
Generic unification for type theories

Maria Alecu,
Supervisors: Florian Rabe, Michael Kohlhase

Jacobs University, Bremen, Germany

May 30, 2012

Abstract

Logical and knowldege management operations for deductive systems
are expensive to define and implement, thus the need to design frameworks
that support the efficient implementation of these tools. We propose and
implement two unification algorithms in a framework that supports knowl-
edge management tools and offers a proper setting for the implementation
of logical support. We overcome the challenge posed by the genericity of
the language by proposing a new approach to the problem of unification,
namely by composition of features, which is available in the case of type
theories.

1 Introduction

Formal systems have had and continue to have an important role in the
development of scientific domains and in related applications. A central concern
related to formal systems is to have implementations that support the execution
of useful operations within them. Typically, the operations one is interested in
are of two types and until now, they have been offered in disjoint sets of systems.
The first category is that of logical operations, such as unification, automated
theorem proving, type-checking or type-reconstruction; these are the operations
that produce useful results and new knowldege. The second category is that of
knowledge management operations that deal with how the system interacts
with the exterior and how the exterior affects the system. These operations refer
to change management, interactive access to the system and knowledge transfer
across the web.

Traditionally, the logical support needed by formal systems has been of-
fered by ad-hoc implementations of the respective formal system. An improve-
ment to this situation is brought by logical frameworks, which are general
meta-languages for specifying and implementing deductive systems given by ax-
ioms and rules of inference. The key advantage of logical frameworks is that
they are independent of the deductive system one might want to represent
and that the operations done in the logical framework induce the respective

1

operations in the deductive system. For instance, unification at the level of the
logical framework induces unification at the level of the deductive system. There
are many varieties of logical frameworks, but the most notable ones are Isabelle
[Pau89], which is based on hereditary Harrop formulas and LF [HHP93], which
is a dependantly typed λ-calculi.

However, logical frameworks don’t offer knowledge management support,
which is supported by Mathematical Knowledge Management languages and
tools. MKM systems are also independent of the underlying deductive sys-
tem, in the same way as logical frameworks are. However, MKM systems are
very different in the sense that they allow large-scale [KRZ10] and interac-
tive processing [GLR09]. OpenMath [BCC+04] and OMDoc [Koh00] are two
content-oriented, markup languages used as standards for representing mathe-
matical knowledge, developed by the research in the MKM area.

MMT [RK11] is the first framework that offers the setting to combine
the advantages of logical and knowledge management operations. MMT
makes use of the fact that both MKM systems and logical frameworks are
independent of the underlying deductive system to provide a generic, formal
module system that is designed to be applicable to a large scale of formal base
languages, given that its notions are fully abstract in the choice of the base lan-
guage. In MMT, MKM tools are available through the OMDoc standard, with
which MMT complies. Logical tools are available in MMT only if we encode a
deductive system in MMT and the logical support as offered by the respective
deductive system, the most general way of doing this being the encoding of a
logical framework.

The purpose of our research is to scale one of the basic logical opera-
tions, unification to the level of genericity of MMT. The key challenge is that
unification algorithms depend on equational theories which are specific to
each deductive system. However, MMT lacks any equational theory, except α-
conversion.

We propose a new approach to the problem of equational theory, inspired
by the modularity of MMT: in MMT, a central concept is that of theory; we
can compose theories from reusable components which are symbols. We apply
the same principle to equational theories and unification algorithms and thus
design and implement two unifcation algorithms, one that is generic for the
MMT language and another one that is available in case of type theories and
works by composition.

This paper is organized as follows: section 2 presents the MMT system
and a history of the problem of unification; section 3 describes the unification
algorithms in MMT and section 4 discusses the properties of the algorithms and
relevant results obtained with the implementation of algorithms. We conclude
in section 5 with the description of future work and applications.

2

2 Preliminaries

2.1 MMT

MMT [RK11] is a generic, formal language for modular systems
used for knowledge representation. The novelty of MMT resides in the fact that
it provides the facilities of both an MKM system and those of a meta-language
in which other deductive systems may be represented, in a way similar to that
of logic frameworks, but one abstraction layer above.

