL Lite OWL Lite is a minimal useful subset of OWL 1 language features.
It corresponds to the SHIF fragment of Description Logics with data types and

5

data values.

OWL DL OWL DL includes all features of the sublanguage OWL Lite. It
corresponds to the SHOIN fragment of description logics with data types and
data values. In addition to the features in the OWL Lite, OWL DL provides
different features, for details see [DS04].

OWL Full OWL Full contains all features in the sublanguage OWL DL, which
are all features of OWL 1.

2.1.2 OWL 2 Web Ontology Language

OWL 2 Web Ontology Language (OWL 2) [MPSP09] was evolved from OWL 1 by
adding several new features. Three syntactic categories for representing knowledge
in OWL 2 are entities, expressions and axioms. Entities are the basic elements
of an ontology such as classes, properties and individuals, which are identified by
IRIs. Expressions are complex elements formed from combinations of entities in
an ontology. Axioms are statements that are asserted to be true in a domain of
interest.

New Features in OWL 2 The new features in OWL 2 offer new expressiv-
ity with features such as property chains, richer data types and data ranges,
qualified cardinality restrictions, asymmetric, reflexive and disjoint properties
and enhanced annotation properties. For details of the new features in OWL
2 see [MPSP09].

OWL 2 Web Ontology Language defines three sublanguages called OWL 2 EL,
OWL 2 QL, OWL 2 RL, which are also called OWL 2 Profiles [MGH+09].

OWL 2 EL The sublanguage OWL 2 EL is based on Description Logic
EL++ [BBL05]. It concentrates on terminological expressivity that are sufficient
to express large ontologies.

OWL 2 QL The sublanguage OWL 2 QL is based on Description Logics DL-
Lite [CLLR07]. It can be used for applications where access to data directly is
necessary or useful by using relational queries.

6

OWL 2 RL The sublanguage OWL 2 RL is designed with rule-based implemen-
tations. It can be used for applications where scalable reasoning is implemented
using a standard Rule Language.

OWL 2 DL and OWL 2 Full There are two ways of assigning meaning to
ontologies called Direct Model-Theoretic semantics [MPSG09] and RDF-Based
semantics [Sch09]. OWL 2 ontologies where the Direct Model-Theoretic semantics
or the RDF-Based semantics is used for interpreting are called OWL 2 DL or OWL
2 Full, respectively.

2.1.3 OWL/XML Syntax

OWL/XML syntax is one of the several concrete syntaxes available to write OWL
ontologies. We write our examples in OWL/XML syntax in this thesis. It was
invented as a concrete representation format for OWL ontologies, because it is a
regular and simple XML format. In addition, it has many advantages such as it
is easy to write and parse.

Figure2.1 illustrates a simple example of an OWL 2 ontology in
OWL/XML syntax, which represents the fact that Mary is John’s wife. In this
example, we have two individual declarations: John and Mary, and an object
property declaration hasWife, and an object property assertion axiom that states
John is related to Mary via hasWife.

2.2 Services for OWL

Ontology editors are used for creating and manipulating ontologies. There are
various widely used editing tools such as Protégé, NeOn Toolkit [NeO11] and
SWOOP [KPS+05]. They offer a wide and varied range of capabilities such as
supporting multiple ontologies, using various OWL syntaxes to render ontologies
and consistency checking by integrated OWL reasoners.

Protégé is a widely used Java based ontology and knowledge development tool.
It supports exporting ontologies into various formats such as RDF(S) and OWL.
In addition, it particularly enables building ontologies in OWL.

NeOn Toolkit is an open source ontology editor based on Eclipse platform.
It has a strong emphasis on OWL 2 and especially used for big projects such as
multi-modular ontologies and ontology integration.

Furthermore, SWOOP is also an open source ontology editor implemented in
Java. It supports creating, editing, and debugging OWL ontologies.

7

<Ontology xmlns=”http://www.w3.org/2002/07/owl#”
xml:base=”http://example.com/owl/families/”
ontologyIRI=”http://example.com/owl/families/”>

<Declaration>
<NamedIndividual IRI=”John”/>

</Declaration>

<Declaration>
<NamedIndividual IRI=”Mary”/>

</Declaration>

<Declaration>
<ObjectProperty IRI=”hasWife”/>

</Declaration>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasWife”/>
<NamedIndividual IRI=”John”/>
<NamedIndividual IRI=”Mary”/>

</ObjectPropertyAssertion>

</Ontology>

Figure 2.1: An example OWL 2 ontology in OWL/XML syntax

2.3 OMDoc Markup Language

The OMDoc (Open Mathematical Documents, [Koh06]) format is a content markup
language for mathematical documents. It extends the web standards content
MathML [CIM10] and OpenMath [Ope09] by a semantics centered representation
of mathematical knowledge. OMDoc can represent the structure of mathematical
theories, i.e., elements in a theory like definitions, theorems, proofs, etc.

In addition, OMDoc uses XML [CIM11] as its markup format and in particular,
it has been developed for internet applications.

OMDoc represents mathematical knowledge in three levels:

• Theory level declares theories and theory morphisms.

• Statement level declares symbols, definitions, proofs, etc.

• Object level declares mathematical expressions (formulae).

Object level expressions in OMDoc are OpenMath objects. OpenMath objects
(om:OMOBJ) are formed by variables (om:OMV), symbols (om:OMS), applica-
tions (om:OMA), which apply an operator to an OpenMath object, and bindings
(om:OMBIND), which bind a list of variables in an OpenMath object.

8

2.4 The MMT Language

MMT (A Module system for Mathematical Theories) [RK12] is a sublanguage
of the OMDoc language. It implements a fragmant of the OMDoc format. In
addition, it is a foundation-independent, modular and scalable language for formal
mathematics.

MMT syntax can be classified in three levels: module level, symbol level and
object level.

• The module level declares theories and theory morphisms.

• The symbol level declares constants.

• The object level consists of OpenMath expressions.

Theories contain constant declarations, which correspond to statement level
declarations in OMDoc. Constants may have components, i.e., types or defini-
tions, which correspond to OpenMath objects. Additionally, theories, constants
and components are identified by URIs.

MMT was designed as a generic declarative language so that services for ser-
vices for MMT can be developed genericly and applied to specific domains. Knowl-
edge management services that are based on MMT, e.g., interactive browsing,
querying and management of change, can be applied to other languages repre-
sented in MMT. For instance, a generic theorem search engine have been applied
to Mizar [MRMJ12].

2.5 Services for MMT

In this section, we describe MMT services that we have used in our work.
The MMT management of change (MMT MoC) service [IR12] is a generic

management of change service based on the MMT language. It is implemented
in the MMT API [MMT]. It provides semantic differencing, dependency analysis,
and change impact analysis and propagation.

MMT Diff detects four kinds of changes and identifies them as add and delete
constants, rename constants, and update components.

MMT Dependency Analysis distinguishes two types of dependencies: syn-
tactic and semantic dependencies, which are indexed by MMT.

9

MMT Change Impact Analysis and Propagation identifies change im-
pacts and marks them as impacted components, and propagetes renames auto-
matically.

Since the MMT MoC is implemented as a part of the MMT API [MMT], it
can be applied to any language represented in MMT.

2.6 Management of Change

Documents are produced, evolved and changed continuously in various areas such
as business, education and research. According to Madhavji [Mad92] the process
of change consists of the following steps:

1. First, identify the need to make a change to an item in the environment
(Identification),

2. then acquire adequate change related knowledge about the item (Change
classification),

3. assess the impact of a change on other items in the environment (Depen-
dency classification),

4. select or construct a method for the process of change (Rules),

5. make changes to all the items and make their inter-dependencies resolved
satisfactorily (Adjustment),

6. record the details of the changes for future reference, and

7. release the changed item back to the environment (Version Control).

Documents are often related to other documents. Therefore, changing one doc-
ument may require adaptations to other documents. However, change manage-
ment, propagation of changes and identification of the resulting necessary adap-
tations and adjustments are highly restricted. Authors need systems to predict
change impacts (change impact analysis) and to adapt the impacted items (change
management) in order to avoid incompatibility. Current research on management
of change improves maintainability and reduces maintenance efforts.

Management of change is widely used in science, technologies, engineering
and mathematics. It has been extended to collections of semi-formal documents

10

and integrated it into a semantic publishing system for mathematical knowl-
edge [ADD+11]. In addition to this, it has been shown that the semantic anno-
tations in flexiformal documents driving the machine-supported interaction with
documents can support semantic impact analyses at the same time.

Furthermore, a management of change functionality has been integrated into
an active document management system. Semantic relations are used in the sys-
tem in order to propagate change impacts and to keep source modules consistent.
The approach is based on impact analysis by using systems of graph rewriting.
However, the integration is limited to a single-user mode of operation. In addi-
tion, propagating changes by other users and multiple users working on different
branches are not supported yet.

Change management on semi-structured documents provides maintaining het-
erogeneous collections of semi-structured documents [M1̈0]. It facilitates and im-
proves collaboration on large document collections and also improves information
consistency, reuse and distribution. It enables a framework that supports the
declarative specification of semantic annotation and propagation rules.

11

12

Chapter 3

Related Work: Management of
Change in OWL

Management of change in OWL ontologies is partly supported by tools such as
OilEd, OntoView and Protégé. Below we give an overview for each of them.

OilEd OilEd [DBL01] is an open source editor that supports OWL ontologies
and was developed at the University of Manchester. It provides a simple editing
environment with enough functionality to build ontologies and keep them consis-
tent by using the FaCT reasoner [FaC11]. In addition, it writes all activities of
the tool to a log file. However, it does not support undo/redo functionality or
integration and versioning of ontologies.

OntoView OntoView [MHSV04] is a web-based change management system
for ontologies that was designed to compare ontology versions in RDF-based lan-
guages. It focuses on finding and representing changes between concepts in dif-
ferent versions of ontologies. It shows which definitions of ontological concepts or
properties have changed and what kind of change occurred. When a user wants
to make a change, the system provides information about consequences of the
change. Furthermore, it maintains links between versions and variants specifying
relations and updates between the versions of ontologies together with transforma-
tion between them. In addition, it provides support for identification of ontologies
and the analysis of possible effects of changes. However, it does not allow undoing
a change.

Protégé Protégé [Pro11] is a knowledge development tool for ontologies. Change
facilities that are supported by Protégé are undo/redo, command history, ontology

13

version archiving, PROMPT and logging.
Undo/Redo functionality allows users to easily correct mistakes by revers-

ing the last action performed and undoing the last Undo action, respectively.
Command history menu item records each of change actions. Ontology version
archiving provides an interface to manage different versions of an ontology. It also
allows users to save the current version of an ontology and adding comments to
it, and reverting it to its previous version.

PROMPT is a plugin to the Protégé editor for managing multiple ontologies.
It includes tools for interactive ontology merging (iPROMPT), graph-based map-
ping for finding similarities between ontologies (AnchorPROMPT), factoring out
semantically independent subontologies (PROMPTFactor), ontology versioning
and creating views of an ontology (PROMPTDiff), and ontology library mainte-
nance.

iPROMPT is a tool for interactive ontology merging. It integrates ontologies
from different sources to create a new ontology including information from the
sources. In addition, it helps users to merge ontologies by suggesting what should
be merged, identifying inconsistencies and problems, and suggesting strategies to
resolve them.

AnchorPROMPT is an ontology alignment tool for defining a mapping between
concepts in two ontologies by finding pairs of related concepts. It analyzes a graph
representing ontologies on a large scale. PROMPTFactor is a tool for extracting
a part of an ontology into a new subontology. It provides specifying all concepts
required in the subontology.

PROMPTDiff is a tool for comparing versions of ontologies. It finds a struc-
tural diff between two versions of the same ontology. It includes an algorithm
consisting of two parts which are an extensible set of heuristic matchers and com-
bining results of the matchers to produce a structural diff between two versions.
It identifies changes such as moving classes, adding or deleting a tree of classes,
shows the comparison results to the user and enables the user to accept or reject
the changes between versions. Additionally, it provides two kinds of views to the
structural difference of two ontologies: Tree view and Table view.

• The Tree view displays structures of ontologies and highlights changes. It
shows a class tree for an ontology with new frames underlined, deleted frames
crossed out, moved and changed frames shown in different fonts and colors.
It also provides a table comparing the current frame to its old version. In
addition, it enables users to accept or reject the changes.

• The Table view enables users to save change records as a text file. It dis-
plays a list of frames from the two versions with additional information and

14

an individual diff. Moreover, logging is one of the important functionali-
ties. It allows tracking any modification applied to ontologies. However,
it does not enable fully collaborative ontology development since it is not
integrated with version control systems. In addition, it does not support
OWL 2 ontologies, tracking changes directly, and enabling users to add de-
sign rationale during edits. Furthermore, it does not provide comments or
instance information to align classes or properties, and generalization or
specialization matches.

OWL Diff Tool OWL Diff Tool [RN] is another difference tool which is avail-
able as a plugin in the latest Protégé editor. It detects and shows differences such
as adding, deleting and renaming of entities and annotation changes. However, it
does not give a detailed description for annotation changes.

OWLDiff OWLDiff [kri11] provides syntactic compare and merge functionality
for OWL ontologies. It is a standalone application developed under the LGPL
license [LGP11] at the Technical University in Prague. It compares and merges
ontologies and commits a resulting file. Basic syntactic difference provides in-
ference markup and explanations between ontologies. In addition, it provides
entailment checking of different axioms.

It is combined with the Pellet reasoner to show the semantic diff between two
ontologies graphically in two tree views. The system comprises two algorithms to
compare ontologies. Basic ontology comparison algorithm is used to find added,
deleted or changed axioms except finding out complex dependencies. Besides,
OWLDiff is offered as a plugin for Protégé 4.1 and the NeON toolkit.

Furthermore, it provides various visualization options such as plain axiom list,
asserted frame and classified frame view. Additionally, it supports various syntax
options such as Manchester syntax and Description Logics syntax. Moreover,it
provides an easy SVN integration to easily compare ontologies under SVN version
control. However, OWLDiff does not support imports, and explanations gener-
ated for axioms are restricted to only one explanation for each single axiom. In
addition, it does not check whether the IRIs of entities and ontologies have been
changed, and annotations of axioms are ignored when comparing ontologies.

Ecco Ecco [GPS12] is a recently implemented hybrid diff tool for OWL 2 on-
tologies. It distinguishes effectual and ineffectual changes between ontologies and
presents them by categorizing. It does not support detecting annotation changes.

15

16

Chapter 4

Requirements for Management of
Change in OWL

A management of change in OWL requires to detemine dependency relations
between elements in OWL, to identify change impacts and to represent change
impacts. We discuss these requirements in the following sections.

4.1 Dependency Relations

In this section, we discuss the dependency relations between elements in OWL 2
ontologies. The purpose of this discussion is to identify the impacts of the changes
of OWL elements.

A dependency relation is a binary relation between two OWL elements. We
say that an element A depends on B, if B occurs in A. Below, we explain the
dependency relations between entities, expressions and axioms in OWL 2 ontolo-
gies.

4.1.1 Entities

Entities are basic terms that are identified by IRIs. These terms are classes,
named individuals, object properties, data properties, annotation properties and
data types.

Entities are declared in declaration axioms. In addition, entities can occur
directly in axioms and in expressions within axioms. Therefore, expressions and
axioms depend on entities that occur in them.

Expressions do not exist outside of axioms. Thus, we can say that a change
of an entity can affect axioms that refer to it. As a result, if an entity has been

17

changed, axioms that refer to it need to be modified with respect to the change.
Below, we identify those OWL expressions and axioms in which entities occur

in order to determine the impacts of a change of an entity.

Class is a set of individuals that share a common property. Classes occur in
declaration axioms (declaration of a class). In addition, they can occur in class
expressions and axioms as listed below.

• Class Expressions: Class, ObjectIntersectionOf, ObjectUnionOf,
ObjectComplementOf, ObjectSomeValuesFrom, ObjectAllValuesFrom,
ObjectMinCardinality, ObjectMaxCardinality, and
ObjectExactCardinality.

• Class Axioms: SubClassOf, EquivalentClasses, DisjointClasses and
DisjointUnion.

• Object Property Axioms: ObjectPropertyDomain and ObjectPropertyRange.

• Data Property Axioms: DataPropertyDomain.

• Keys: HasKey.

• Assertions: ClassAssertion.

Named Individual is an instance of a class. Named individuals occur in dec-
laration axioms (declaration of a named individual). In addition, they can occur
in the following class expressions and axioms.

• Class Expressions: ObjectIntersectionOf, ObjectUnionOf,
ObjectComplementOf, ObjectOneOf, ObjectSomeValuesFrom,
ObjectAllValuesFrom, ObjectHasValue, ObjectMinCardinality,
ObjectMaxCardinality and ObjectExactCardinality.

• Class Axioms: SubClassOf, EquivalentClasses, DisjointClasses and
DisjointUnion.

• Object Property Axioms: ObjectPropertyDomain and ObjectPropertyRange.

