
1

Global, Regional, and Local Contexts

Florian Rabe

University Erlangen-Nuremberg

October 2025

Motivation 2

Motivation

Motivation 3

Representing Polynomials

How would you represent this formula in your favorite system?

X 2 + 1 ∈ Q[X]

How about these?
X 2 + 1 ∈ Q[Y]

Y 2 + 1 ∈ Q[X]

And are these true?

Q[X ,Y] = Q[Y ,X]

Q[X] ∩Q[Y] = Q

Motivation 3

Representing Polynomials

How would you represent this formula in your favorite system?

X 2 + 1 ∈ Q[X]

How about these?
X 2 + 1 ∈ Q[Y]

Y 2 + 1 ∈ Q[X]

And are these true?

Q[X ,Y] = Q[Y ,X]

Q[X] ∩Q[Y] = Q

Motivation 3

Representing Polynomials

How would you represent this formula in your favorite system?

X 2 + 1 ∈ Q[X]

How about these?
X 2 + 1 ∈ Q[Y]

Y 2 + 1 ∈ Q[X]

And are these true?

Q[X ,Y] = Q[Y ,X]

Q[X] ∩Q[Y] = Q

Motivation 4

Are Polynomial Variables Local or Global?

Option 1a: Bound local variables like OpenMath OMV

▶ natural first choice

▶ α-equality has unexpected consequences

▶ requires implicit binders to interpret standard math

Option 1b: Nameless local binding
▶ 1a but with de-Bruijn indices

▶ Q[−] takes number of variables, not their names

Option 2: Global names like OpenMath OMS

▶ avoids renaming/scoping issues

▶ no insertion of implicit binders everywhere

▶ but what would the content dictionary be?

local vs. global dichotomy ubiquitous in formal systems

Motivation 5

Many Names are Neither Local nor Global

Any sets built inductively, e.g.,
▶ generated groups as in

Let G = ⟨x , y |x2 = e, y5 = e⟩ and consider xy2 ∈ G . . .

▶ µ-types with labeled sums as in

The natural numbers are given by µX . zero() | succ(X).
We write 1 for succ(zero).

Dual case: records
▶ field names are α-renamable inside the record type

theory Monoid = {type u, term oper : (u, u) → u, . . .}

▶ but have global scope as selector functions

m.oper : (m.u,m.u) → m.u given m : Monoid

α-equality not feasible — but semantics depends on context

Motivation 6

Local vs. Global Names in MMT

Long-standing issue in MMT
▶ binary OMS vs. OMV system inherited from OpenMath/MathML

and OMDoc

▶ problematic when representing certain language features
record types, theory/diagram expressions, . . .

▶ multiple failed attempts to evolve MMT’s binary identifier system
increasingly blocking development in recent years

Since 2024: new language UniFormal
▶ originally a programming language experiment

▶ now evolving into MMT2-like MKM kernel language

▶ includes from scratch redesign of MMT module system
enabling going around MMT’s implicit assumptions

this talk: UniFormal’s 3-tiered identifier system

UniFormal Syntax 7

UniFormal Syntax

UniFormal Syntax 8

Basic Syntax

As usual: terms t and types A
▶ numbers, functions, products, . . .

▶ subtyping, structure types, inductive types

▶ declarations
▶ typed term symbol: term c : A[= t] axioms via special types
▶ bounded type symbol: type a[= A]

Special: theory expressions T

▶ declared/referenced like terms/types: theory τ = T

▶ theory values: list of term/type/theory declarations
theory Monoid = {type u, term oper : (u, u) → u, . . .}

▶ union/inheritance via include declarations
theory Group = {include Monoid, . . .}

▶ instantiation/sharing by declaration merging (next slide)

UniFormal Syntax 8

Basic Syntax

As usual: terms t and types A
▶ numbers, functions, products, . . .

▶ subtyping, structure types, inductive types

▶ declarations
▶ typed term symbol: term c : A[= t] axioms via special types
▶ bounded type symbol: type a[= A]

Special: theory expressions T

▶ declared/referenced like terms/types: theory τ = T

▶ theory values: list of term/type/theory declarations
theory Monoid = {type u, term oper : (u, u) → u, . . .}

▶ union/inheritance via include declarations
theory Group = {include Monoid, . . .}

▶ instantiation/sharing by declaration merging (next slide)

UniFormal Syntax 9

Example: Algebraic Hierarchy

“. . . ” indicates formulas/proofs that are omitted for brevity

theory Monoid = {type u, term oper : (u, u) → u, term e : u,
term assoc : ▶ ∀x , y , z : u. . . . ,
term neutL : ▶ ∀x : u. . . . , term neutR : ▶ ∀x : u. . . .}

theory IntAdd = {total include Monoid,
type u = Int, term oper = (x , y) → x + y , term e = 0,
term assoc := . . . , term neutL := . . . , term neutL := . . .