In MMT, knowledge is defined in terms of four important units: docu-
ments, modules, symbols and objects. The biggest unit of knowledge, the doc-
ument is represented in MMT as a theory graph, which is a directed acyclic
graph where nodes are theories and edges are morphisms. A theory Thy is a
list of declarations of constants. The symbol level is characterized by constant
declarations, [c : E = E]. The object level provides the structure of the symbols
inside a theory; objects ω are constants c, variables x, applications @ and
bindings β.

The fragment of MMT relevant for our work is the following:

Con ::= c : ω = ω | c : ω | c = ω | c
Thy ::= Con∗

ω ::= T?c | x | @(ω, ω+) | β(b,Γ, ω)
Γ ::= . | Γ, x[: ω]

A crucial property of MMT is its foundation independence. This
is achieved through a representation language that is not committed to any
foundation such as set theory or type theory, thus enabling scalability across
knowledge. Foundation languages are encoded as theories; for instance, the two
major foundations, ZFC [HJ84] and LF [HHP93] are represented as theories
inside MMT.

Type theories are another example of MMT theories, which embody un-
typed constants. In MMT, both terms and types are represented as MMT
terms; in other words, MMT does not distinguish between terms and types.
For instance, the LF type theory is a theory declaring the constants Π and λ;
the term λx : A.x is encoded as the MMT term β(λ, [x : A], x) and the type
Πx : A.B is encoded as the MMT term β(Π, [x : A], B) (A,B are constants of
the theory).

Throughout the rest of the section, we will also need the operation of
head on types; this gives the type constructor of a type term. For instance,
head(β(Π, [x : A], A)) = Π, where A is a constant.

2.2 Unification

Unification is an essential operation in logical systems, the analogue of
solving polynomial equations in algebra. In its essence, the unification problem
can be expressed as follows: given two terms in a language containing some
variables, find, if it exists, the substitution which makes the two terms equal.

3

While unification for first-order logic is decidable and for every solu-
tion, there is a most general unifier, as shown by Robinson with the resolution
principle [J.A68], the problem is undecidable in higher-order logic even for
simply typed lambda calculus. However it is semi-decidable in the sense that
if the problem has a solution, it can be found. A first simple algorithm is
a generate-and-test one, in which the free variables are substituted with long
normal forms. Starting from this idea, Huet [G.H75] designed an algorithm in
which this idea is refined to choose only closed long normal forms for the
free variables. Next, the unification equations are reduced until we have only
the so called flexible-flexible equations in which the head of both of the two
terms is a free variable. It is easily provable that this equations always have a
solution, provided that every type is non-empty. Since we are only interested
in a yes/no answer, we don’t need to resolve these equations but only identify
them. The idea was improved by Miller’s mixed prefix strategy [D.M92] which
gives rise to a more natural formulation of the problem of constraints in the uni-
fication process by formulating unification problems as propositions that need
to be proven in an unification logic.

The problem of higher-order unification in the dependent λ calculus
was firstly studied by Conan Elliott [C.E89], following the idea of Huet. The
λΠ calculus poses two additional complications: firstly substitutions for free
variables in terms may also lead to substitutions in types; thus not only terms
need to be unified but also types. Furthermore, the flexible-flexible equations
don’t always have a solution since in the λΠ calculus there are types that may
not be inhabited. Thus, in this case, we also need to solve the flexible-flexible
equations which leads to an exponential explosion in the cases that need to be
analyzed.

Other attempts at solving this problem were identifying decidable frag-
ments of this problem. The most important one is the pattern fragment
which basically restricts the language to that where symbols of higher order
function type are only applied to distinct bound variables. Starting from this
observation, Miller designed a logic programming language in which all the uni-
fication problems are decidable [D.M91]. However, this language prevents a
number of important representation techniques for LF, as discussed in the pa-
per [F.P91]. One solution is to use the same algorithm as the one for the Lλ
language and to postpone the unresolved problems as contraints, as it is done
in the Twelf system [PS99].