• Data Property Axioms: DataPropertyDomain.

• Keys: HasKey.

18

• Assertions: SameIndividual, DifferentIndividuals, ClassAssertion,
ObjectPropertyAssertion, DataPropertyAssertion,
NegativeObjectPropertyAssertion and
NegativeDataPropertyAssertion.

Object Property is a relationship between individuals. Object properties oc-
cur in declaration axioms (declaration of an object property). In addition, they
can occur in the following expressions and axioms.

• Class Expressions: ObjectSomeValuesFrom, ObjectAllValuesFrom,
ObjectHasValue, ObjectHasSelf, ObjectMinCardinality,
ObjectMaxCardinality and ObjectExactCardinality.

• Object Property Expressions: ObjectProperty and InverseObjectProperty.

• Declaration Axioms: Declaration (declaration of an object property).

• Class Axioms: SubClassOf, EquivalentClasses, DisjointClasses and
DisjointUnion.

• ObjectProperty Axioms: SubObjectPropertyOf,
EquivalentObjectProperties, DisjointObjectProperties,
InverseObjectProperties, ObjectPropertyDomain,
ObjectPropertyRange, FunctionalObjectProperty,
InverseFunctionalObjectProperty, ReflexiveObjectProperty,
IrreflexiveObjectProperty, SymmetricObjectProperty,
AsymmetricObjectProperty and TransitiveObjectProperty.

• DataProperty Axioms: DataPropertyDomain.

• Keys: HasKey.

• Assertions: ClassAssertion, ObjectPropertyAssertion and
NegativeObjectPropertyAssertion.

Data Property is a relationship between individuals and data values. Data
properties occur in declaration axioms (declaration of a data property). In addi-
tion, they can occur in class expressions and axioms as listed below.

• Class Expressions: DataSomeValuesFrom, DataAllValuesFrom, DataHasValue,
DataMinCardinality, DataMaxCardinality and DataExactCardinality.

19

• Class Axioms: SubClassOf, EquivalentClasses, DisjointClasses and
DisjointUnion.

• ObjectProperty Axioms: ObjectPropertyDomain and ObjectPropertyRange.

• Data Property Axioms: SubDataPropertyOf, EquivalentDataProperties,
DisjointDataProperties, DataPropertyDomain, DataPropertyRange and
FunctionalDataProperty.

• Keys: HasKey.

• Assertions: ClassAssertion, DataPropertyAssertion and
NegativeDataPropertyAssertion.

Data Type is a classifier that identifies one kind of data. Data types can occur
in declaration axioms. In addition, they can occur in class expressions and axioms
shown below.

• Class Expressions: DataSomeValuesFrom, DataAllValuesFrom,
DataHasValue, DataMinCardinality, DataMaxCardinality and
DataExactCardinality.

• Class Axioms: SubClassOf, EquivalentClasses, DisjointClasses and
DisjointUnion.

• Object Property Axioms: ObjectPropertyDomain and ObjectPropertyRange.

• Data Property Axioms: DataPropertyDomain and DataPropertyRange.

• Datatype Definitions: DatatypeDefinition

• Keys: HasKey.

• Assertions: ClassAssertion, DataPropertyAssertion and
NegativeDataPropertyAssertion.

Annotation Property is used to annotate an ontology, an axiom or an IRI.
They can occur in all axioms.

20

4.1.2 Expressions

Expressions are complex elements formed from combinations of entities. They
are grouped as class expressions, object property expressions and data property
expressions.

Class expressions define sets of individuals by specifying conditions on the
properties of individuals. Object property expressions are formed by object prop-
erties and inverse object properties. Data property expressions consist of only
data properties.

Expressions can occur directly in axioms and in expressions within axioms.
Therefore, expressions and axioms depend on expressions that occur in them.
However, since expressions do not exist outside of axioms, we can say that a
change of an expression implies a change of the axioms in which that expression
occurs. As a result, we need to discuss impacts of a change of an axiom, which
we explain in the next subsection.

4.1.3 Axioms

Axioms are statements that are asserted to be true in a domain of interest. They
are classified as declaration axioms (declaration of entities), class axioms, object
property axioms, data property axioms, data type definitions, keys, assertions,
and annotation axioms. They are grouped and listed as follows:

• Declaration Axioms: Declaration

• Class Axioms: SubClassOf, EquivalentClasses, DisjointClasses and
DisjointUnion.

• Object Property Axioms: SubObjectPropertyOf,
EquivalentObjectProperties, DisjointObjectProperties,
InverseObjectProperties, ObjectPropertyDomain, ObjectPropertyRange,
FunctionalObjectProperty, InverseFunctionalObjectProperty,
ReflexiveObjectProperty, IrreflexiveObjectProperty,
SymmetricObjectProperty, AsymmetricObjectProperty and
TransitiveObjectProperty.

• Data Property Axioms: SubDataPropertyOf, EquivalentDataProperties,
DisjointDataProperties, DataPropertyDomain, DataPropertyRange and
FunctionalDataProperty.

• Datatype Definitions: DatatypeDefinition.

21

• Keys: HasKey.

• Assertions: SameIndividual, DifferentIndividuals, ClassAssertion,
ObjectPropertyAssertion, NegativeObjectPropertyAssertion,
DataPropertyAssertion and NegativeDataPropertyAssertion.

• Annotation Axioms: AnnotationAssertion, SubAnnotationPropertyOf,
AnnotationPropertyDomain and AnnotationPropertyRange.

Axioms occur in neither entities, expressions nor axioms. Therefore, entities
and expressions do not depend on axioms. We know that expressions do not
appear outside of axioms. Thus, we can say that a change of an axiom may have
an impact on entities that occur in the axiom. As a result, if an axiom has been
changed, entities that the axiom refers to may need to be changed with respect to
the change. In order to find possible impacts of a change of an axiom, we identify
entities that exist in axioms.

Declaration axioms, class axioms, object property axioms, data property ax-
ioms, keys and assertions can refer to all entities. In addition, datatype definitions
and annotation axioms can refer to only datatype and annotation properties and
only annotations properties, respectively.

Figure4.1 illustrates an example for occurrences of OWL 2 elements in
OWL/XML syntax. It represents the fact that a mother is a woman who has
at least one child.

In this example, a class expression that consists of a class Mother and a class ex-
pression ObjectIntersectionOf directly occur in a class axiom
EquivalentClasses. In addition, the class expression ObjectIntersectionOf

includes another class expression that consists of a class Woman and a class expres-
sion ObjectSomeValuesFrom. Moreover, the class expression
ObjectSomeValuesFrom comprises an object property expression made of an ob-
ject property hasChild and a class expression contains only a class Person.

4.2 Changes and their Impacts

In this section, we discuss changes and their impacts in OWL 2 ontologies to
determine what is expected from an automated change impact analysis for OWL.
In particular, we conceptually apply OWL change impact analysis on an example
OWL ontology that covers OWL 2 features and all relevant change cases.

Ontologies can be modified according to the needs of OWL users. We consider
four types of changes that can be applied to OWL ontologies: deletion, addition,

22

<Ontology xmlns=”http://www.w3.org/2002/07/owl#”
xml:base=”http://example.com/owl/families/”
ontologyIRI=”http://example.com/owl/families/”>

<Declaration>
<Class IRI=”Person”/>
</Declaration>

<Declaration>
<Class IRI=”Woman”/>
</Declaration>

<Declaration>
<Class IRI=”Mother”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasChild”/>
</Declaration>

<EquivalentClasses>
<Class IRI=”Mother”/>
<ObjectIntersectionOf>
<ObjectSomeValuesFrom>
<ObjectProperty IRI=”hasChild”/>
<Class IRI=”Person”/>
</ObjectSomeValuesFrom>
<Class IRI=”Woman”/>
</ObjectIntersectionOf>
</EquivalentClasses>

</Ontology>

Figure 4.1: An example of occurrences of OWL 2 elements in OWL/XML syntax

renaming, and updating. Note that any other change can be expressed as a com-
bination of these changes. For example, consider merging together two concepts
A and B to yield C. This can be expressed as deleting A and B and adding C.

Since the elements in ontologies, e.g., entities, expressions and axioms, are
related to each other via the dependency relations we discussed in Section 4.1, a
change of an element can affect other elements in an ontology, and as a result, those
elements need to be modified with respect to the changed element. Therefore,
when an ontology is changed, it is necessary to identify changes and compute
their impacts in the ontology.

In order to discuss changes and their impacts, we wrote an example ontology
in OWL/XML syntax, see Appendix A, applied each kind of change we mentioned
above to elements in the ontology and determined the impacts of the changes. We
wrote the example ontology as an extension of the family ontology [HKP+09].

In our example ontology, there are two families: John and Mary are married

23

with three children, and their daughter Liz is also married with one daughter.
The name of John and Mary’s son is Tom, who is a teenage. In addition, their
daughter Amy, who is elder than Tom, is a university student, and the name of
her boyfriend is Bob. Max is Liz’s husband, and their daughter Alice is 2 years
old.

We applied all four kinds of changes separately to our example ontology and
for each change, we saved the modified version of the ontology in a separate
OWL file. In other words, we generated four versions of our example ontology,
respectively by only renaming, by only deleting, by only adding, and by only
updating elements of the ontology.

Moreover, we applied all changes, which we initially applied separately, to-
gether to our example ontology, and saved the modified version of the ontology in
a separate OWL file.

We put all these OWL documents in https://svn.kwarc.info/repos/MMT/

src/mmt-owl/ExtendedFamilyOntology.
This approach gives us an opportunity to discuss impacts of each change kind

separately and impacts of all change kinds together.
Below, we explain the four different kinds of changes and their impacts when

applied separately as well as together.

4.2.1 Renaming

The change renaming can only be applied to entity declarations in an ontology.
Therefore, we renamed only entities in our example ontology, and saved the mod-
ified version as a new version.

We applied a renaming to an entity of each kind. In addition, we identified all
impacts of the renamed entities in the ontology.

For example, let us consider renaming the individual John to James.
The DataPropertyAssertion axiom, shown in Figure 4.2, states that John is

51 years old, and refers to the individual John. Therefore, this axiom needs to be
modified with respect to the renaming. In other words, we say that the renaming
has an impact on this axiom.

<DataPropertyAssertion>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”John”/>
<Literal datatypeIRI=”xsd:integer”>51</Literal>
</DataPropertyAssertion>

Figure 4.2: An impact of renaming an entity

24

https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology

We identified all impacts of this renaming: other axioms that refer to the
individual are similarly affected.

In contrast, the EquivalentClasses axiom, shown in Figure 4.3, refers to a
class JohnsChildren that represents a class whose members are John’s children.
The name of the class JohnsChildren contains the name of the individual John
as a substring. It would be intuitive to rename the class JohnsChildren as well.
One could use substring matching to capture such cases. Note that substring
matching can also give results that should not be impacted. For example, assume
an individual Chil is renamed, and there is a class Children. Obviously, substring
matching does not work for this particular example. Nevertheless, OWL users can
decide which results of substring matching to consider.

<EquivalentClasses>
<Class IRI=”JohnsChildren”/>
<ObjectOneOf>
<NamedIndividual IRI=”Liz”/>
<NamedIndividual IRI=”Tom”/>
<NamedIndividual IRI=”Amy”/>
</ObjectOneOf>
</EquivalentClasses>

Figure 4.3: An impact of renaming an entity

As a result, if an entity has been renamed, axioms that refer to the entity need
to be modified with respect to the renamed entity. In other words, renaming an
entity has an impact on axioms that refer to it.

4.2.2 Deletion

Entity declarations and axioms can be deleted in an ontology. Therefore, we
deleted entities and axioms in our example ontology, and saved the modified
ontology as a new version. In addition, we identified all impacts of the deleted
elements in the ontology.

First, we applied a deletion to an entity of each kind in our example ontology,
and then determined the impacts of the deleted entities.

For example, let us consider deleting the object property hasAncestor. The
TransitiveObjectProperty axiom, shown in Figure 4.4, states that the object
property hasAncestor is transitive, and refers to hasAncestor. Therefore, this
axiom needs to be modified with respect to the deletion since the object property
hasAncestor does not exist anymore. In other words, the deletion has an impact
on the axiom.

25

<TransitiveObjectProperty>
<ObjectProperty IRI=”hasAncestor”/>
</TransitiveObjectProperty>

Figure 4.4: An impact of deleting an entity

The other impacts of a deleted entity are similarly those axioms that refer to
the entity.

As a result, if an entity has been deleted, axioms that refer to the entity need
to be modified with respect to the deleted entity. In other words, deleting an
entity has an impact on axioms that refer to it.

Second, we applied a deletion to an axiom in our example ontology, and then
identified impacts of the deleted axiom. For example, let us remove the assertion
axiom, shown in Figure 4.5, from our ontology. It states that Liz and Liza are
the same individuals.

<SameIndividual>
<NamedIndividual IRI=”Liz”/>
<NamedIndividual IRI=”Liza”/>
</SameIndividual>

Figure 4.5: An example of deleting an axiom

The deleted axiom does not have any direct effect on the entities, expressions
or the axioms in our example ontology since it does not occur in those elements.
Nevertheless, deleting an axiom means removing a statement asserted to be true
about the entities in the axiom. Therefore, elements in the ontology may need to
be modified with respect to the entities in the deleted axiom.

Thus, we identify declarations of the entities as possibly impacted elements.
As a result, if an axiom has been deleted, entities that the axiom refers to may
need to be modified with respect to the deleted axiom. In other words, deleting
an axiom has a possible impact on entities that the axiom refers to.

Note that we give only one example for deleting an entity and an axiom,
and their impacts here. Examples for deleting entities and axioms, and their
impacts in the ontology can be found at https://svn.kwarc.info/repos/MMT/

src/mmt-owl/ExtendedFamilyOntologyin detail.

4.2.3 Addition

Entity declarations and axioms can be added to an ontology. Therefore, we added
entities and axioms to the ontology, and saved the modified ontology as a new

26

https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology

version. We also identified all impacts of the added elements in the ontology.
First, we added an entity of each kind to the ontology, and then identified

impacts of the added entities. For example, let us add a class Student, shown in
Figure 4.6.

<Declaration>
<Class IRI=”Student”/>
</Declaration>

Figure 4.6: An example of adding an entity

This addition does not affect any of the elements since there is no element that
refers to the added class in the ontology. As a result, adding an entity does not
have any impact on elements in an ontology.

Second, we added axioms to our example ontology, and then identified the im-
pacts of the added axioms. For instance, let us add the following ClassAssertion

axiom shown in Figure 4.7, which states that Bob has no children.

<ClassAssertion>
<Class IRI=”ChildlessPerson”/>
<NamedIndividual IRI=”Bob”/>
</ClassAssertion>

Figure 4.7: An example of adding an axiom

The added axiom does not have any direct effect on elements in the ontology.
However, the added axiom may cause an inconsistency in the ontology. For exam-
ple, there may already be an axiom stating that Bob is a parent in the ontology.
In this case, adding this axiom would definitely lead to an inconsistency, since
each member of the class ChildlessPerson is defined as a person who is not
a parent, shown in Figure 4.8, in the ontology. Therefore, the entities that the
added axiom refers to may have to be modified with respect to the added axiom.
Thus, we identify the entities as possibly impacted elements. In other words, we
say that the addition has a possible impact on the entities.

As a result, if an axiom has been added, entities that the axiom refers to may
need to be modified with respect to the added axiom. In other words, adding an
axiom has a possible impact on entities that the axiom refers to.

4.2.4 Updating

Axioms can be updated in an ontology. We updated several axioms in our ex-
ample ontology, and saved the modified ontology as a new version. In addition,

27

<EquivalentClasses>
<Class IRI=”ChildlessPerson”/>
<ObjectIntersectionOf>
<Class IRI=”Person”/>
<ObjectComplementOf>
<Class IRI=”Parent”/>
</ObjectComplementOf>
</ObjectIntersectionOf>
</EquivalentClasses>

Figure 4.8

we identified all impacts of the updated axioms. For example, we updated the
following axiom in Figure 4.9, which states that Tom is a teenager, as an axiom
stating that Tom is a childless person, shown in Figure 4.10.

<ClassAssertion>
<Class IRI=”Teenager”/>
<NamedIndividual IRI=”Tom”/>
</ClassAssertion>

Figure 4.9: An example of an axiom

<ClassAssertion>
<Class IRI=”ChildlessPerson”/>
<NamedIndividual IRI=”Tom”/>
</ClassAssertion>

Figure 4.10: An example of an updated axiom

Updating the axiom does not have any impact on the elements in our example
ontology. However, it may cause an inconsistency in the ontology. For example,
there may already be an axiom stating that Tom has a child in the ontology. In
this case, this axiom would contradict the current version of the axiom. For this
reason, the entities that the current version of the axiom refers to need to be
modified with respect to the update. Thus, we identify those entities as possibly
impacted elements. That means the updating has a possible impact on those
entities.