}
total forces defining all included symbols

theory Group = {include Monoid, . . . , term neutR := . . .}

declaration merging: neutR is defined in normal form of Group

UniFormal Syntax 10

Example: Models as Types

Theories as types and models:

▶ Mod(T): theory seen as a type of models

▶ mod(T): theory (with all fields defined) seen as an
instance/model

Product monoid as a function:

term prod : (Mod(Monoid),Mod(Monoid)) → Mod(Monoid) =
(m, n) → mod(

type u = (m.u, n.u),
term oper = (p, q) → (m.oper(p1, q1), n.oper(p2, q2)),
. . .

)

termZ2 = prod(mod(IntAdd),mod(IntAdd))

UniFormal Syntax 11

One More Novelty: Open vs. Closed Theories

Ubiquitous dichotomy of structuring mechanisms:

system open closed

OpenMath/MathML content dictionary —
MMT — theory
Isabelle theory locale, type class
Rocq package module, record
sTeX module mathstruct
Java package class
C++ namespace class, struct

Key difference

▶ open: namespaces, cataloging of objects
different theory = different qualified identifier

▶ closed: named set of assumptions
different theory = different context

UniFormal Syntax 12

Open vs. Closed Theories in MMT

OMDoc
▶ Michael built OMDoc merging influences from

▶ OpenMath only open theories
▶ development graphs (e.g., Isabelle locales) only closed theories

▶ design flaw: no open/closed distinction

MMT
▶ inherited design flaw from OMDoc

▶ major source of friction ever since

in UniFormal: theories declared as either open or closed

UniFormal Syntax 13

Analogy to Open/Closed Worlds

Analogy
▶ worlds = theories

▶ inhabitant = named declarations

Open world
▶ inhabitants can be added/deleted at will

▶ at worst, downstream references must be adapted

▶ all language features must anticipate future changes to the world
no relying on the current set of inhabitants

Closed world
▶ world “fenced off”

▶ changing the inhabitants creates a different world

▶ world itself has meaning by fixing a set of inhabitants/assumptions
language features may enumerate inhabitants

UniFormal Syntax 14

Language Features that Enumerate Inhabitants

Theories as Interfaces, record types

▶ closed world declares signature, axioms e.g., Monoid

▶ implementation must define every abstract field of C e.g., IntAdd

Grammars, inductive types, term languages

▶ closed world declares constructors
e.g., type n, term z : n, term s : n → n

▶ induction on terms must have case for every constructor

Herbrand models, free generation
▶ closed world fixes true atomic statements

▶ negation-as-failure: atom is false if all proof paths exhausted

UniFormal goal: represent all such features through closed theories

Contexts 15

Contexts

Contexts 16

Context Design is Half the Work

Formal systems use judgments like Γ ⊢ t : A relative to context Γ

Function of context Γ

▶ provide identifiers currently in scope related to scoping rules

▶ retrieve their types, definitions, etc.
may be intertwined with elaboration

Typical textbook/paper

▶ context = list of bound variables with their types

▶ practical systems need more complex contexts

Practical formal system
▶ imported packages, nested scopes, long-range dependencies, . . .

▶ context semantics interacts with the entire language semantics

complex languages require complex data structures for the context

Contexts 17

UniFormal Contexts

3 Context levels

▶ global: forest of open theories
toplevel names, imports, the whole library, . . .

▶ regional: the current closed theory

▶ local: list of bound variables blocks, binders, meta-variables, . . .

open theory τ1 = {
D⃗, open theory τ2 = {

E⃗ , theory τ3 = {
F⃗ , theory τ4 = {G⃗ , term c = λx : A.t}}}}

Example: context for t consists of

▶ global: D⃗, E⃗ global access to, e.g., τ1.τ2.τ3

▶ regional: F⃗ , G⃗ access to F⃗ and τ4 requires instance of τ3
▶ local: x no access to x from outside t

Contexts 18

Regional vs. Local/Global

Scoping

▶ global: visible everywhere resolve name clashes by qualified names

▶ regional:

globally visible but controlled access
resolve name clashes by declaration merging

▶ local: narrow syntactic scope
resolve name clashes by shadowing, α-equality

Behavior during traversal
▶ global: fixed, never changes

▶ regional:

switch to a different closed theory

▶ local: grows as we traverse binders in expressions

Semantics
▶ global: fixed, tied to qualified identifier

▶ regional:

depends on how the containing theory is used

▶ local: none, just α-renamable placeholder

Contexts 18

Regional vs. Local/Global

Scoping

▶ global: visible everywhere resolve name clashes by qualified names

▶ regional: globally visible but controlled access
resolve name clashes by declaration merging

▶ local: narrow syntactic scope
resolve name clashes by shadowing, α-equality

Behavior during traversal
▶ global: fixed, never changes

▶ regional:

switch to a different closed theory

▶ local: grows as we traverse binders in expressions

Semantics
▶ global: fixed, tied to qualified identifier

▶ regional:

depends on how the containing theory is used

▶ local: none, just α-renamable placeholder

Contexts 18

Regional vs. Local/Global

Scoping

▶ global: visible everywhere resolve name clashes by qualified names

▶ regional: globally visible but controlled access
resolve name clashes by declaration merging