3 Unification in MMT

In this section, we present two unification algorithms: the first treats the
general problem of unification at the level of genericity of MMT. The second
one treats a subset of the unification problems, namely unification problems in
type theories, where the type at which we want to unify is known.

4

3.1 Problem formulation and notations

The generic problem of unification can be written formally in the fol-
lowing way: ∆,Γ ` t1 = t2. For the restricted version of unification for type
theories, we use the following problem formulation: ∆,Γ ` t1 = t2 : T.

Throughout the rest of the section, we use the following concepts and
notations:

- ∆ : MMT context, encoding the metacontext of the problem; it contains the
variables for which we want to find solutions; the variables will be named
metavariables and denoted by capital letters, X,Y, ...

- Γ : MMT context, encoding the context of the problem; it contains the bound
variables of the problem.

- t1, t2 : MMT terms, encoding the terms which we want to unify

- T : an MMT term, encoding the type at which we want to unify

A solution to the problem is a substitution, σ that provides values for
all the metavariables in the metacontext such that σ(t1) = σ(t2).

3.2 Generic unification

As it was previously described, MMT lacks any equational theory, ex-
cept α-conversion, so the unification algorithm is basically a pattern matching
algorithm.

The approach to the problem is straightforward: given two MMT terms,
we analyze their shapes. If their shape is different, the terms cannot unify at
the level of MMT. If they have the same shape, we recurse in the components.
The algorithm can be expressed in the following way:

1. If one of the terms is a metavariable, X that does not occur in the other
term, we assign the value of the second term to X and substitute it in all
branches. We continue the unification process with the substituted terms.

2. If one of the terms is a constant, c, the algorithm succeeds when the other
term is a constant. In case the constants have definitions, we continue
with the unification process for the definiens. Otherwise, the algorithm
succeeds only when the constants are equal.

3. If one of the terms is an application, @(E1, E2), the other term must
also be an application and we recurse into components. Otherwise, the
algorithm fails.

4. If one of the terms is a binding, β(b,Γ, t), the other term must also be
a binding. The algorithm succeeds when the binders are the same, the
contexts have the same length, the types of the respective variables in the
context unify and also the bound expressions unify.

5

3.3 Foundation-specific Unification

The type theory unification algorithm makes use of the information given
by the type at which we want to unify. In order to do this, we introduce the
notion of type theory feature and represent type theories as specific sets of
features. To understand what is the rationale behind the concept of features,
we first give an overview on type theories in section 3.3.1 and then state the
formal definition of features in section 3.3.2.

3.3.1 Types and type theories

A type theory or a type system is a syntactic system that classifies phrases
according to the values they compute [B.P05b]. It is defined in terms of three
components, a formal language, typing judgements and equational the-
ory. We will describe what these concepts mean and exemplify them as they
appear in one particular type theory, the LF [HHP93] type theory. Our discus-
sion follows [B.P05a].

1. Formal language. The language of a type theory provides symbols and
a grammar that shows how to combine the symbols in order to obtain
the terms and types of the theory. At this level, there are two important
concepts, namely the type constructors and the introduction symbol
of a given type constructor. The type constructor is a symbol that allows
us to construct types and the introduction symbol defines a symbol char-
acteristic for terms of a given type.
In the case of LF, Π is the type constructor for dependent types and λ is
the introduction symbol for dependently-types functions.

An important characteristic of the introduction symbol of a type construc-
tor is the injectivity of the symbol. Injectivity allows us to transform the
problem of equality of terms into the equality of their respective compo-
nents. Formally, injectivity of a symbol s, in the unary case and without
binding, means that if sA = sB, then A = B. We can generalize this to
binding, in which case injectivity amounts to an extensionality rule. λ is
an injective symbol and generally, the theories with which we deal have
injective introduction symbols.