As a result, if an axiom has been updated, entities that the current axiom
refers to may need to be modified with respect to the current axiom. In other
words, updating an axiom has a possible impact on entities that the current
axiom refers to.

28

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasRelative”/>
<NamedIndividual IRI=”John”/>
<NamedIndividual IRI=”Alice”/>
</ObjectPropertyAssertion>

Figure 4.11: An example of impacts of multiple changes

4.2.5 Multiple Changes

We now apply all four changes we mentioned in Section 4.2.1, Section 4.2.2, Sec-
tion 4.2.3 and Section 4.2.4 to our example ontology at once to discuss the impacts
of different kinds of changes together.

For example, renaming the individual John to James and deleting the indi-
vidual Alice affect the ObjectPropertyAssertion axiom in Figure 4.11, which
states that Alice is John’s relative.

Similarly, applying multiple changes to different axioms at once may have mul-
tiple impacts on entities that the axioms refers to. As a result, multiple changes
can have multiple impacts on the same axiom and multiple possible impacts on
the same entity declaration in an ontology.

4.3 Representing Change Impacts

In this section, we establish our requirements for representing change impacts in
OWL ontologies. We discussed all possible kinds of changes and their impacts in
Section 4.2. As a next step, we need to represent them in a way that shows what
has changed and what the impacts of the changes are. The representation needs
to

1. be designed in a way that change impacts can be displayed to users in any
OWL editor or diff tool, and

2. distinguish different impacts from each other.

One way to satisfy these two requirements is to use annotations. We choose
to represent change impacts by writing them as annotations inside ontologies
themselves. This representation brings up further requirements, which we explain
below.

29

4.3.1 Change Impacts as Annotations

We can represent change impacts as annotations inside an ontology itself. First
of all, we need to refer to changed elements in order to represent their impacts on
elements in an ontology. We also need to refer to changed entities and changed
axioms that have effects on axioms and entities in the ontology, respectively. Note
that entities are identified by IRIs, but axioms do not necessarily have identifiers
in OWL. Therefore, one of the requirements is to add identifiers to axioms in an
ontology.

We can add an identifier to an axiom as an annotation. We define an anno-
tation property with an IRI http://omdoc.org/identifier#id and a literal of
type string for an identifier of an axiom.

For example, the axiom in Figure 4.12 states that John is 51 years old and it
has the identifier ax-1157570453. Thus, if this axiom has been changed, we can
refer to it by its axiom identifier.

<DataPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ax−1157570453</Literal>
</Annotation>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”John”/>
<Literal datatypeIRI=”xsd:integer”>51</Literal>
</DataPropertyAssertion>

Figure 4.12: An example of adding an identifier to an axiom

We add identifiers to axioms in our extended family ontology, see https:

//svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology

Next, we need to define a special annotation structure to distinguish annota-
tions to change impacts from other kinds of annotations.

We define an annotation that consists of an annotation property with an IRI in
the http://omdoc.org/impact# namespace and a literal of type string explaining
a change and its impact. Thus, we can distinguish these annotations from other
annotations in an ontology. In order to distinguish different impacts from each
other, we need to define an annotation property for each change type.

In addition to this, as we mentioned in Section 4.2, a change of an entity dec-
laration can affect axioms that refer to it (impact), and a change of an axiom may
have an impact on entity declarations that the axiom refers to (possible impact).
Therefore, we define annotation properties with the IRIs shown in Table 4.1 for
impacts and Table 4.2 for possible impacts, due to the four kinds of changes, i.e.,
deletion, addition, renaming, and updating in ontologies.

30

https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology

Change Types Identifiers for Impacts

Deletion http://omdoc.org/impact#impactByDelete

Renaming http://omdoc.org/impact#impactByRename

Table 4.1: Identifiers for impacts with respect to change types

Change Types Identifiers for Possible Impacts

Deletion http://omdoc.org/impact#possibleImpactByDelete

Addition http://omdoc.org/impact#possibleImpactByAdd

Updating http://omdoc.org/impact#possibleImpactByUpdate

Table 4.2: Identifiers for possible impacts with respect to change types

Thus, OWL tools can display impacts of different kind of changes according
to the needs of OWL users. For example, we can only display impacts of deleted
elements in an ontology, or we can show each type of impact in a different color.

Furthermore, we need to represent an impact of a change as an axiom annota-
tion. We know that an entity can occur in an axiom directly or in an expression
that exists within an axiom, see Section 4.1. Although an occurrence of an entity
or an expression in an axiom is affected by a change, we need to annotate the
whole axiom rather than the occurrence itself, since we can annotate axioms but
not entities or expression in an axiom. But, an axiom is uncomplicated and small
enough for OWL users that we expect them to understand a change impact in an
axiom from its axiom annotation.

Moreover, we need to add an annotation for each impact on an axiom. For
example, if an axiom is affected by deleting an entity declaration and renaming
another entity, we need to add two separate annotations that state impacts of
those changes on the axiom.

We explain how to annotate elements that are impacted by each kind of
changes and all kinds of changes together in the following sections.

4.3.2 Renaming

After identifying impacts of each renamed entity, we manually annotated the
impacted axioms in our example ontology with respect to the renamed entities,
and saved the modifications as a new version of the ontology, see https://svn.

kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology.
For example, as we discussed in Section 4.2.1, when the individual John is

renamed to James it has an impact on the DataPropertyAssertion axiom in

31

https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology

Figure 4.2. We add an annotation to this axiom by indicating that “This axiom
has been impacted by renaming individual John.” as shown in Figure 4.13.

<DataPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#impactByRename”/>
<Literal datatypeIRI=”xsd:string”>This axiom has been impacted by renaming individual John.
</Literal>
</Annotation>
<Annotation>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ax−1157570453</Literal>
</Annotation>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”John”/>
<Literal datatypeIRI=”xsd:integer”>51</Literal>
</DataPropertyAssertion>

Figure 4.13: An example of representing an impact of renaming an entity

We give another example, where we annotate the EquivalentClasses axiom
in Figure 4.14 that refers to the class John. In addition, as we explained in
Section 4.2.1, it would be intuitive to rename the class JohnsChildren as well.
This annotation may also help OWL authors to notice the impact of renaming
John on the class JohnsChildren.

<EquivalentClasses>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#impactByRename”/>
<Literal datatypeIRI=”xsd:string”>This axiom has been impacted by renaming individual John.
</Literal>
</Annotation>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ax163847801</Literal>
</Annotation>
<Class IRI=”JohnsChildren”/>
<ObjectHasValue>
<ObjectProperty IRI=”hasParent”/>
<NamedIndividual IRI=”John”/>
</ObjectHasValue>
</EquivalentClasses>

Figure 4.14: An example of representing an impact of renaming an entity

32

4.3.3 Deletion

We manually annotate the impacted entities and axioms with respect to the
deleted elements in the ontology after identifying impacts of each deleted en-
tity, and save them as another version of the ontology, see https://svn.kwarc.

info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology

First, we annotate all impacts of deleted entities in the ontology. For example,
we add an annotation to the TransitiveObjectProperty axiom stating that an
object property hasAncestor is transitive, shown in Figure 4.4, since it is affected
by deleting the object property hasAncestor. The annotation states that “This
axiom has been impacted by deleting objectProperty hasAncestor.” as shown in
Figure 4.15.

<TransitiveObjectProperty>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#impactByDelete”/>
<Literal datatypeIRI=”xsd:string”>This axiom has been impacted by deleting objectProperty hasAncestor.
</Literal>
</Annotation>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ax−1444772685</Literal>
</Annotation>
<ObjectProperty IRI=”hasAncestor”/>
</TransitiveObjectProperty>

Figure 4.15: An example of representing an impact of deleting an entity

Second, we annotate all possible impacts of deleted axioms in the ontology. For
example, we know that removing the assertion axiom stating that Liz and Liza

are the same individuals, shown in Figure 4.5, from the ontology has a possible
impact on the individuals Liz and Liza. Therefore, we annotate both of the
individuals by indicating that “An axiom with ID ax-1711766800 that includes
this entity has been deleted.”’, as shown in Figure 4.16.

4.3.4 Addition

As we discussed in Section 4.2.3, adding an entity does not have any impact on
elements in our ontology. Therefore, we do not need to add any annotation for
this case.

We manually added an annotation for each possible impact of the added axioms
in the ontology, and saved the modified ontology as a new version, see https://

svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology. For ex-
ample, the possible impacts of adding the ClassAssertion axiom in Figure 4.7,

33

https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology

<Declaration>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#possibleImpactByDelete”/>
<Literal datatypeIRI=”xsd:string”>An axiom with ID ax−1711766800 that includes this entity has been

deleted.
</Literal>
</Annotation>
<NamedIndividual IRI=”Liz”/>
</Declaration>

<Declaration>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#possibleImpactByDelete”/>
<Literal datatypeIRI=”xsd:string”>An axiom with ID ax−1711766800 that includes this entity has been

deleted.
</Literal>
</Annotation>
<NamedIndividual IRI=”Liza”/>
</Declaration>

Figure 4.16: An example of representing a possible impact of deleting an axiom

which statesthat Bob has no children, are on the class ChildlessPerson and on
the individual Bob. Therefore, we annotate these two entities by stating that “An
axiom with ID that includes this entity has been added.”, shown in Figure 4.17.

<Declaration>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#possibleImpactByAdd”/>
<Literal datatypeIRI=”xsd:string”>An axiom with ID that includes this entity has been added.
</Literal>
</Annotation>
<NamedIndividual IRI=”Bob”/>
</Declaration>

<Declaration>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#possibleImpactByAdd”/>
<Literal datatypeIRI=”xsd:string”>An axiom with ID that includes this entity has been added.
</Literal>
</Annotation>
<Class IRI=”ChildlessPerson”/>
</Declaration>

Figure 4.17: An example of representing a possible impact of adding an axiom

4.3.5 Updating

After identifying possible impacts of each updated axiom in our example ontology,
we manually annotated the entities that the current axiom refers to with respect

34

to the update, and save the modified ontology as a new version, see https:

//svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology.
For example, updating the axiom stating that Tom is a teenager, see Figure 4.9,

to an axiom stating that Tom is a childless person, see Figure 4.10, has a possible
impact on the entities that the current axiom refers to. Therefore, we add an
annotation stating that “An axiom with ID ax1003750178 that includes this entity
has been added.” for each entity as shown in Figure 4.18.

<Declaration>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#possibleImpactByUpdate”/>
<Literal datatypeIRI=”xsd:string”>An axiom with ID ax1003750178 that includes this entity has been

added.
</Literal>
</Annotation>
<NamedIndividual IRI=”Tom”/>
</Declaration>

<Declaration>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#possibleImpactByUpdate”/>
<Literal datatypeIRI=”xsd:string”>An axiom with ID ax1003750178 that includes this entity has been

added.
</Literal>
</Annotation>
<Class IRI=”ChildlessPerson”/>
</Declaration>

Figure 4.18: An example of representing a possible impact of updating an axiom

4.3.6 Multiple Changes

As we discussed in Section 4.2.5, multiple changes can have impacts and possible
impacts on an ontology element. Therefore, we manually added an annotation for
each impact on the elements in our example ontology, and save the modified on-
tology as a new version in https://svn.kwarc.info/repos/MMT/src/mmt-owl/

ExtendedFamilyOntology.
For example, renaming the individual John to James and deleting the individ-

ual Alice affect the ObjectPropertyAssertion axiom stating that Alice is John’s
relative, shown in Figure 4.11. We add one annotation stating that “This axiom
has been impacted by renaming individual John.” for the impact of the renamed
individual, and another annotation stating that “This axiom has been impacted
by deleting individual Alice.” to the affected axiom as shown in Figure 4.19.

35

https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology

<ObjectPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#impactByRename”/>
<Literal datatypeIRI=”xsd:string”>This axiom has been impacted by renaming individual John.
</Literal>
</Annotation>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#impactByDelete”/>
<Literal datatypeIRI=”xsd:string”>This axiom has been impacted by deleting individual Alice.
</Literal>
</Annotation>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ax−1498503059</Literal>
</Annotation>
<ObjectProperty IRI=”hasRelative”/>
<NamedIndividual IRI=”John”/>
<NamedIndividual IRI=”Alice”/>
</ObjectPropertyAssertion>

Figure 4.19: An example of representing impacts of multiple changes

36

Chapter 5

Representation of OWL in MMT

5.1 Formalizing OWL in Twelf

In this section we explain our work on representing OWL in a logical framework.
We use this representation as a meta theory in MMT for representing OWL on-
tologies as MMT theories. The particular logical framework we used for this
purpose is the Twelf module system [RS09a]).

5.1.1 Twelf Module System

There are various frameworks in which formal languages and logics can be repre-
sented. They have been developed to reason about formal languages and logics,
in particular to understand relationships between other languages and logics. The
Edinburgh Logical Framework (LF) [HHP93] is one such framework that is based
on proof theory. Twelf [PS99] is an implementation of LF, which is used as a logic
programming language and as a system for formalizing mathematics.

The module system of Twelf [RS09a] is a recent extension of Twelf that builds
MMT’s module system features on top of Twelf. It uses a graph structure that
consists of modules called theories, and two different kinds of links between two
given theories, namely inclusions and views (also known as theory morphisms).
An inclusion of a theory S to another theory T means that T copies the content
of S and possibly adds more content on top of that. Views typically translate the
content of one theory to expressions in the other theory.

An example of a theory is the following one:

%sig OWLBase = {
class : type.
objectProperty : type.
individual : type.

37

}.

The name of the theory is OWLBase, and it declares three symbols: class,
objectProperty and individual to be used as types.

A view between the theory OWLBase to some other theory maps the symbols
class, objectProperty, individual and to expressions in the other theory. An
example of a view OWLBaseFOLEQD from the theory
OWLBaseFOLEQD to another theory FOLEQD of first-order logic is the following one,
where i and o represent first-order terms and formulae, respectively:

%view OWLBaseFOLEQD : OWLBase −> FOLEQD = {
class := i→ o.
objectProperty := i→ i→ o.
individual := i.
}.

Each class corresponds to a unary predicate, each property corresponds to a
binary predicate and each individual corresponds to an individual in first-order
logic.

5.1.2 Representing Web Ontology Language in Twelf

We formalized Web Ontology Language by encoding OWL 1 and OWL 2 in
Twelf. In particular, we encoded various features of them in Twelf’s module
system [RS09b]. The main feature of the encoding is the use of Twelf’s module
system for representing different sublanguages of the two existing versions of Web
Ontology Language in separate modules called theory.

OWL 1 Web Ontology Language We encode each sublanguage of OWL 1
modularly in a separate theory as illustrated on the diagram below. Each node
in this diagram is a theory and edges between the nodes are inclusions.

OWL1DatatypesOWLBase

OWLLite

OWLDL

OWLFull

First, we represent basic notions such as classes, object properties, data prop-
erties and individuals in a separate theory OWLBase by declaring types for each of

38

these different kinds of basic notions in OWL 1. Then we represent OWL 1 data
types such as string, boolean and integer in another theory OWL1Datatype.

Encoding of OWL Lite in Twelf is based on the types we have introduced for
the basic notions and the data types. Therefore, the theory OWLLite first includes
the theories OWL1Datatype and OWLBase. In addition, it comprises encodings of
all the other features of OWL Lite.

Encoding of OWL DL is based on the features of OWL Lite. Therefore, the
theory OWLDL includes the theory OWLLite and consists of additional symbol dec-
larations.

The OWL Full sublanguage contains all the features of OWL Lite. Therefore,
the theory OWLFull includes the theory OWLDL. That means the theory OWLFull

comprise the encodings of all the features in OWL 1.

OWL 2 Web Ontology Language We encode each sublanguage of OWL 2
modularly in a separate theory as illustrated in the diagram below.

OWL2DatatypeOWLBase

OWL2SUB

OWL2EL OWL2QL OWL2RL OWL2ELQL OWL2ELRL OWL2QLRL

OWL2DL

OWL2Full

OWL2

First, we encode the data types of OWL 2 in the theory OWL2Datatype. Since
OWL 2 data types consist of OWL 1 data types as well, the theory OWL2Datatype

includes the theory OWL1Datatype and some extra data types such as rational,
real and dataTimeStamp.

Then we define a theory named OWL2SUB including the theory OWLBase and
OWL2Dataype and consisting of the common features in all the sublanguages of
OWL 2.

The theory OWL2EL, OWL2QL and OWL2RL include the theory OWL2SUB and they
consist of the features which are only in the sublanguage OWL 2 EL, OWL 2 QL
and OWL 2 RL, respectively.

39

%read ”owl2.elf”.

%sig T2 = {
%include OWL2SUB %open.

John : individual .
Mary : individual .
hasWife : objectProperty.
ax2 : (objectPropertyAssertion hasWife John Mary).

}.

Figure 5.1: An example OWL 2 ontology in LF

We define the theories OWL2DL and OWL2Full for the sublanguages of OWL 2
DL and OWL 2 Full, respectively. The theory OWL2DL includes the theory OWL2RL,
and the theory OWL2Full includes the theory OWL2DL. Moreover, we define a theory
named OWL2 that includes all the theories to represent the OWL 2 Web Ontology
Language.