2. Typing judgements. Typing judgements are a means to attribute types
to terms. Associated with the typing judgements are the introduction
rules and elimination rules, that define how the introduction symbol
of a type constructor creates new terms or is eliminated from terms. In
LF, the typing judgement is written in the following way: Γ ` t : A. The
introduction rule for the Π constructor is as follows:

Γ ` S : type Γ, x : S ` t : T

Γ ` λx : S.t : Πx : S.T

6

and the elimination rule:

Γ ` t1 : Πx : S.T Γ ` t2 : S

Γ ` t1t2 : [t2/x]T

3. Equational theory. Equality is given by reduction and expansion
rules by which terms that have different shapes are brought to the same
form. The reduction rule is usually refered by the name β-rule and it
enables the computations in a term; the expansion rule is usually called
η-rule and it brings terms of a certain type to a standard form.
In LF, the β-rule is:

(λx : A.t1)t2 → [t2/x]t1

and the η-rule is:
t : Πx : A.B
t→ λx : A.tx

3.3.2 Features

Features encode the information that is relevant for a type theory. A
feature associates with a type constructor, an introduction symbol, intro-
duction and elimination rules and reduction and expansion rules. We will
use the notational conventions for symbols of the MMT grammar throughout
this section.

Definition: A typing judgement is a tuple Θ = (Γ, ω, ω) of an MMT context
and two MMT terms, the first denoting a term and the second denoting a type.

Definition: A feature is a tuple Φ = (typeConstr, introSymbol, intro, elim,
reduction, expansion), where:

1. typeConstr is an MMT constant, denoting a type constructor

2. introSymbol is an MMT constant, denoting the introduction symbol

3. intro is a function from the set of typing judgements to the set of lists of
typing judgements, denoting the introduction rule

4. elim is a function from the set of typing judgements to the set of lists of
typing judgements, denoting the elimination rule

5. reduction is a function from the set of terms to the set of terms, denoting
the reduction rule

6. expansion is a function from the set of typing judgement to the set of
terms, denoting the expansion rule

7

With the introSymbol component, we will also associate a boolean flag
indicating whether the symbol is injective or not.

Definition: A type theory is a list of features.

An example of type theories as lists of features can be given in the case
of the LF type theory. According to the principle of features, LF can be defined
with a single feature, DepType that has the following definition: DepType =
(Π, λ, introduction, elimination, β, η), with the notations as in section 3.3.1.

3.3.3 Algorithm description

We will describe an algorithm that unifies two MMT terms representing
terms of a type theory at a given type. The algorithm has an additional input,
which is a list of features, denoted by TT. All the other notations are as
described in section 3.1.

The idea of the algorithm is to transform terms that are at a composed
type into terms at a simple type, by applying the expansion rules and recursing
into components; once the algorithm reaches terms with simple types, we apply,
if possible, reduction rules. The idea is inspired by the approach on the problem
of equivalence and canonical forms in LF , as described in [RF05].

The steps of the algorithm can be described in the following way:

1. If the head of the type T matches with the typeConstr component of any
of the features in TT, we apply the expansion function of the respective
feature to the terms. We then apply the intro component of the feature
to find the components of the terms.

(a) If the introSymbol is injective, we recurse into these components.
Note that the intro rule returns typing judgements, so we have the
information needed to call the unification function recursively. Also,
note that we need to unify firstly the types of the components to be
able to call the function recursively; we will use the generic MMT
unification algorithm for that.

(b) If the introSymbol is not injective, we apply the generic MMT
unification algorithm.

2. In the contrary case, we iterate through the reduction rules of the features
and check to see if any is applicable.

(a) If there is one, the algorithm continues with the reduced terms.

(b) Otherwise, we call the generic MMT unification algorithm for the
two terms.

8

4 Implementation

We have implemented these two algorithms in Scala, using the exist-
ing MMT platform. The problem formulation, the typing judgements and the
features directly translate into Scala classes. The rest of the implementation
followed the steps as described above.

We have also provided a generic class for unification operation that con-
tains operations such as occurCheck (verifying if a variables appears in a terms)
and replace(replacing a variable with a value in a term),that appear in all the
unification algorithms.

We have implemented the LF type theory as a list of features contain-
ing the feature DepType as exemplified in section 3.3.2 and we have tested the
unification algorithms with this type theory.