Representing OWL Ontologies in Twelf We can now use our Twelf repre-
sentation of OWL to actually represent OWL ontologies in Twelf.

Figure 5.1 illustrates the example ontology 2.1 in Twelf. We write the example
ontology by using our OWL encodings in LF. Types class,
objectProperty and individual are declared in the theory OWLBase, and the
type constructor ObjectPropertyAssertion is declared in the theory OWL2SUB

also including the theory OWLBase.

The example theory T2 includes the theory OWL2SUB since we use the theory
OWL2SUB as a meta theory. John and Mary are declared of type individual

and the relation hasWife is declared of type objectProperty. Also, the object
property assertion axiom ax2 is declared by using the type constructor taking the
objectProperty hasWife and the two individuals John and Mary.

5.2 Bi-Directional Translation between OWL and

MMT

Implementation is a crucial prerequisite for applying to OWL ontologies knowl-
edge management services such as management of change for MMT. We use our
representation of OWL in the Twelf system a meta theory for the MMT repre-
sentation of OWL ontologies. Moreover, the implementation is maintainable and
applicable in practice.

40

MMT provides certain strengths such as modularity, documentation, manage-
ment of change, browsing and editing. It is desired to apply these MMT services
to OWL in order to solve complementary problems. However, it is not feasible to
completely work on the MMT side. Therefore, we require a smooth translation
between OWL and MMT in order to apply any MMT based service to OWL. A
bi-directional translation provides a basis for applying MMT services to OWL. A
translation from OWL to MMT and the back has to be mutually inverse, and has
to cover the Web Ontology Language.

5.2.1 Translation from OWL to MMT

We present our translation from OWL to MMT in this section. We use our encod-
ings of OWL1 and OWL2 in Twelf as a meta theory for the MMT representation
of ontologies.

An ontology corresponds to a theory in MMT. Therefore, we translate ontolo-
gies to theories. The attributes of a theory are meta, name and base. We set the
value of meta to the path of the meta theory and the value of base to the value
of the corresponding ontology IRI.

An entity can occur in a declaration axiom or an expression in an axiom
other than declaration in OWL. An entity in a declaration axiom is translated
to a constant of type symbol (OMS) in MMT and an entity in an expression is
translated to a term in MMT. In addition, each axiom in OWL is translated to a
constant of type application in MMT.

Furthermore, an expression, a data range, and a facet restriction in OWL
correspond to an application (OMA) of a term to a list of terms in MMT. OMA
takes a function term and the list of argument terms. Therefore, each expression
and each data range is translated to the corresponding application in MMT.

Moreover, a literal in OWL corresponds to either an OMLiteral or an appli-
cation in MMT. Literals that are typedLiteral correspond to OMLiteral which
can be either OMI, OMF, OMSTR or OMURI for integers, doubles, strings or
URI, respectively in MMT. Therefore, each typedLiteral is translated to the corre-
sponding OMLiteral. Literals that are stringLiteralNoLanguage and stringLiter-
alWithLanguage do not correspond any Term in MMT. Therefore, stringLiteral-
NoLanguage and stringLiteralWithLanguage are translated to applications(OMA)
in MMT.

Finally, an annotation in OWL corresponds to a meta datum in MMT. There-
fore, each annotation is translated to a meta datum in MMT.

41

5.2.2 Translation from MMT to OWL

We present our translation from MMT to OWL in this section.
A theory in an MMT document corresponds to an ontology in OWL. Therefore,

we translate theories to ontologies. The attributes of a theory are meta, name
and base. We set the value of ontology IRI to the base value of the corresponding
theory.

A constant in an MMT document corresponds to an axiom in OWL. There-
fore, each constant in MMT is translated to an axiom in OWL. If the type of
a constant matches an MMT symbol (OMS) with an entity name, then we get
the GlobalName of the constant and translate it to an IRI. After that, we create
an entity declared by the IRI and add a declaration axiom for the entity to the
ontology. If the type of the constant matches an MMT application (OMA) with a
specific axiom, then we get the arguments of the application and create an axiom
corresponding to the function of application.

A Term in an MMT document corresponds to a class expression, individual,
object property expression, data property expression, data range, literal or facet
restriction in OWL. Therefore, the translation of terms is analogous to the trans-
lation from OWL to MMT.

5.3 Plugin for MMT

We implemented the bidirectional translation between OWL and MMT as a plugin
for MMT. The reason why we implement the plugin is that we take the advantage
of using the plugin such as running the translation automatically and utilizing
features of MMT. The following steps are set up to use the plugin.

1. check out the LATIN archive at http://alpha.tntbase.mathweb.org/

repos/cds

2. create a new folder for your archive and put all your OWL files in a subfolder
named source

3. create a manifest file which gives information about the archive. An example
manifest file written for our test archive can be found at https://svn.

kwarc.info/repos/MMT/src/mmt-owl/Test/META-INF/MANIFEST.MF

4. run MMT class info.kwarc.mmt.api.frontend.Run with the following
JAR files on the Java class path

• scala-library.jar

42

http://alpha.tntbase.mathweb.org/repos/cds
http://alpha.tntbase.mathweb.org/repos/cds
https://svn.kwarc.info/repos/MMT/src/mmt-owl/Test/META-INF/MANIFEST.MF
https://svn.kwarc.info/repos/MMT/src/mmt-owl/Test/META-INF/MANIFEST.MF
https://svn.kwarc.info/repos/MMT/deploy/lib

• mmt-lf.jar

• mmt-api.jar

• mmt-owl.jar

• owlapi-bin.jar

5. execute the following MMT commands

• archive add path of the LATIN archive relative to the path on your
computer; to register the latin archive since the bidirectional transla-
tion depends on it

• importer info.kwarc.mmt.owl.OWLCompiler; to inform MMT where
the compiler of the translation from OWL to MMT is

• archive add the path of your archive; to register your archive

• archive the id of your archive compile; to compile all OWL files in
the source folder

• archive the id of your archive content; to rearrange and to index
MMT files for dependency analysis

• foundation info.kwarc.mmt.lf.LFF

• archive the id of your archive check

43

https://svn.kwarc.info/repos/MMT/deploy/mmt
https://svn.kwarc.info/repos/MMT/src/mmt-api
https://svn.kwarc.info/repos/MMT/src/mmt-owl
https://svn.kwarc.info/repos/MMT/src/mmt-owl/lib

44

Chapter 6

Implementation of Management
of Change in OWL via MMT

We provide a management of change system for OWL ontologies via MMT by im-
plementing a system to apply the MMT management of change service to OWL. It
detects changes, identifies impacts of the changes, and marks impacted elements.
This system is based on our bi-directional translation between OWL and MMT.
The key idea is to translate OWL ontologies to MMT, to apply MMT manage-
ment of change service to them, and then to translate them back to OWL. Thus,
the MMT-based implementation is transparent to OWL users.

The source code and a user manual of our system are publicly available on SVN
at the following address: https://svn.kwarc.info/repos/MMT/src/mmt-owl

We give an overview of the workflow of our system in Section 6.1 and we de-
scribe our second approach that improves the results of the system in Section 6.2.

We describe the steps in the workflow as follows: adding identifiers to OWL
axioms in Section 6.3, translating from OWL to MMT in Section 5.2.1, depen-
dency analysis in Section 2.5, detecting changes by MMT Diff in Section 6.4,
change impact analysis in Section 2.5, marking change impacts as annotations
in Section 6.5, translating from MMT to OWL in Section 5.2.2, and visualizing
change impacts in Section 6.6.

6.1 Workflow

We initially inform OWL users that if they add identifiers to axioms, see Sec-
tion 6.3, in the previous version and the current version of an ontology before
feeding them into our system, they can obtain precise results.

45

https://svn.kwarc.info/repos/MMT/src/mmt-owl

The work flow of our system shown in Figure 6.1 is as follows.

1. A previous version (OWL) and the current version (OWL
′
) of an OWL

ontology are taken as inputs, and identifiers are automatically added to
them.

2. Both ontologies with identifiers (OWL+) and (OWL
′+) are translated to

their representations in MMT (MMT+) and (MMT
′+) respectively.

3. Dependency analysis is applied to MMT+ to determine occurs-in relations
of the previous ontology.

4. MMT Diff is applied to compare MMT+ with MMT
′+ to detect changes

between the previous ontology and the current ontology.

5. MMT Change impact analysis is applied to the occurs-in relations and the
changes to obtain impacts of the changes.

6. The change impacts are marked in MMT
′+ as meta data, which yields

(MMT
′+∗).

7. MMT
′+∗ is translated back to its representation in OWL (OWL

′+∗).

In addition, step 8 and step 9 are optional to users.

8. OWL
′+ and OWL

′+∗ are compared by an OWL diff tool to see only the
impacts of changes on the current ontology.

9. OWL+ and OWL
′+∗ are also compared by an OWL diff tool to see the

differences between the previous ontology and the current ontology as well
as the change impacts.

46

OW
L

MM
T+

Oc
cu

rs-
In

Re
lat

ion
s

OW
L'

MM
T'+

Di
ffe

re
nc

es

OW
L'+

*
MM

T'+
*

Ch
an

ge
 Im

pa
cts

Di
ff

an
d C

ha
ng

e I
m

pa
ct

 V
isu

ali
za

tio
n

Ch
an

ge
 Im

pa
ct

Vis
ua

liz
at

ion

Tr
an

sla
tio

n
fro

m
 O

W
L

to
 M

M
T

Tr
an

sla
tio

n
fro

m
 M

M
T

to
 O

W
L

M
M

T
Ch

an
ge

Im

pa
ct

s A
na

ly
sis

Tr
an

sla
tio

n
fro

m
 O

W
L

to
 M

M
T

OW
L

Di
ff

OW
L

Di
ffAd

di
ng

 Id
en

tif
ie

rs
OW

L+

Ad
di

ng
 Id

en
tif

ie
rs

OW
L'+

1
2

1
2

3 64

5

8

7

9

M
M

T
De

pe
nd

en
cy

 A
na

ly
sis

M
M

T
Di

ff

M
ar

ki
ng

Ch

an
ge

 Im
pa

ct
s

Figure 6.1: The first workflow of Management of Change in OWL via MMT
47

6.2 Improving Results

We develop a solution to improve the results of our system. In this way, users do
not have to add identifiers to axioms to obtain more precise results. Instead, they
have to apply the changes to a derived ontology with identifiers from the previous
ontology, which is generated by our system.

Our system initially adds identifiers to axioms, see Section 6.3, in the previous
version of an ontology, and then asks users to make their modifications on this
derived ontology with identifiers. Thus, changes can be detected not only as
deletion and addition operations but also as updating operations. Then, both
the derived ontology with identifiers and the current ontology yielded from the
changes are taken as inputs to the further processing steps.

The work flow of the second approach shown in Figure 6.2 is different from
the first workflow in the following ways.

i Initially, a previous version (OWL) of an OWL ontology is taken, and iden-
tifiers are automatically added to axioms in the ontology, which returns a
derived ontology with identifiers (OWL+) from the previous ontology.

ii OWL+ is modified by users, which yields the current version of the ontology
(OWL+′

).

The derived ontology with identifiers OWL+ and the current ontology (OWL+′
)

are taken as inputs for the the same processing steps of the first work flow.

6.3 Adding Identifiers to OWL Axioms

Entity declarations are identified by IRIs, but axioms do not have identifiers in
OWL ontologies. We need to add identifiers to axioms to detect changes more
precisely by MMT Diff and to refer to changed axioms when we apply MMT
Change impact analysis to OWL ontologies that are translated to MMT.

We define a special annotation structure to represent identifiers, see Sec-
tion 4.3.1, and add identifiers to axioms as annotations.

We know that entity declarations and axioms in OWL ontologies correspond to
constants in MMT, see Section 5.2.1. MMT Diff needs to compare two constants
which have the same name to be able to figure out whether there is no change
between the two constants or the change is an update. Otherwise, both cases are
detected as delete and add operations. Therefore, there are two requirements:
1) the name of the constants must be unique and 2) the same constants must
be given the same name in two versions of MMT documents. Thus, a special

48

OW
L

Ad
di

ng
 Id

en
tif

ie
rs

i

MM
T+

Oc
cu

rs-
In

Re
lat

ion
s

MM
T+

'
Di

ffe
re

nc
es

OW
L+

'*
MM

T+
'*

Ch
an

ge
 Im

pa
cts

Di
ff

an
d C

ha
ng

e I
m

pa
ct

 V
isu

ali
za

tio
n

Ch
an

ge
 Im

pa
ct

Vis
ua

liz
at

ion

Tr
an

sla
tio

n
fro

m
 O

W
L

to
 M

M
T

Tr
an

sla
tio

n
fro

m
 M

M
T

to
 O

W
L

M
M

T
Ch

an
ge

Im

pa
ct

s A
na

ly
sis

Tr
an

sla
tio

n
fro

m
 O

W
L

to
 M

M
T

OW
L

Di
ff

OW
L

Di
ffAd

di
ng

 Id
en

tif
ie

rs
OW

L+

Ad
di

ng
 Id

en
tif

ie
rs

1
2

1
2

3 64

5

8

7

9

M
M

T
De

pe
nd

en
cy

 A
na

ly
sis

M
M

T
Di

ff

M
ar

ki
ng

Ch

an
ge

 Im
pa

ct
s

OW
L+

ii

OW
L+

'
OW

L+
'

Figure 6.2: The second workflow of management of change in OWL via MMT
49

identifier invention that requires those two criteria is necessary to obtain better
results from MMT Diff.

We need to inform OWL users of change impacts since they do not work with
MMT documents. Representing change impacts to them requires to know which
element in OWL a changed element in MMT corresponds to. Therefore, we need
to refer to changed elements in order to represent their impacts on elements in
an ontology. In other words, we need to refer to changed entities and changed
axioms that have effects on axioms and entities in the ontology, respectively.

Axioms in OWL ontologies correspond to constant declarations in MMT the-
ories. Constant declarations are identified by constant names. For this reason,
we add identifiers to axioms and use the identifiers of the axioms as identifiers
of the corresponding constants. An entity declaration axiom consists of an IRI
which identifies the entity. We use the IRI as an identifier of the corresponding
constant by setting the constant name to the IRI. Therefore, we only need to add
identifiers to axioms other than entity declaration axioms.

We initially ask OWL users to add identifiers, in the predefined structure, to
axioms in both versions of an ontology. In addition to this, our system automat-
ically adds identifiers to axioms. The former satisfies both of the requirements,
and the latter satisfies only the first requirement.

As a first solution approach, we could give numbers to axioms. This approach
would satisfy the first condition, which means every MMT constant has a unique
name, but it would not satisfy the second requirement since axioms are translated
to constants in random order via the translation system.

As a second solution approach, we could just give the same name to all axioms,
thus satisfying the second requirement. However, this approach would fail to
assign a unique name for each axiom. Therefore, we need a solution that satisfies
both of the two requirements.

The Scala Method hashCode We decided to use the Scala method hashCode
to assign a unique value for each axiom with no identifier. Our implementation
calls the hashCode method for each axiom without identifiers in order to assign
a unique hash code value for each axiom as an identifier. In this way, the same
axioms in versions of an ontology in OWL are assigned to the same hash code
value by the hashCode method. In terms of MMT, our implementation translates
each axiom to a constant, and assigns the identifier value i.e. hashCode value of
the axiom to the name of the constant. Thus, the same constants in versions of
theories in MMT are set to the same hash code value.

We observed how the hashCode method assigns values to axiom identifiers

50

and constant names in practice by changing some axioms in the extended family
ontology and then adding identifiers via our implementation.

First, we changed axioms in the ontology in different ways, and then added
identifiers to axioms in both versions by our implementation. An identifier with
a hash code value was added to each axiom that has no identifier. We observed
that axioms preserved their identifiers for each of the following cases.

• Changing the order of the object property assertion axiom stating that Liz’s
husband is Max and a class assertion axiom stating that Max is a Father,

• deleting the object property assertion axiom for Liz,

• adding the object property assertion axiom for Liz back to the ontology,

• changing the equivalent class axiom stating that a parent is either a mother
or a father to an axiom stating that a mother or a father is a parent,

• duplicating the class assertion axiom for Max. Note that, in this case, one
of the two axioms was dropped and the other one gets an identifier.

Second, we translated both versions of the ontology to MMT, and then for
each axiom, our implementation set the name of the corresponding constant to
a hash code value. Axioms without identifiers were translated to constants with
unique constant names generated by the hashCode method. We observed that
the names of the constants that correspond to the axioms did not change for
translating them to MMT again as well as for each of the change case above.

However, when we updated an axiom, its identifier and the name of the corre-
sponding constant were set to different hashCode values in two versions. For ex-
ample, we changed the object property assertion axiom stating that Liz’s brother
is Tom to another object property assertion axiom stating that Liza’s brother is
Tom. Then, the identifier of the axiom was changed from ax464831953, shown in
Figure 6.3, to ax34856183, shown in Figure 6.4, and similarly, the name of the
corresponding constant was changed from the old value, shown in Figure 6.5, to
the new value, shown in Figure 6.6.

Note that MMT examples that we use in this thesis have base values
http://cds.omdoc.org/logics/description/owl/owl.omdoc

http://cds.omdoc.org/logics/description/owl/owl2.omdoc

http://example.com/owl/families.
We will denote them with A, B, C, respectively.

51

http://cds.omdoc.org/logics/description/owl/owl.omdoc
http://cds.omdoc.org/logics/description/owl/owl2.omdoc
http://example.com/owl/families

<ObjectPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/

identifier#id”/>
<Literal datatypeIRI=”xsd:string”>

ax464831953</Literal>
</Annotation>
<ObjectProperty IRI=”hasBrother”/>
<NamedIndividual IRI=”Liz”/>
<NamedIndividual IRI=”Tom”/>
</ObjectPropertyAssertion>

Figure 6.3: An example of an axiom
identifier produced by the hashCode
method

<ObjectPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/

identifier#id”/>
<Literal datatypeIRI=”xsd:string”>

ax34856183</Literal>
</Annotation>
<ObjectProperty IRI=”hasBrother”/>
<NamedIndividual IRI=”Liza”/>
<NamedIndividual IRI=”Tom”/>
</ObjectPropertyAssertion>

Figure 6.4: An example of an updated
axiom identifier produced by the hash-
Code method

<constant name=”ax464831953”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB”
name=”objectPropertyAssertion” base=”B”></om:OMS>
<om:OMS module=” ”
name=”hasBrother” base=”C”></om:OMS>
<om:OMS module=” ”
name=”Liz” base=”C”></om:OMS>
<om:OMS module=” ”
name=”Tom” base=”C”></om:OMS>

</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.5: An example of a constant name produced by the hasCode method

We offer two options to OWL users for adding identifiers to axioms, which
yields two types of identifiers: user-added and auto-added identifiers.

First, we inform users that they are required to add identifiers to axioms in
ontologies if they need to obtain more precise results. They add identifiers to
axioms as annotations with the predefined structure according to their needs.
That means, they may add identifiers to all, some or none of the axioms. Second,
our implementation adds identifiers to axioms in OWL documents, and then the
users are expected to continue working on these documents. In other words,
we get OWL documents from users and automatically add identifiers to axioms.
We annotate only axioms which do not have an identifier, and then we save the
ontologies with identifiers as separate OWL files. Users work on the new OWL
documents and change the ontologies. After that, we translate those ontologies to

52

<constant name=”ax34856183”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB”
name=”objectPropertyAssertion” base=”B”></om:OMS>
<om:OMS module=” ”
name=”hasBrother” base=”C”></om:OMS>
<om:OMS module=” ”
name=”Liza” base=”C”></om:OMS>
<om:OMS module=” ”
name=”Tom” base=”C”></om:OMS>

</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.6: An example of an updated constant name produced by the hasCode method

their representations in MMT, and set the corresponding constant names to the
identifier values.

6.4 Applying MMT Diff

We apply the MMT Diff to two versions of an OWL ontology that are translated
to MMT in order to find out differences between them. MMT Diff detects and lists
changes between the two versions as deletion, addition, renaming and updating.

Changes of entity declarations and axioms are listed as changes of the cor-
responding constants by MMT Diff, because entity declarations and axioms cor-
respond to constants of type symbol and application, respectively in MMT. We
explain outputs of MMT Diff for each kind of changes between two versions of an
ontology translated to MMT in the following sections.

6.4.1 Renaming

If a constant of type symbol has been renamed, MMT Diff detects the change as
a renaming. For example,a class Person has been renamed to Human, shown in
Figure 6.7, in the example ontology. In other words, its representation in MMT,
which corresponds to a constant with name Person has been renamed to Human,
shown in Figure 6.8.

MMT Diff detects this change as a renaming and lists the name of the current
constant Human and the path of the previous constant with name Person as shown
in Figure 6.9.

53

<Declaration>
<Class IRI=”Person”/>
</Declaration>

<Declaration>
<Class IRI=”Human”/>
</Declaration>

Figure 6.7: An example of a renamed entity

<constant name=”Person”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMS module=”OWLBase”
name=”class” base=”A”>
</om:OMS>
</om:OMOBJ>
</type>
</constant>

<constant name=”Human”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMS module=”OWLBase”
name=”class” base=”A”>
</om:OMS>
</om:OMOBJ>
</type>
</constant>

Figure 6.8: An example of a renamed constant of type symbol

<omdoc−diff>
<declaration name=”Human” type=”Constant” path=”http://example.com/owl/families? ?Person” change=

”rename”>
</declaration>
</omdoc−diff>

Figure 6.9: An example of detecting and listing an renamed constant of type symbol
by MMT Diff

54

6.4.2 Deletion

If a constant of type symbol has been deleted, MMT Diff detects the change as a
deletion. For example, a class ChildlessPerson, shown in Figure 6.10, has been
deleted in the example ontology. In other words, its representation in MMT, which
corresponds to a constant with name ChildlessPerson, shown in Figure 6.11, has
been deleted.

<Declaration>
<Class IRI=”ChildlessPerson”/>
</Declaration>

Figure 6.10: An example of a deleted entity

<constant name=”ChildlessPerson” >
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMS module=”OWLBase” name=”class” base=”A”></om:OMS>
</om:OMOBJ>
</type>
</constant>

Figure 6.11: An example of a deleted constant of type entity

MMT Diff detects this change as a deletion and prints the path of the constant
with name ChildlessPerson as shown in Figure 6.12.

<omdoc−diff>
<declaration path=”http://example.com/owl/families? ?ChildlessPerson” change=”delete”>
</declaration>
</omdoc−diff>

Figure 6.12: An example of detecting and listing a deleted constant of type symbol by
MMT Diff

Similarly, if a constant of type application has been deleted, MMT Diff detects
the change as a deletion. For instance, an assertion axiom with a user-added
identifier ID002 stating that Alice is Max’s daughter, shown in Figure 6.13, has
been removed from the example ontology. In terms of MMT, a constant with
name ID002, shown in Figure 6.14, has been deleted.

MMT Diff detects this change as a deletion and prints the path of the constant
with name ID002 as shown in Figure 6.15.

55

<ObjectPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ID002</Literal>
</Annotation>
<ObjectProperty IRI=”hasDaughter”/>
<NamedIndividual IRI=”Max”/>
<NamedIndividual IRI=”Alice”/>
</ObjectPropertyAssertion>

Figure 6.13: An example of a deleted axiom

<constant name=”ID002”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”objectPropertyAssertion” base=”B”></om:OMS>
<om:OMS module=” ” name=”hasDaughter” base=”C”></om:OMS>
<om:OMS module=” ” name=”Max” base=”C”></om:OMS>
<om:OMS module=” ” name=”Alice” base=”C”></om:OMS>

</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.14: An example of a deleted constant of type application

<omdoc−diff>
<declaration path=”http://example.com/owl/families? ?ID002” change=”delete”>
</declaration>
</omdoc−diff>

Figure 6.15: An example of detecting and listing a deleted constant of type application
by MMT Diff

56

6.4.3 Addition

If a constant of type symbol has been added, MMT Diff detects the change as
an addition. For example, an individual Bob, shown in Figure 6.16, has been
added to the example ontology. In other words, its representation in MMT, which
corresponds to a constant with name Bob, shown in Figure 6.17, has been added.

<Declaration>
<NamedIndividual IRI=”Bob”/>
</Declaration>

Figure 6.16: An example of an added entity

<constant name=”Bob”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMS module=”OWLBase” name=”individual” base=”A”></om:OMS>
</om:OMOBJ>
</type>
</constant>

Figure 6.17: An example of an added constant of type symbol

MMT Diff detects this change as an addition and lists the path of the constant
with name Bob as shown in Figure 6.18.

Similarly, if a constant of type application has been added, MMT Diff detects
the change as an addition. For instance, an assertion axiom stating that Bob is
Amy’s boyfriend, shown in Figure 6.19, has been added to the example ontology.
In terms of MMT, a constant with name ax600113139, shown in Figure 6.20, has
been added.

MMT Diff detects this change as an addition and lists the path of the constant
with name ax600113139 as shown in Figure 6.21.

<omdoc−diff>
<declaration path=”http://example.com/owl/families? ?Bob” change=”add”>
</declaration>
</omdoc−diff>

Figure 6.18: An example of detecting and listing an added constant of type symbol by
MMT Diff

57

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasBoyfriend”/>
<NamedIndividual IRI=”Amy”/>
<NamedIndividual IRI=”Bob”/>
</ObjectPropertyAssertion>

Figure 6.19: An example of an added axiom

<constant name=”ax600113139”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”objectPropertyAssertion” base=”B”></om:OMS>
<om:OMS module=” ” name=”hasBoyfriend” base=”C”></om:OMS>
<om:OMS module=” ” name=”Amy” base=”C”></om:OMS>
<om:OMS module=” ” name=”Bob” base=”C”></om:OMS>

</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.20: An example of an added constant of type application

<omdoc−diff>
<declaration path=”http://example.com/owl/families? ?ax600113139” change=”add”>
</declaration>
</omdoc−diff>

Figure 6.21: An example of detecting and listing an added constant of type application

58

6.4.4 Updating

MMT Diff compares two constants with the same name, which correspond to two
axioms with the same identifiers in OWL. If there has been any modification on
the constants with the same name, it marks that change as an update. Since
we can assign the two kinds of identifiers to axioms, which are user-added and
auto-added identifiers, we give an example for each kind of identifiers.

First example, an assertion axiom with a user-added identifier ID001 stating
that Max’s last name is Evans, shown in Figure 6.22, has been updated to Max’s
surname is Evans, shown in Figure 6.23, because of renaming an object property
hasLastname to hasSurname. In other words, its representation in MMT, which
is a constant with name ID001, shown in Figure 6.24, has been updated to a
constant with the same name, shown in Figure 6.25.

<DataPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ID001</Literal>
</Annotation>
<DataProperty IRI=”hasLastName”/>
<NamedIndividual IRI=”Max”/>
<Literal datatypeIRI=”xsd:string”>Evans</Literal>
</DataPropertyAssertion>

Figure 6.22: An example of an axiom with a user-added identifier

<DataPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ID001</Literal>
</Annotation>
<DataProperty IRI=”hasSurname”/>
<NamedIndividual IRI=”Max”/>
<Literal datatypeIRI=”xsd:string”>Evans</Literal>
</DataPropertyAssertion>

Figure 6.23: An example of an updated axiom with a user-added identifier

MMT Diff can compare these two constants and figure out that the change
is an update, and then explicitly outputs that the change on the constant is an
update and what the content of the update is, shown Figure 6.26.

Second example, an axiom with an auto-added identifier ax1241281692 stating
that every woman is a person, shown in Figure 6.27 has been updated to every
woman is a human, shown in Figure 6.28, due to the renaming of the class Person
to Human.

59

<constant name=”ID001”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”dataPropertyAssertion” base=”B”></om:OMS>
<om:OMS module=” ” name=”hasLastName” base=”C”></om:OMS>
<om:OMS module=” ” name=”Max” base=”C”></om:OMS>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”literal” base=”B”></om:OMS>
<om:OMSTR>Evans</om:OMSTR>
<om:OMS module=”OWL1Datatype” name=”string” base=”A”></om:OMS>
</om:OMA>

</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.24: An example of a constant of type application

<constant name=”ID001”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”dataPropertyAssertion” base=”B”></om:OMS>
<om:OMS module=” ” name=”hasSurname” base=”C”></om:OMS>
<om:OMS module=” ” name=”Max” base=”C”></om:OMS>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”literal” base=”B”></om:OMS>
<om:OMSTR>Evans</om:OMSTR>
<om:OMS module=”OWL1Datatype” name=”string” base=”A”></om:OMS>
</om:OMA>

</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.25: An example of an updated constant of type application

60

<omdoc−diff>
<component name=”type” path=”http://example.com/owl/families? ?ID001” change=”update”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”dataPropertyAssertion” base=”B”></om:OMS>
<om:OMS module=” ” name=”hasSurname” base=”C”></om:OMS>
<om:OMS module=” ” name=”Max” base=”C”></om:OMS>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”literal” base=”B”></om:OMS>
<om:OMSTR>Evans</om:OMSTR>
<om:OMS module=”OWL1Datatype” name=”string” base=”B”></om:OMS>
</om:OMA>

</om:OMA>
</component>
</omdoc−diff>

Figure 6.26: An example of detecting and listing an updated constant of type application
with user-added name by MMT Diff

<SubClassOf>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ax1241281692</Literal>
</Annotation>
<Class IRI=”Woman”/>
<Class IRI=”Person”/>
</SubClassOf>

Figure 6.27: An example of an axiom with auto-added identifier

<SubClassOf>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ax1241281692</Literal>
</Annotation>
<Class IRI=”Woman”/>
<Class IRI=”Human”/>
</SubClassOf>

Figure 6.28: An example of an updated axiom with auto-added identifier

61

<constant name=”ax1241281692”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”subClassOf” base=”B”></om:OMS>
<om:OMS module=” ” name=”Woman” base=”C”></om:OMS>
<om:OMS module=” ” name=”Person” base=”C”></om:OMS>

</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.29: An example of a constant of type application with auto-added name

<constant name=”ax1241281692”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”subClassOf” base=”B”></om:OMS>
<om:OMS module=” ” name=”Woman” base=”C”></om:OMS>
<om:OMS module=” ” name=”Human” base=”C”></om:OMS>

</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.30: An example of an updated constant of type application with auto-added
name

The axiom is represented as a constant with name ax1241281692, shown in
Figure 6.29 in MMT. That means, the constant has been updated to another
constant with the same name, shown in Figure 6.30.

MMT Diff compares these two constants and lists a difference indicating that
the change is an update with the content of the current axiom as shown in Fig-
ure 6.31.

However, although a constant has been updated, MMT Diff can not detect
that change as an update if the name of the older constant and the name of the
current constant are not same. Instead, MMT Diff outputs that the change is a
deletion and addition operation, which means that the older constant has been
deleted and the current constant has been added.

For instance, if the axioms in the previous example do not have identifiers in
OWL, the older axiom and its updated version are translated to two constants
with different names, shown in Figure 6.32 and Figure 6.33, in MMT.

Therefore, MMT Diff can not compare these two constants. Thus, it detects
the change as deleting the older constant and adding the current constant as

62

<omdoc−diff>
<component name=”type” path=”http://example.com/owl/families? ?ax1241281692”
change=”update”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”subClassOf” base=”B”></om:OMS>
<om:OMS module=” ” name=”Woman” base=”C”></om:OMS>
<om:OMS module=” ” name=”Human” base=”C”></om:OMS>

</om:OMA>
</component>
</omdoc−diff>

Figure 6.31: An example of detecting and listing an updated constant of type application
with auto-added name by MMT Diff

<constant name=”ax1949323543”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”subClassOf” base=”B”></om:OMS>
<om:OMS module=” ” name=”Woman” base=”C”></om:OMS>
<om:OMS module=” ” name=”Person” base=”C”></om:OMS>

</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.32: An example of a constant with an auto-added identifier

<constant name=”ax1408526537”>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”subClassOf” base=”B”></om:OMS>
<om:OMS module=” ” name=”Woman” base=”C”></om:OMS>
<om:OMS module=” ” name=”Human” base=”C”></om:OMS>
</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.33: An example of a constant with a changed auto-added identifier

63

<omdoc−diff>
<declaration path=”http://example.com/owl/families? ?ax1949323543” change=”delete”>
</declaration>

<declaration change=”add”>
<constant name=”ax1408526537” >
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”subClassOf” base=”B”></om:OMS>
<om:OMS module=” ” name=”Woman” base=”C”></om:OMS>
<om:OMS module=” ” name=”Human” base=”C”></om:OMS>
</om:OMA>
</om:OMOBJ>
</type>
</constant>
</declaration>
</omdoc−diff>

Figure 6.34: An example of detecting and listing an updated constant with changed
auto-added name as delete and add by MMT Diff

shown in Figure 6.34.

6.5 Marking Change Impacts

Change impacts can be computed and then propagated via MMT change impact
analysis and propagator, see Section 2.5. We make use of the MMT change impact
analysis to identify change impacts in OWL ontologies represented in MMT, and
we implement an extension of the propagator in accordance with what we need to
mark change impacts, see Section 4.3. Our implementation determines impacts
of changes, generates metadata with respect to the impacts and adds them to
impacted constants, which means mark impacted constants by meta data.

Axioms in OWL correspond to constants of different types in MMT, see Sec-
tion 5.2.1. If an entity declaration (a declaration axiom) is changed, axioms that
include the entity are affected by the change. Besides, if an axim other than dec-
laration axioms is changed, the modification may have impacts on entities that
occur in the axiom. In terms of MMT, if a constant of type symbol is changed,
the change affects constants of type application that contain it. A change on a
constant of type application may influence its arguments, i.e., constants that are
declared as constants of type symbol. Therefore, we distinguish types of changed
constants, and set their impacts respectively in the implementation.