1. Generic unification algorithm. The typical problem where the algo-
rithm succeeds is the following: β(λ, [x : A],@(c, x)) = β(λ, [z : A],@(Y, z)),
with ∆ = [Y],Γ = [] and c, A arbitrary constants of the LF theory. How-
ever, the algorithm fails for simple cases, because of the lack of equational
theory. An example in this sense is the following: consider the problem
@(β(λ, x : A, x), Y) = c, with ∆ = [Y], Γ = [] and c and A being con-
stants. The algorithm will fail to unify in MMT, but in LF this would
unify since, by the β-rule of LF , @(β(λ, x : A, x), Y) → Y , which offers
the solution σ = [c/Y] to the problem.

2. Foundation-specific unification algorithm. This algorithm succeeds
in the case of the above example. Generally speaking, the algorithm will
succeed if the terms of composed types that appear in application, @ are in
their standard form at that type because, in this way, the algorithm can ap-
ply reduction rules once it has reached a simple type. The algorithm does
not succeed for more complicated examples, such as the following problem:
β(λ, [x : β(Π, [y : A], A)],@(x, Z)) = β(λ, [x : β(Π, [y : A], A]],@(Y, x)) :
β(Π, [x : A], β(Π, [y : A], A)), with ∆ = [Y, Z], Γ = [] and A a constant.
The algorithm will simplify this problem to @(@(x, Z), t) = @(@(Y, x), t),
where t is a variable of dependent type, from where it cannot advance
anymore, since no computation rules are applicable. A solution in this
case is σ = [β(λ, [x : A],@(x, Z))/Y] and Z arbitrary, but the algorithm
cannot infer the shape of terms from the context; in this case, it doesn’t
infer that Y is of function type, so it has to be a λ term.

Soundness and Completeness. Both algorithms are sound; this is
straightforward to prove since the solution obtained at the MMT level is a solu-
tion for the problem in the encoded theory, once we translate the solution back
into the language of interest. However, neither algorithm is complete, as shown
by the examples above, but the second algorithm represents an improvement of
the first one.

9

5 Conclusions

Logical support for deductive systems can be found at the most advanced
level in logical frameworks; however, these do not support MKM tools, which
are of increasing value nowadays. We have made a first step to bridge the gap
between these two by implementing two unification algorithms in the MMT
framework, which supports MKM tools. MMT offers the possibility of logical
support by encoding logical frameworks and their associated logical tools into
the framework, but it did not provide logical tools at the level of the MMT
language. The high genericity of the language posed a challenge, which was
overcome by a new approach to unification algorithms, namely by composition
of features.

5.1 Future Work

Future work for this thesis lies in two main directions, namely enriching the
features with additional properties and improving the unification algorithm.

1. Enriching features. Unification algorithms depend not only on equa-
tional theories, but also on structural theorems. Structural theorems
offer generic shapes for terms of a given type. For instance, in the case of
the λ calculus, the structural theorem says that a term of type αn → β,
with the head of type αm → β, has the form: λxn.h(H1x

n)...(Hmx
n),

where the superscripts n,m indicate vectors of components and H1, ...,Hm

are new heads. These structural theorems are exploited in unification al-
gorithms; for instance, in Huet’s algoritm [G.H75] for unification in case
of λ-calculus, the structural theorem of λ calculus is the basis for the imi-
tation and projection rules of the algorithm. Thus, structural theorems
should also be part of the components of features.

2. Improving the algorithms. The algorithms could be improved if at
the moment when they stop at terms that represent eliminations where
no reduction rule is applicable, the algorithm could do type inference for
the type of the components and then use the information given by the type
to provide a shape for the term. Type inference can be coded as a second-
class component of features, since it is based on the elim component of
features.

Of course, a major objective of future work is the implementation of the
rest of logical tools in the MMT platform, the type reconstruction algorithm
being the first step in this direction. Moreover, the benefits of unification by
composition of types need to be further tested by implementing more type
theories as lists of features and testing the performance of the algorithms.

10

5.2 Future Applications

An interesting application for the unification algorithm will be auto-
completion in a text editor. Auto-completion is based on unification between
the expression currently written by the user and expressions already existing in
a knowledge base. For the purpose of this example, we will use encodings of
the LF [HHP93] type theory, as they appear in the Twelf system [PS99]. This
will use the unification algorithm based on the DepType feature, described in
section 3.3.2.