As we explain in section 4.2, change types are deletion, addition, renaming

64

and updating in OWL. All axioms (entity declaration axioms and other axioms)
can be modified by deleting and adding them. In contrast to those, renaming can
be applied to only declaration axioms, and updating can be applied to only other
axioms. In terms of MMT, if a change is a deletion or an addition, it can be a
modification of any constant. If the change is a renaming, it means a constant of
type symbol has been changed. In contrast to that, if the change is an update, it
means a constant of type application has been modified.

Our implementation for marking change impacts consists of three steps: de-
termining change impacts, generating metadata about the impacts and adding
the metadata to impacted constants.

The first step: For each change that is returned from the diff, we identify
impacts of the change by a binary relation called RefersTo in MMT. If the change
is a constant of type symbol, then we use the inverse of the relation. If the change
is a constant of type application, then we use the relation. In terms of OWL, the
former means that the changed constant refers to an entity (declaration axiom)
and thus, the inverse relation returns impacted constants i.e., axioms that includes
the changed entity. The latter means that the changed constant is a logical axiom
or an annotation axiom, and thus, impacted constants i.e., entities that occur in
the changed axiom are obtained via the relation.

The second step: For each impacted constant, we generate metadata with a
special key (meta property) and value (application with string) for each kind of
changes that have impacts on the constant. Metadata are represented as annota-
tions in OWL. Meta property and meta value correspond to annotation property
and annotation value, respectively. Meta property and annotation property are
identifiers of change impacts, and meta value and annotation value are type of
string that gives information about the impact.

We set the base part of the identifier as http://omdoc.org/impact# for both
impacts or possible impacts of a change. In addition, we set the fragment part
of the identifier, which represents the type of a change that causes an impact, as
impactByDelete, and impactByRename for impacts, and as possibleImpactBy-
Delete, possibleImpactByAdd and possibleImpactByUpdate for possible im-
pacts. In other words, we set the identifiers for impacts and possible impacts of a
change with respect to the change types as shown in Section 4.3.1.

We set metadata value as string that gives information about impacts on
constants. We define two kinds of string. The first one gives information about
impacts of deleting or renaming of a constant of type symbol, and the second

65

one informs about possible impacts of deleting, adding or updating a constant of
type application. In terms of OWL, an annotation value, which is type of string,
informs about effects of deleting or renaming of an entity (declaration axiom) as
well as deleting, adding or updating of logical axioms and annotation axioms.

Marking Impacts of a Change We use the first kind of string if the impacted
constant is of type application. The string states that a change of a constant
of type symbol has an impact on a constant that includes this information as
metadata, which is written in terms of OWL.

It consists of four parts: base, type of the change, type of the changed constant,
and name of the changed constant.

1. The base part is always set to the same string: “This axiom has been im-
pacted by”.

2. The type of the change is set to “deleting”, or “renaming” with respect to
the change type. For example, if the change is a deletion of a constant, then
the second part will be “deleting”.

3. The type of the changed constant is set to the symbol name in the changed
constant, i.e., type of the changed entity. For example, if the changed con-
stant corresponds to a class in OWL, then the third part will be “class”.

4. The name of the changed constant is set to the name of the changed constant,
i.e., the name of the changed entity. For example, if the changed constant is
an entity named “ChildlessPerson”, then this part will be “ChildlessPerson”.

For impacts, generated string for metadata value and its correspondence in
OWL are shown in Figure 6.35 and Figure 6.36, respectively.

<metadata>
<meta property=”http://omdoc.org/impact? ?impactByDelete”>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”literal” base=”B”> </om:OMS>
<om:OMSTR>This axiom has been impacted by deleting class ChildlessPerson</om:OMSTR>
<om:OMS module=”OWL1Datatype” name=”string” base=”A”></om:OMS>
</om:OMA>
</om:OMOBJ>
</meta>
</metadata>

Figure 6.35: An example of marking an impact of a change as metadata in MMT

66

<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#impactByDelete”/>
<Literal datatypeIRI=”xsd:string”>
This axiom has been impacted by deleting class ChildlessPerson</Literal>

</Annotation>

Figure 6.36: An example of marking an impact of a change as an annotation in OWL

The following two examples show that a constant of type application is affected
by deleting a constant of type symbol in MMT, shown in Figure 6.37, and, which
means, an axiom is affected by deleting an entity in OWL, shown in Figure 6.38,
by stating that “This axiom is impacted by deleting class ChildlessPerson”. The
translation of the constant in the first example to OWL looks like the axiom in
the second example. The second example also shows that the axiom includes the
deleted class ChildlessPerson.

Marking Possible Impacts of a Change We use the second kind of string
if the impacted constant is of type symbol. The string states that a change of a
constant of type application may have an impact on a constant that includes this
information as metadata, which is also written in terms of OWL. In other words,
it informs about a possible impact of changing an axiom.

It consists of three parts: identifier of the changed constant, base, and type of
the change.

1. The identifier of the change constant is set to “An axiom with ID ” con-
catenated with the name of the changed constant of type application, i.e.
the identifier of the changed axiom. For example, “An axiom with identifier
ax-1711766800”.

2. The base part is always set to the same string: “that includes this entity
has been”.

3. The type of the change is set to “deleted”, “added”, or “updated” with
respect to the change type. For example, if the change is a deletion of a
constant of type application, then the third part will be “deleted”.

For possible impacts, generated string for metadata value and its correspondence
in OWL are shown in Figure 6.39 and in Figure 6.40 .

The following two examples indicate that a constant may be affected by updat-
ing another constant with name ax-1711766800 in MMT, shown in Figure 6.41,
and, which means, an entity may be affected by deleting an axiom with identifier

67

<constant name=”ax−1039132749”>
<metadata>
<meta property=”http://omdoc.org/impact? ?impactByDelete”>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”literal” base=”B”> </om:OMS>
<om:OMSTR>This axiom has been impacted by deleting class ChildlessPerson</om:OMSTR>
<om:OMS module=”OWL1Datatype” name=”string” base=”A”></om:OMS>
</om:OMA>
</om:OMOBJ>
</meta>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”equivalentClasses” base=”B”></om:OMS>
<om:OMS module=” ” name=”ChildlessPerson” base=”C”></om:OMS>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”objectIntersectionOf” base=”B”></om:OMS>
<om:OMS module=” ” name=”Person” base=”C”></om:OMS>
<om:OMA>
<om:OMS module=”OWL2QLRL” name=”objectComplementOf” base=”B”>
</om:OMS>
<om:OMS module=” ” name=”Parent” base=”C”></om:OMS>
</om:OMA>
</om:OMA>
</om:OMA>
</om:OMOBJ>
</type>
</constant>

Figure 6.37: An example of marking an impact of deleting a constant of type symbol

<EquivalentClasses>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#impactByDelete”/>
<Literal datatypeIRI=”xsd:string”>
This axiom has been impacted by deleting class ChildlessPerson</Literal>

</Annotation>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ax−1039132749</Literal>
</Annotation>
<Class IRI=”ChildlessPerson”/>
<ObjectIntersectionOf>
<Class IRI=”Person”/>
<ObjectComplementOf>
<Class IRI=”Parent”/>
</ObjectComplementOf>
</ObjectIntersectionOf>

</EquivalentClasses>

Figure 6.38: An example of marking an impact of deleting an entity

68

<metadata>
<meta property=”http://omdoc.org/impact? ?possibleImpact”>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”literal” base=”B”></om:OMS>
<om:OMSTR> An axiom with ID ax−1711766800 that includes this entity has been deleted.</

om:OMSTR>
<om:OMS module=”OWL1Datatype” name=”string” base=”A”></om:OMS>
</om:OMA>
</om:OMOBJ>
</meta>
</metadata>

Figure 6.39: An example of marking a possible impact of a change as metadata in MMT

<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#possibleImpact”/>
<Literal datatypeIRI=”xsd:string”>
An axiom with ID ax−1711766800 that includes this entity has been deleted.</Literal>

</Annotation>

Figure 6.40: An example of marking a possible impact of a change as an annotation in
OWL

ax-1711766800 in OWL, shown in Figure 6.42, by stating that “An axiom with
identifier ax-1711766800 including this entity has been updated”. The translation
of the constant in the first example to OWL is the entity declaration in the second
example.

We also give examples for both impacts and possible impacts of other change
types addition, updating and renaming at https://svn.kwarc.info/repos/MMT/
src/mmt-owl/ExtendedFamilyOntology.

The third step: We add information about each change which affects the im-
pacted constant as metadata. We take the generated metadata with respect to
the impacts in the second step and add them to the impacted constant. In terms
of OWL, we can see information about each change which affects an axiom as an
annotation in the axiom. We do not directly generate an annotation with respect
to impacts. Instead, we translate generated metadata in constants to annotations
in axioms. Generated and added metadata and corresponding annotations for
impacts, shown in Figure 6.37 and in Figure 6.38 and for possible impacts, shown
in Figure 6.41 and in Figure 6.42 are given in the examples.

69

https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology
https://svn.kwarc.info/repos/MMT/src/mmt-owl/ExtendedFamilyOntology

<constant name=”Liz”>
<metadata>
<meta property=”http://omdoc.org/impact? ?possibleImpact”>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMA>
<om:OMS module=”OWL2SUB” name=”literal” base=”B”></om:OMS>
<om:OMSTR> An axiom with ID ax−1711766800 that includes this entity has been deleted.
</om:OMSTR>
<om:OMS module=”OWL1Datatype” name=”string” base=”A”></om:OMS>
</om:OMA>
</om:OMOBJ>
</meta>
</metadata>
<type>
<om:OMOBJ xmlns:om=”http://www.openmath.org/OpenMath”>
<om:OMS module=”OWLBase” name=”individual” base=”A”></om:OMS>
</om:OMOBJ>
</type>
</constant>

Figure 6.41: An example of marking a possible impact of updating a constant of type
application

<Declaration>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/impact#possibleImpact”/>
<Literal datatypeIRI=”xsd:string”>
An axiom with ID ax−1711766800 that includes this entity has been deleted.</Literal>

</Annotation>
<NamedIndividual IRI=”Liz”/>
</Declaration>

Figure 6.42: An example of marking a possible impact of updating an axiom

6.6 Visualization of Changes and their Impacts

We can use existing OWL diff tools to visualize changes and their impacts between
two versions of an ontology if they support detecting annotation changes as well.
There are two options to present differences and change impacts.

In the first option, we apply an OWL diff tool to a previous version and the
current version with impacts of an ontology to display differences and change
impacts together.

In the second one, we apply the tool to the current version and the current
version with impacts of an ontology to show only change impacts.

The existing diff tools do not support detecting annotation changes or com-
paring OWL 2 ontologies. We explain some of the ontology comparison tools such
as Ecco, OWLDiff and OWL Diff Tool.

70

Ecco [GPS12] is a recently implemented hybrid diff tool for OWL 2 ontologies.
It distinguishes effectual and ineffectual changes between ontologies and presents
them by categorizing. OWLDiff [kri11] is a tool for comparison and merge for
OWL ontologies. It represents changes in both ontology versions in form of trees.
However, both of these tools do not support annotation changes.

OWL Diff Tool [RN] is another difference tool which is available as a plugin
in the latest Protégé editor. It detects and shows differences such as adding,
deleting and renaming of entities and annotation changes. However, it does not
give a detailed description for annotation changes.

We can use View functionality in the user interface of the Protégé editor to
present change impacts. Many of the views are not visible by default, so users
must configure the user interface by activating necessary views in View menu.
For details of the View menu and how to configure it, see

http://protegewiki.stanford.edu/wiki/Protege4GettingStarted and
http://protegewiki.stanford.edu/wiki/Protege4Views.

Change Impacts can be displayed in three ways. We describe each of them in
the following paragraphs.

The first way: We use Annotation properties tab, and we activate two An-
notation property views which are Annotation property hierarchy and Usage
and one Misc view which is Axioms by clicking on the View menu. The Anno-
tation property hierarchy view lists annotation properties such as impactByDelete
and impactByRename for impact annotations, and possibleImpactByAdd, possi-
bleImpactByDelete and possibleImpactByUpdate for possible impact annotations.
The Usage view shows references of the currently selected entity, and expressions
in the list are hyperlinked for navigation. The Axioms view lists all axioms with
their annotations.

After the configuration, change impacts can be seen as annotations by following
4 steps:

1. we select one of the impact annotation properties in the Annotation property
hierarchy view,

2. we see impacted axioms in the Usage view,

3. we find one of the impacted axioms in the Axiom view,

4. we click on the highlighted @ icon on the right side of the axiom to read
impact annotations.

71

http://protegewiki.stanford.edu/wiki/Protege4GettingStarted
http://protegewiki.stanford.edu/wiki/Protege4Views

For example, we can see change impacts on axioms which are impacted by delet-
ing operations. First, we click on impactByDelete in the Annotation property
hierarchy view. Second, we see a list of axioms impacted by deleting in the Usage
view. Third, we find an axiom stating that Alice is Max’s daughter in the Axiom
view. Last, we click on @ icon on the right side of the axiom, and thus, we see
an impact annotation saying that “This axiom has been impacted by deleting
individual Alice” in a pop up window as shown in the following Figure 6.43.

The second way: We use Annotation properties tab, and we activate two
Annotation property views which are Annotation property hierarchy and
Usage again by clicking on the View menu. We do not need the Axioms since
we use the hyperlinks in the Usage view instead of searching for an axiom in the
list in the Axiom view.

Change impacts can be presented as annotations by following 6 steps:

1. we select one of the impact annotation properties in the Annotation property
hierarchy view,

2. we see the impacted axioms in the Usage view,

3. we click on the entity part of one of the impacted axioms in the Usage view
to move to the Entities tab via hyperlinks,

4. we click on the entity in the Entities tab to see axioms related to it,

5. we see the impacted axioms related to the entity,

6. we click on the highlighted @ icon on the right side of the axiom to read
impact annotations.

For instance, we can see change impacts on the same axiom again by the second
way. First, we click on impactByDelete in the Annotation property hierarchy view.
Second, we see a list of axioms impacted by deleting in the Usage view. Third,
we click on Max which is the entity part of the axiom stating that Alice is Max’s
daughter in the Usage view as shown in the Figure 6.44. Then, we automatically
move to the Entities tab via hyperlink of the entity Max. Fourth, we click on the
entity Max and see all related axioms to it. Fifth, we see the property assertion of
the Max which is hasDaughter Alice. Finally, we click on the highlighted @ icon
on the right side of the axiom to read impact annotation saying that “This axiom
has been impacted by deleting individual Alice” in a pop up window as shown in
the following Figure 6.45.

72

The third way: Similarly, we use Annotation properties tab, and we acti-
vate two Annotation property views which are Annotation property hierarchy
and Usage again by clicking on the View menu. This time we need neither the
Axioms nor hyperlinks in the Usage view since we use explanation lines in the
Usage view.

Change impacts can be displayed as annotations by following 4 steps:

1. we select one of the impact annotation properties in the Annotation property
hierarchy view,

2. we see the impacted axioms in the Usage view,

3. we move the mouse pointer to one of the axioms in the Usage view,

4. we see a line of explanation about annotations of the axiom.

For example, we can see a line of explanation about change impacts on the
same axiom by the third way as in the following Figure 6.46.

73

Figure 6.43: First way of visualizing change impacts

74

Figure 6.44: Second way of visualizing change impacts - step 1

75

Figure 6.45: Second way of visualizing change impacts - step 2

76

Figure 6.46: Third way of visualizing change impacts

77

78

Chapter 7

Conclusion

7.1 Summary

In this thesis, we have investigated whether generic MMT services can be applied
to specific domains, specifically, applied the generic MMT management of change
service to OWL, and thus provided a management of change service for OWL
ontologies. We have implemented a system to apply the MMT MoC service to
OWL. It covers detecting changes, identifying impacts of the changes, and marking
impacted elements.

Firstly, we assessed requirements for change impact analysis in OWL ontolo-
gies. The requirements are determining dependency relations between elements
in ontologies, identifying and representing change impacts.

We determined dependency relations between entities, expressions and axioms
in OWL ontologies. Also, we considered deletion, addition, renaming and updat-
ing as the types of changes that can be applied to OWL ontologies. Note that any
other kind of change can be expressed as a combination of these changes. Based
on the dependency relations, we identified change impacts. In particular, we ap-
plied the four kinds of changes separately and all together to the extended family
ontology and identified impacts and possible impacts of the changes. In addition,
we established requirements of representing changes and their impacts, and de-
veloped a solution that satisfies the requirements, which is the representation of
changes and their impacts as annotations in ontologies. One of the essential re-
quirements was to distinguish changes and their impacts from other annotations.
Therefore, we decided to define a special annotation structure with an annotation
property for impacts and possible impacts of each kind of changes, which allowed
us to distinguish not only annotations about changes and their impacts from other
annotations but also different impacts from each other.

79

We developed a system to apply the management of change service for MMT to
OWL ontologies. We need to add identifiers to axioms to get more precise results
from the system as well as to refer to changed elements in OWL. Our system
takes two versions of an ontology, adds identifiers to axioms in both ontology
versions, and returns changes between them and impacts of the changes on the
current ontology version. Changes are identified as deletion, addition, renaming,
and updating operations. In our second approach, the system adds identifiers
to axioms in the original ontology, and then OWL users are required to apply
changes to that derived ontology with identifiers from the ontology in order to
improve the results of our system.

The work flows of both approaches are the same after adding identifiers to ax-
ioms in ontologies, which are translating OWL ontologies to their representations
in MMT, determining dependency relations between elements in the previous on-
tology version, applying MMT Diff to both the previous and the current ontology
versions to detect changes, making use of MMT CIA to identify impacts of the
changes, adding change impact annotations to the current ontology version in
MMT, and translating the MMT document with impact annotations to its rep-
resentation in OWL, and finally, visualizing changes and their impacts via OWL
editors or diff tools.

Users can visualize change impacts by OWL editors or diff tools. An OWL diff
tool can be applied to a previous version of an ontology with identifiers and the
current version of the ontology with impact annotations to display changes and
their impacts together if the diff tool supports detecting changes of annotations.
In addition, the tool can be applied to the current ontology version with identifiers
and the current ontology version with impact annotations to show only change
impacts.

Alternatively, change impacts can be displayed by OWL editors. We used the
latest Protégé editor to realize the visualization by the view functionality of the
editor. Since many of the views are not visible by default, we explained how to
configure the user interface to include necessary views. Additionally, we found
out three methods of the visualization, and gave instructions on how to display
change impact annotations by each method.

7.2 Discussion

We have evaluated the work described in this thesis by using the various versions
of the extended family ontology. The management of change service for OWL
ontologies via MMT was based on the bi-directional translation between OWL and

80

MMT, thus gave us the advantage of developing services for MMT and applying
them to OWL ontologies.

Our discussion on requirements for change management in OWL ontologies
covers only entities, expressions and axioms in OWL. Dependency relations be-
tween those elements were determined systematically. In light of these sets of
knowledge, applying the four kinds of changes to the ontology separately and all
together enabled us to discuss impacts of each change type separately and impacts
of all change types together, respectively. The consideration of changes and their
impacts in detail contributed to determining what to expect from an automated
change impact analysis for OWL. However, we could not observe all possible im-
pacts of the changes since the ontologies do not include all possible combinations
of the elements.

Furthermore, our discussion on requirements of representing change impacts
was beneficial for producing the solution for the representation, which was to use
annotations in ontologies. The special annotation structure that we defined for
impacts of changes permitted us to distinguish change impact annotations from
other annotations. Also, the predefined annotation properties for impacts and
possible impacts of each kind of changes allowed us to separate different impacts
from each other.

Moreover, the entire discussion enabled us to determine what any manage-
ment of change system for OWL ontologies needs to support and how we should
implement the system for OWL ontologies.

The system that we developed to apply the management of change service
for MMT to OWL ontologies worked more precisely when axioms had identifiers
added by users. Otherwise, updating operations were identified as delete and add
operations. Our second approach improved the results of our system. In this way,
we obtained more precise results such as detecting a change as an update.

Our implementation makes visualization of change impacts possible by OWL
editors or diff tools since we use annotations for the representation of change
impacts. Annotations are readily available in OWL and they should be supported
by any OWL tool. OWL diff tools can display changes and their impacts together
or only change impacts. However, we applied the existing OWL diff tools to
versions of the extended family ontology, and we could not see change impact
annotations since the tools do not support detecting annotation changes.

Additionally, change impact annotations can be displayed by OWL editors.
There are three methods to present changes impact annotations by the latest
Protégé editor. We opened the versions of the extended family ontology with the
editor, and observed that the three methods successfully displayed the change
impact annotations. The methods have both advantages and disadvantages. In

81

the first method, even though the users do not have to take many steps to see
the impact on an affected element, they have to take a step to find the element
in a list of axioms. Finding the element may take time or may be hard for the
users if the axioms list is too long, i.e. the ontology contains too many axioms. In
the second method, the users have to take more steps to see the annotation via
hyperlinks, nevertheless, they do not have to look for the element in the list of
axioms. In the third method, the users do not have to use the axiom list or the
hyperlinks. Instead, they can use explanation lines. That means, they can see the
annotation in an explanation line that appears on the element when the mouse
pointer is moved to it. However, it may be hard to read the annotation in the
one thin explanation line. The usability evaluation should be done systematically
with real ontologies and test users.

From an OWL perspective, OWL users can take advantage of our automated
change management service for OWL ontologies since identifying and tracing im-
pacts of changes is not only crucial but also difficult in large ontologies. Moreover,
OWL users can benefit from viewing change impacts by OWL editor or diff tools.
In addition, they are already familiar with those tools, so they do not have to
work with other tools. Similarly, they do not have to know MMT since change
impacts are represented as annotations in an OWL ontology itself.

From an MMT perspective, our work was one experiment in order to evaluate
whether generic MMT services can be applied to specific domains. We achieved
providing a management of change service for OWL ontologies via the generic
MMT management of change service. Thus, we demonstrated that generic MMT
services can be applied to OWL ontologies.

7.3 Future Work

Further developments can include extending the followings:

1. the management of change service to support change impacts of imports in
OWL,

2. the management of change service to support applying changes to ontologies
in OWL,

3. OWL diff tools to support changes of annotations.

We detail them in the following paragraphs.

82

Change Impacts of Imports An OWL ontology can directly import ontologies
to gain access to their elements. Since some elements of the imported ontologies
are used in the ontology, a change in one of the imported ontologies may lead
to impacts on elements of the ontology that imports it. Therefore, we need to
extend our system by supporting change impact annotations arising from imports.
In other words, a theory can include another theory, and a change in an included
theory may affect other constants in the theory in MMT. Thus, we are required
to make our system available to provide metadata about impacts of changes in
included theories.

Initially, types of imports, and dependency relations between them and the
other elements of OWL ontologies should be discussed respectively as we ex-
plained the dependency relations between the other elements in OWL. Based on
the dependency relations, effects of changes in imported ontologies on the im-
porting ontology should be identified for each kind of changes. After that, our
approach of detecting changes and their impacts could be applied to the previous
version and the current version of the imported ontology. In other words, for each
change in the included theory, i.e. the imported ontology, impacts of the change on
the including theory, i.e. on the importing ontology are identified. Finally, change
impact metadata about includes are added to impacted constants, i.e. annotations
about the impacts of changes to imported ontologies are added to impacted entity
declarations or axioms in the ontology.

Applying Changes to Ontologies In large ontologies, it is not always conve-
nient to send the current version of the ontologies between users. Instead, other
users can apply changes to the original ontology to obtain the current version of
the ontology. In order to support that, our system can be extended by making
use of the change propagation feature of the MMT CIA system.

Changes of Annotations As we explained before, any OWL diff tool can visu-
alize change impact annotations if it supports detecting changes of annotations. It
also provides the advantage of displaying change impact annotations all together.
In addition, viewing the annotations in Protégé is not sufficient for users working
with other OWL editors. Therefore, another development can be extending the
existing diff tools.

Seperately from the future investigations above, other generic MMT services
can be applied to OWL. For example, the MMT search engine can be applied to
OWL ontologies.

83

84

Bibliography

[ADD+11] Serge Autexier, Catalin David, Dominik Dietrich, Michael Kohlhase,
and Vyacheslav Zholudev. Workflows for the Management of Change
in Science, Technologies, Engineering and Mathematics. CoRR,
abs/1105.2392, 2011.

[BBL05] Franz Baader, Sebastian Brand, and Carsten Lutz. Pushing the
EL Envelope. In In Proc. of IJCAI 2005, pages 364–369. Morgan-
Kaufmann Publishers, 2005.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The description logic
handbook: theory, implementation, and applications. Cambridge Uni-
versity Press, New York, USA, 2003.

[CIM10] David Carlisle, Patrick Ion, and Robert Miner. Mathematical Markup
Language (MathML), 2010. See http://www.w3.org/TR/MathML3/.

[CIM11] David Carlisle, Patrick Ion, and Robert Miner. Extensible Markup
Language (XML), 2011. See http://www.w3.org/XML/.

[CLLR07] Diego Calvanese, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. Tractable Reasoning and Efficient Query Answering in De-
scription Logics: The DL-Lite Family. 2007.

[DBL01] OilEd: A Reason-able Ontology Editor for the Semantic Web. pages
396–408, 2001.

[DS04] Mike Dean and Guus Schreiber. OWL Web Ontology Lan-
guage Reference, 2004. See http://www.w3.org/TR/2004/

REC-owl-ref-20040210/.

[FaC11] FaCT++, 2011. See http://code.google.com/p/factplusplus/.

85

http://www.w3.org/TR/MathML3/
http://www.w3.org/XML/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://code.google.com/p/factplusplus/

[GPS12] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Ecco: A Hybrid
Diff Tool for OWL 2 Ontologies. In OWLED, 2012.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Log-
ics. Journal of the Association for Computing Machinery, 40(1):143–
184, 1993.

[HKP+09] Pascal Hitzler, Markus Krtzsch, Bijan Parsia, Peter F. Patel-
Schneider, and Sebastian Rudolph. OWL 2 Web Ontology Language
Primer, 2009. See http://www.w3.org/TR/owl2-primer.

[Hug06] Baden Hughes. Change Management and Versioning in On-
tologies, 2006. see http://www.slideshare.net/badenhughes/

change-management-and-versioning-in-ontologies.

[IR12] M. Iancu and F. Rabe. Management of Change in Declarative Lan-
guages. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka,
V. Sorge, and M. Wenzel, editors, Intelligent Computer Mathematics,
volume 7362 of Lecture Notes in Computer Science, pages 325–340.
Springer, 2012.

[Koh06] Michael Kohlhase. OMDoc – An Open Markup format for Math-
ematical Documents [Version 1.2]. Number 4180 in LNAI. Springer
Verlag, 2006.

[KPS+05] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau,
and James Hendler. SWOOP: A Web Ontology Editing Browser.
Journal of Web Semantics, 4:2005, 2005.

[kri11] OWL Diff, 2011. See http://krizik.felk.cvut.cz/km/owldiff/

index.html/.

[LGP11] GNU Lesser General Public License, 2011. See http://www.gnu.org/
licenses/lgpl-2.1.html/.

[M1̈0] N. Müller. Change Management on Semi-Structured Documents,
2010.

[Mad92] Nazim H. Madhavji. Environment Evolution: The Prism Model of
Changes, 1992. See http://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=135771.

86

http://www.w3.org/TR/owl2-primer
http://www.slideshare.net/badenhughes/change-management-and-versioning-in-ontologies
http://www.slideshare.net/badenhughes/change-management-and-versioning-in-ontologies
http://krizik.felk.cvut.cz/km/owldiff/index.html/
http://krizik.felk.cvut.cz/km/owldiff/index.html/
http://www.gnu.org/licenses/lgpl-2.1.html/
http://www.gnu.org/licenses/lgpl-2.1.html/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=135771
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=135771

[MGH+09] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille
Fokoue, and Carsten Lutz. OWL 2 Web Ontology Language Profiles,
2009. See http://www.w3.org/TR/owl2-profiles/.

[MHSV04] Eetu Makela, Eero Hyvonen, Samppa Saarela, and Kim Viljanen. On-
toViews - A Tool for Creating Semantic Web Portals. 2004.

[MMT] The MMT API. https://svn.kwarc.info/repos/MMT/deploy/

apidocs/index.html.

[MPSG09] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau.
OWL 2 Web Ontology Language: Direct Semantics, 2009. See http:

//www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/.

[MPSP09] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia.
OWL 2 Web Ontology Language: Structural Specification and
Functional-Style Syntax, 2009. See http://www.w3.org/TR/2009/

REC-owl2-syntax-20091027/.

[MRMJ12] M.Iancu, F. Rabe, M.Kohlhase, and J.Urban. The Mizar Math-
ematical Library in OMDoc: Translation and Applications. see
http://kwarc.info/frabe/Research/IKRU_mizar_11.pdf, 2012.

[NeO11] NeON Toolkit, 2011. See http://neon-toolkit.org/wiki/Main_

Page.

[Ope09] Openmath, 2009. http://www.openmath.org.

[Pro11] Protégé, 2011. See http://protege.stanford.edu/.

[PS99] F. Pfenning and C. Schürmann. System Description: Twelf - A Meta-
Logical Framework for Deductive Systems. Lecture Notes in Computer
Science, 1632:202–206, 1999.

[RK12] F. Rabe and M. Kohlhase. A Scalable Module System, 2012. under
review, see http://kwarc.info/frabe/Research/mmt.pdf.

[RN] T. Redmond and N. Noy. Computing the changes between ontologies.

[RS09a] F. Rabe and C. Schürmann. A Practical Module System for LF.
In J. Cheney and A. Felty, editors, Proceedings of the Workshop on
Logical Frameworks: Meta-Theory and Practice (LFMTP), volume
LFMTP’09 of ACM International Conference Proceeding Series, pages
40–48. ACM Press, 2009.

87

http://www.w3.org/TR/owl2-profiles/
https://svn.kwarc.info/repos/MMT/deploy/apidocs/index.html
https://svn.kwarc.info/repos/MMT/deploy/apidocs/index.html
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
 http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
 http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://kwarc.info/frabe/Research/IKRU_mizar_11.pdf
http://neon-toolkit.org/wiki/Main_Page
http://neon-toolkit.org/wiki/Main_Page
http://www.openmath.org
http://protege.stanford.edu/
http://kwarc.info/frabe/Research/mmt.pdf

[RS09b] F. Rabe and C. Schürmann. A Practical Module System for LF. see
http://kwarc.info/frabe/Research/lf.pdf, 2009.

[Sch09] Michael Schneider. OWL 2 Web Ontology Language: RDF-
Based Semantics, 2009. See http://www.w3.org/TR/2009/

REC-owl2-rdf-based-semantics-20091027/.

[UNS11] The United Nations Standard Products and Services Code, 2011. See
http://unspsc.org/.

88

http://kwarc.info/frabe/Research/lf.pdf
http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
http://unspsc.org/

Appendix A

An Extended Family Ontology

<?xml version=”1.0”?>
<Ontology

xmlns=”http://www.w3.org/2002/07/owl#”
xml:base=”http://example.com/owl/families/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”
ontologyIRI=”http://example.com/owl/families/”>

<Declaration>
<NamedIndividual IRI=”John”/>
</Declaration>

<Declaration>
<NamedIndividual IRI=”Mary”/>
</Declaration>

<Declaration>
<NamedIndividual IRI=”Liz”/>
</Declaration>

<Declaration>
<NamedIndividual IRI=”Liza”/>
</Declaration>

<Declaration>
<NamedIndividual IRI=”Tom”/>
</Declaration>

<Declaration>
<NamedIndividual IRI=”Amy”/>
</Declaration>

<Declaration>
<NamedIndividual IRI=”Max”/>
</Declaration>

<Declaration>
<NamedIndividual IRI=”Alice”/>
</Declaration>

89

<Declaration>
<Class IRI=”Person”/>
</Declaration>

<Declaration>
<Class IRI=”Man”/>
</Declaration>

<Declaration>
<Class IRI=”Woman”/>
</Declaration>

<Declaration>
<Class IRI=”Father”/>
</Declaration>

<Declaration>
<Class IRI=”Mother”/>
</Declaration>

<Declaration>
<Class IRI=”Parent”/>
</Declaration>

<Declaration>
<Class IRI=”Teenager”/>
</Declaration>

<Declaration>
<Class IRI=”ChildlessPerson”/>
</Declaration>

<Declaration>
<Class IRI=”NarcisticPerson”/>
</Declaration>

<Declaration>
<Class IRI=”JohnsChildren”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasAncestor”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasParent”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”parentOf”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasChild”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasFemaleChild”/>
</Declaration>

90

<Declaration>
<ObjectProperty IRI=”hasRelative”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasWife”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasHusband”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasDaughter”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasSon”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasBrother”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasSister”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”hasSibling”/>
</Declaration>

<Declaration>
<ObjectProperty IRI=”loves”/>
</Declaration>

<Declaration>
<DataProperty IRI=”hasID”/>
</Declaration>

<Declaration>
<DataProperty IRI=”hasName”/>
</Declaration>

<Declaration>
<DataProperty IRI=”hasFamilyName”/>
</Declaration>

<Declaration>
<DataProperty IRI=”hasAge”/>
</Declaration>

<Declaration>
<DataProperty IRI=”age”/>
</Declaration>

<Declaration>
<Datatype IRI=”personAge”/>

91

</Declaration>

<Declaration>
<Datatype IRI=”minorAge”/>
</Declaration>

<Declaration>
<Datatype IRI=”majorAge”/>
</Declaration>

<Declaration>
<Datatype IRI=”toddlerAge”/>
</Declaration>

<DatatypeDefinition>
<Datatype IRI=”minorAge”/>
<DataIntersectionOf>
<Datatype IRI=”personAge”/>
<DataComplementOf>
<Datatype IRI=”majorAge”/>
</DataComplementOf>
</DataIntersectionOf>
</DatatypeDefinition>