Note that the notation , superscripted by a symbol stands for the
typed arguments of a function that need to be completed.

The above image ilustrates the case when the user wants to write a simple
connective symbol. The editor will indicate her how many arguments the symbol
needs and the type of the symbol.

Suppose that we have already obtained an information about the type of
an expression and now we want to complete it with the actual expression. In
our case, suppose that we want to write the rule impI. This will unify against
the rule already represented in the knowledge base and will provide the fields
that need to be completed in order to write the complete rule.

11

] ../proposal/dia3.jpg

In this last case, multiple expressions unify with the type of the expression
that the user intends to write. All of these expressions will be returned and
displayed in a menu.

References

[BCC+04] S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical
report, The Open Math Society, 2004. See http://www.openmath.

org/standard/om20.

[B.P05a] B.Pierce. Advanced Topics in Types and Programming Languages.
The MIT Press, Cambridge, Massachusetts, 2005.

[B.P05b] B.Pierce. Types and Programming Languages. The MIT Press, Cam-
bridge, Massachusetts, 2005.

[C.E89] C.Elliott. Higher-order unification with dependant types. Inter-
national Conference on Rewritting Techniques and Applications,
355:121–136, 1989.

[D.M91] D.Miller. A logic programming language with lambda-abstractions,
function variables and simple unification. Journal of Symbolic Com-
putation, pages 497–536, 1991.

[D.M92] D.Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, pages 321–358, 1992.

[F.P91] F.Pfenning. Logic Programming in the LF Logical Framework. 1991.

[G.H75] G.Huet. A unification algorithm for typed λ calculus. Theoretical
Computer Science, pages 27–57, 1975.

12

http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20

[GLR09] J. Gičeva, C. Lange, and F. Rabe. Integrating Web Services into
Active Mathematical Documents. In J. Carette, L. Dixon, C. Sacer-
doti Coen, and S. Watt, editors, Intelligent Computer Mathematics,
volume 5625 of Lecture Notes in Computer Science, pages 279–293.
Springer, 2009.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining log-
ics. Journal of the Association for Computing Machinery, 40(1):143–
184, 1993.

[HJ84] K. Hrbacek and T. Jech. Introduction to Set Theory. Marcel Dekker
Inc., New York, 1984.

[J.A68] J.A.Robinson. New directions in mechanical theorem proving. In-
ternational Federation for Information Processing Congress, pages
63–67, 1968.

[Koh00] M. Kohlhase. OMDoc: An Infrastructure for OpenMath Content
Dictionary Information. Bulletin of the ACM Special Interest Group
on Symbolic and Automated Mathematics, 34:43–48, 2000.

[KRZ10] M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the
Large: Modular Representation and Scalable Software Architecture.
In S. Autexier, J. Calmet, D. Delahaye, P. Ion, L. Rideau, R. Rioboo,
and A. Sexton, editors, Intelligent Computer Mathematics, volume
6167 of Lecture Notes in Computer Science, pages 370–384. Springer,
2010.

[Pau89] L. Paulson. The Foundation of a Generic Theorem Prover. Journal
of Automated Reasoning, 5(3):363–397, 1989.

[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a meta-
logical framework for deductive systems. Lecture Notes in Computer
Science, 1632:202–206, 1999.

[RF05] R.Harper and F.Pfenning. On equivalence and canonical forms in
the LF type theory. ACM Trans. Comput. Logic, 6:61–101, 2005.

[RK11] F. Rabe and M. Kohlhase. A Scalable Module System. see http:

//arxiv.org/abs/1105.0548, 2011.

13

http://arxiv.org/abs/1105.0548
http://arxiv.org/abs/1105.0548

	1 Introduction
	2 Preliminaries
	2.1 MMT
	2.2 Unification

	3 Unification in MMT
	3.1 Problem formulation and notations
	3.2 Generic unification
	3.3 Foundation-specific Unification

	4 Implementation
	5 Conclusions
	5.1 Future Work
	5.2 Future Applications