<DatatypeDefinition>
<Datatype IRI=”majorAge”/>
<DatatypeRestriction>
<Datatype IRI=”xsd:integer”/>
<FacetRestriction facet=”xsd:minInclusive”>
<Literal datatypeIRI=”xsd:integer”>19</Literal>
</FacetRestriction>
<FacetRestriction facet=”xsd:maxInclusive”>
<Literal datatypeIRI=”xsd:integer”>150</Literal>
</FacetRestriction>
</DatatypeRestriction>
</DatatypeDefinition>

<DatatypeDefinition>
<Datatype IRI=”personAge”/>
<DatatypeRestriction>
<Datatype IRI=”xsd:integer”/>
<FacetRestriction facet=”xsd:minInclusive”>
<Literal datatypeIRI=”xsd:integer”>0</Literal>
</FacetRestriction>
<FacetRestriction facet=”xsd:maxInclusive”>
<Literal datatypeIRI=”xsd:integer”>150</Literal>
</FacetRestriction>
</DatatypeRestriction>
</DatatypeDefinition>

<DatatypeDefinition>
<Datatype IRI=”personAge”/>
<DataUnionOf>
<Datatype IRI=”majorAge”/>
<Datatype IRI=”minorAge”/>
</DataUnionOf>
</DatatypeDefinition>

<DatatypeDefinition>

92

<Datatype IRI=”toddlerAge”/>
<DataOneOf>
<Literal datatypeIRI=”xsd:integer”>1</Literal>
<Literal datatypeIRI=”xsd:integer”>2</Literal>
</DataOneOf>
</DatatypeDefinition>

<SubClassOf>
<Class IRI=”Woman”/>
<Class IRI=”Person”/>
</SubClassOf>

<SubClassOf>
<Class IRI=”Man”/>
<Class IRI=”Person”/>
</SubClassOf>

<DisjointClasses>
<Class IRI=”Woman”/>
<Class IRI=”Man”/>
</DisjointClasses>

<DisjointUnion>
<Class IRI=”Person”/>
<Class IRI=”Woman”/>
<Class IRI=”Man”/>
</DisjointUnion>

<EquivalentClasses>
<Class IRI=”Person”/>
<DataAllValuesFrom>
<DataProperty IRI=”hasID”/>
<Datatype IRI=”xsd:nonNegativeInteger”/>
</DataAllValuesFrom>
</EquivalentClasses>

<SubClassOf>
<Class IRI=”Teenager”/>
<DataSomeValuesFrom>
<DataProperty IRI=”hasAge”/>
<DatatypeRestriction>
<Datatype IRI=”xsd:integer”/>
<FacetRestriction facet=”xsd:minExclusive”>
<Literal datatypeIRI=”xsd:integer”>12</Literal>
</FacetRestriction>
<FacetRestriction facet=”xsd:maxInclusive”>
<Literal datatypeIRI=”xsd:integer”>18</Literal>
</FacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
</SubClassOf>

<EquivalentClasses>
<Class IRI=”ChildlessPerson”/>
<ObjectIntersectionOf>
<Class IRI=”Person”/>
<ObjectComplementOf>
<Class IRI=”Parent”/>
</ObjectComplementOf>

93

</ObjectIntersectionOf>
</EquivalentClasses>

<EquivalentClasses>
<Class IRI=”Mother”/>
<ObjectIntersectionOf>
<ObjectSomeValuesFrom>
<ObjectProperty IRI=”hasChild”/>
<Class IRI=”Person”/>
</ObjectSomeValuesFrom>
<Class IRI=”Woman”/>
</ObjectIntersectionOf>
</EquivalentClasses>

<EquivalentClasses>
<Class IRI=”Father”/>
<ObjectIntersectionOf>
<ObjectSomeValuesFrom>
<ObjectProperty IRI=”hasChild”/>
<Class IRI=”Person”/>
</ObjectSomeValuesFrom>
<Class IRI=”Man”/>
</ObjectIntersectionOf>
</EquivalentClasses>

<EquivalentClasses>
<Class IRI=”Parent”/>
<ObjectUnionOf>
<Class IRI=”Mother”/>
<Class IRI=”Father”/>
</ObjectUnionOf>
</EquivalentClasses>

<ObjectPropertyDomain>
<ObjectProperty IRI=”hasWife”/>
<Class IRI=”Man”/>
</ObjectPropertyDomain>

<ObjectPropertyRange>
<ObjectProperty IRI=”hasWife”/>
<Class IRI=”Woman”/>
</ObjectPropertyRange>

<EquivalentClasses>
<Class IRI=”NarcisticPerson”/>
<ObjectHasSelf>
<ObjectProperty IRI=”loves”/>
</ObjectHasSelf>
</EquivalentClasses>

<EquivalentObjectProperties>
<ObjectProperty IRI=”hasDaughter”/>
<ObjectProperty IRI=”hasFemaleChild”/>
</EquivalentObjectProperties>

<SubObjectPropertyOf>
<ObjectProperty IRI=”hasDaughter”/>
<ObjectProperty IRI=”hasChild”/>
</SubObjectPropertyOf>

94

<SubObjectPropertyOf>
<ObjectProperty IRI=”hasSon”/>
<ObjectProperty IRI=”hasChild”/>
</SubObjectPropertyOf>

<DisjointObjectProperties>
<ObjectProperty IRI=”hasSon”/>
<ObjectProperty IRI=”hasDaughter”/>
</DisjointObjectProperties>

<InverseObjectProperties>
<ObjectProperty IRI=”hasParent”/>
<ObjectProperty IRI=”hasChild”/>
</InverseObjectProperties>

<FunctionalObjectProperty>
<ObjectProperty IRI=”hasHusband”/>
</FunctionalObjectProperty>

<InverseFunctionalObjectProperty>
<ObjectProperty IRI=”hasHusband”/>
</InverseFunctionalObjectProperty>

<ReflexiveObjectProperty>
<ObjectProperty IRI=”hasRelative”/>
</ReflexiveObjectProperty>

<IrreflexiveObjectProperty>
<ObjectProperty IRI=”parentOf”/>
</IrreflexiveObjectProperty>

<SymmetricObjectProperty>
<ObjectProperty IRI=”hasRelative”/>
</SymmetricObjectProperty>

<AsymmetricObjectProperty>
<ObjectProperty IRI=”hasChild”/>
</AsymmetricObjectProperty>

<TransitiveObjectProperty>
<ObjectProperty IRI=”hasAncestor”/>
</TransitiveObjectProperty>

<SubDataPropertyOf>
<DataProperty IRI=”hasFamilyName”/>
<DataProperty IRI=”hasName”/>
</SubDataPropertyOf>

<DisjointDataProperties>
<DataProperty IRI=”hasAge”/>
<DataProperty IRI=”hasID”/>
</DisjointDataProperties>

<EquivalentDataProperties>
<DataProperty IRI=”hasAge”/>
<DataProperty IRI=”age”/>
</EquivalentDataProperties>

95

<DataPropertyDomain>
<DataProperty IRI=”hasAge”/>
<Class IRI=”Person”/>
</DataPropertyDomain>

<DataPropertyRange>
<DataProperty IRI=”hasAge”/>
<Datatype IRI=”xsd:nonNegativeInteger”/>
</DataPropertyRange>

<FunctionalDataProperty>
<DataProperty IRI=”hasAge”/>
</FunctionalDataProperty>

<HasKey>
<Class IRI=”Person”/>
<dataProperty IRI=”hasID”/>
</HasKey>

<DataPropertyAssertion>
<DataProperty IRI=”hasID”/>
<NamedIndividual IRI=”John”/>
<Literal datatypeIRI=”xsd:nonNegativeInteger”>123400001</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasID”/>
<NamedIndividual IRI=”Mary”/>
<Literal datatypeIRI=”xsd:nonNegativeInteger”>123400002</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasID”/>
<NamedIndividual IRI=”Liz”/>
<Literal datatypeIRI=”xsd:nonNegativeInteger”>123400003</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasID”/>
<NamedIndividual IRI=”Amy”/>
<Literal datatypeIRI=”xsd:nonNegativeInteger”>123400004</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasID”/>
<NamedIndividual IRI=”Tom”/>
<Literal datatypeIRI=”xsd:nonNegativeInteger”>123400005</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasID”/>
<NamedIndividual IRI=”Max”/>
<Literal datatypeIRI=”xsd:nonNegativeInteger”>123400006</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasID”/>
<NamedIndividual IRI=”Alice”/>
<Literal datatypeIRI=”xsd:nonNegativeInteger”>123400007</Literal>

96

</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasFamilyName”/>
<NamedIndividual IRI=”John”/>
<Literal datatypeIRI=”xsd:string”>Parker</Literal>
</DataPropertyAssertion>

<SubClassOf>
<DataHasValue>
<DataProperty IRI=”hasFamilyName”/>
<Literal datatypeIRI=”xsd:string”>”Parker”</Literal>
</DataHasValue>
<Class IRI=”Person”/>
</SubClassOf>

<DataPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ID001</Literal>
</Annotation>
<DataProperty IRI=”hasFamilyName”/>
<NamedIndividual IRI=”Max”/>
<Literal datatypeIRI=”xsd:string”>Evans</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”John”/>
<Literal datatypeIRI=”xsd:integer”>51</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”Mary”/>
<Literal datatypeIRI=”xsd:integer”>50</Literal>
</DataPropertyAssertion>

<NegativeDataPropertyAssertion>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”Mary”/>
<Literal datatypeIRI=”xsd:integer”>53</Literal>
</NegativeDataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”Liz”/>
<Literal datatypeIRI=”xsd:integer”>25</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”Amy”/>
<Literal datatypeIRI=”xsd:integer”>21</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”Max”/>

97

<Literal datatypeIRI=”xsd:integer”>26</Literal>
</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI=”hasAge”/>
<NamedIndividual IRI=”Alice”/>
<Literal datatypeIRI=”xsd:integer”>2</Literal>
</DataPropertyAssertion>

<SameIndividual>
<NamedIndividual IRI=”Liz”/>
<NamedIndividual IRI=”Liza”/>
</SameIndividual>

<DifferentIndividuals>
<NamedIndividual IRI=”John”/>
<NamedIndividual IRI=”Tom”/>
</DifferentIndividuals>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasWife”/>
<NamedIndividual IRI=”John”/>
<NamedIndividual IRI=”Mary”/>
</ObjectPropertyAssertion>

<ClassAssertion>
<ObjectMinCardinality cardinality=”1”>
<ObjectProperty IRI=”hasChild”/>
<Class IRI=”Parent”/>
</ObjectMinCardinality>
<NamedIndividual IRI=”John”/>
</ClassAssertion>

<ClassAssertion>
<ObjectExactCardinality cardinality=”2”>
<ObjectProperty IRI=”hasChild”/>
<Class IRI=”Parent”/>
</ObjectExactCardinality>
<NamedIndividual IRI=”John”/>
</ClassAssertion>

<ClassAssertion>
<ObjectMaxCardinality cardinality=”3”>
<ObjectProperty IRI=”hasChild”/>
<Class IRI=”Parent”/>
</ObjectMaxCardinality>
<NamedIndividual IRI=”John”/>
</ClassAssertion>

<EquivalentClasses>
<Class IRI=”JohnsChildren”/>
<ObjectHasValue>
<ObjectProperty IRI=”hasParent”/>
<NamedIndividual IRI=”John”/>
</ObjectHasValue>
</EquivalentClasses>

<EquivalentClasses>
<Class IRI=”JohnsChildren”/>

98

<ObjectOneOf>
<NamedIndividual IRI=”Liz”/>
<NamedIndividual IRI=”Tom”/>
<NamedIndividual IRI=”Amy”/>
</ObjectOneOf>
</EquivalentClasses>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasRelative”/>
<NamedIndividual IRI=”John”/>
<NamedIndividual IRI=”Alice”/>
</ObjectPropertyAssertion>

<ClassAssertion>
<Class IRI=”Mother”/>
<NamedIndividual IRI=”Mary”/>
</ClassAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasChild”/>
<NamedIndividual IRI=”Mary”/>
<NamedIndividual IRI=”Liz”/>
</ObjectPropertyAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasSon”/>
<NamedIndividual IRI=”Mary”/>
<NamedIndividual IRI=”Tom”/>
</ObjectPropertyAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasDaughter”/>
<NamedIndividual IRI=”Mary”/>
<NamedIndividual IRI=”Amy”/>
</ObjectPropertyAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasAncestor”/>
<NamedIndividual IRI=”Mary”/>
<NamedIndividual IRI=”Alice”/>
</ObjectPropertyAssertion>

<ClassAssertion>
<DataMaxCardinality cardinality=”2”>
<DataProperty IRI=”hasName”/>
</DataMaxCardinality>
<NamedIndividual IRI=”Liz”/>
</ClassAssertion>

<ClassAssertion>
<DataMinCardinality cardinality=”1”>
<DataProperty IRI=”hasName”/>
</DataMinCardinality>
<NamedIndividual IRI=”Liz”/>
</ClassAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasBrother”/>
<NamedIndividual IRI=”Liz”/>

99

<NamedIndividual IRI=”Tom”/>
</ObjectPropertyAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasHusband”/>
<NamedIndividual IRI=”Liz”/>
<NamedIndividual IRI=”Max”/>
</ObjectPropertyAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”ParentOf”/>
<NamedIndividual IRI=”Liz”/>
<NamedIndividual IRI=”Alice”/>
</ObjectPropertyAssertion>

<ClassAssertion>
<Class IRI=”Teenager”/>
<NamedIndividual IRI=”Tom”/>
</ClassAssertion>

<ClassAssertion>
<ObjectAllValuesFrom>
<ObjectProperty IRI=”hasSibling”/>
<Class IRI=”Woman”/>
</ObjectAllValuesFrom>
<NamedIndividual IRI=”Tom”/>
</ClassAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasSibling”/>
<NamedIndividual IRI=”Tom”/>
<NamedIndividual IRI=”Liz”/>
</ObjectPropertyAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI=”hasSister”/>
<NamedIndividual IRI=”Tom”/>
<NamedIndividual IRI=”Amy”/>
</ObjectPropertyAssertion>

<ClassAssertion>
<Class IRI=”ChildlessPerson”/>
<NamedIndividual IRI=”Amy”/>
</ClassAssertion>

<ClassAssertion>
<DataExactCardinality cardinality=”1”>
<DataProperty IRI=”hasName”/>
</DataExactCardinality>
<NamedIndividual IRI=”Max”/>
</ClassAssertion>

<NegativeObjectPropertyAssertion>
<ObjectProperty IRI=”hasWife”/>
<NamedIndividual IRI=”Max”/>
<NamedIndividual IRI=”Mary”/>
</NegativeObjectPropertyAssertion>

<ClassAssertion>

100

<Class IRI=”Father”/>
<NamedIndividual IRI=”Max”/>
</ClassAssertion>

<ObjectPropertyAssertion>
<Annotation>
<AnnotationProperty IRI=”http://omdoc.org/identifier#id”/>
<Literal datatypeIRI=”xsd:string”>ID002</Literal>
</Annotation>
<ObjectProperty IRI=”hasDaughter”/>
<NamedIndividual IRI=”Max”/>
<NamedIndividual IRI=”Alice”/>
</ObjectPropertyAssertion>

</Ontology>

101

	Introduction
	Preliminaries
	Web Ontology Language
	OWL Web Ontology Language
	OWL 2 Web Ontology Language
	OWL/XML Syntax

	Services for OWL
	OMDoc Markup Language
	The MMT Language
	Services for MMT
	Management of Change

	Related Work: Management of Change in OWL
	Requirements for Management of Change in OWL
	Dependency Relations
	Entities
	Expressions
	Axioms

	Changes and their Impacts
	Renaming
	Deletion
	Addition
	Updating
	Multiple Changes

	Representing Change Impacts
	Change Impacts as Annotations
	Renaming
	Deletion
	Addition
	Updating
	Multiple Changes

	Representation of OWL in MMT
	Formalizing OWL in Twelf
	Twelf Module System
	Representing Web Ontology Language in Twelf

	Bi-Directional Translation between OWL and MMT
	Translation from OWL to MMT
	Translation from MMT to OWL

	Plugin for MMT

	Implementation of Management of Change in OWL via MMT
	Workflow
	Improving Results
	Adding Identifiers to OWL Axioms
	Applying MMT Diff
	Renaming
	Deletion
	Addition
	Updating

	Marking Change Impacts
	Visualization of Changes and their Impacts

	Conclusion
	Summary
	Discussion
	Future Work

	An Extended Family Ontology