▶ local: narrow syntactic scope
resolve name clashes by shadowing, α-equality

Behavior during traversal
▶ global: fixed, never changes

▶ regional:

switch to a different closed theory

▶ local: grows as we traverse binders in expressions

Semantics
▶ global: fixed, tied to qualified identifier

▶ regional:

depends on how the containing theory is used

▶ local: none, just α-renamable placeholder

Contexts 18

Regional vs. Local/Global

Scoping

▶ global: visible everywhere resolve name clashes by qualified names

▶ regional: globally visible but controlled access
resolve name clashes by declaration merging

▶ local: narrow syntactic scope
resolve name clashes by shadowing, α-equality

Behavior during traversal
▶ global: fixed, never changes

▶ regional: switch to a different closed theory

▶ local: grows as we traverse binders in expressions

Semantics
▶ global: fixed, tied to qualified identifier

▶ regional:

depends on how the containing theory is used

▶ local: none, just α-renamable placeholder

Contexts 18

Regional vs. Local/Global

Scoping

▶ global: visible everywhere resolve name clashes by qualified names

▶ regional: globally visible but controlled access
resolve name clashes by declaration merging

▶ local: narrow syntactic scope
resolve name clashes by shadowing, α-equality

Behavior during traversal
▶ global: fixed, never changes

▶ regional: switch to a different closed theory

▶ local: grows as we traverse binders in expressions

Semantics
▶ global: fixed, tied to qualified identifier

▶ regional:

depends on how the containing theory is used

▶ local: none, just α-renamable placeholder

Contexts 18

Regional vs. Local/Global

Scoping

▶ global: visible everywhere resolve name clashes by qualified names

▶ regional: globally visible but controlled access
resolve name clashes by declaration merging

▶ local: narrow syntactic scope
resolve name clashes by shadowing, α-equality

Behavior during traversal
▶ global: fixed, never changes

▶ regional: switch to a different closed theory

▶ local: grows as we traverse binders in expressions

Semantics
▶ global: fixed, tied to qualified identifier

▶ regional: depends on how the containing theory is used

▶ local: none, just α-renamable placeholder

Contexts 19

Switching Regions: Examples

Model types: type-check m.oper for m : Monoid
▶ infer m : Monoid

▶ switch to region Monoid and infer type oper : A

▶ return and translate A to current region

Explicit theory morphisms application
▶ given theory morphism ϑ : C → D and C -term t: use ϑ(t) in D

▶ switch the current region from D to C to check term t

Nesting of Theories
▶ a closed anonymous theory inside a closed one inside an open one:

open theory Algebra = {theory Monoid = {. . . ,
term unitGroup = Group{type u = up.u|hasInverse, . . .}}}

▶ up refers to the enclosing region, i.e., the monoid

Contexts 19

Switching Regions: Examples

Model types: type-check m.oper for m : Monoid
▶ infer m : Monoid

▶ switch to region Monoid and infer type oper : A

▶ return and translate A to current region

Explicit theory morphisms application
▶ given theory morphism ϑ : C → D and C -term t: use ϑ(t) in D

▶ switch the current region from D to C to check term t

Nesting of Theories
▶ a closed anonymous theory inside a closed one inside an open one:

open theory Algebra = {theory Monoid = {. . . ,
term unitGroup = Group{type u = up.u|hasInverse, . . .}}}

▶ up refers to the enclosing region, i.e., the monoid

Contexts 19

Switching Regions: Examples

Model types: type-check m.oper for m : Monoid
▶ infer m : Monoid

▶ switch to region Monoid and infer type oper : A

▶ return and translate A to current region

Explicit theory morphisms application
▶ given theory morphism ϑ : C → D and C -term t: use ϑ(t) in D

▶ switch the current region from D to C to check term t

Nesting of Theories
▶ a closed anonymous theory inside a closed one inside an open one:

open theory Algebra = {theory Monoid = {. . . ,
term unitGroup = Group{type u = up.u|hasInverse, . . .}}}

▶ up refers to the enclosing region, i.e., the monoid

Contexts 20

Final Definition

A UniFormal context consists of
▶ global part: an open theory

▶ stack of pairs of
▶ regional part: closed theory
▶ local part: list of bound variables

roughly corresponds to call stack in programming languages

Controlled visibility of lower stack frames
▶ nested theories: lower regions visible via up qualifier

▶ most other features: no visibility

▶ some features: lower frames may escape back into higher ones
e.g., quotation and evaluation

Contexts 21

Advanced Detail: Mixing Open and Closed Declarations

Open symbols in a closed theory
▶ corresponds to Java-style static declarations

▶ allows including constructors/factory methods within a theory

closed theory Monoid = {
. . . , open term make : . . . → Mod(Monoid) = . . .}

Closed symbols in an open theory
▶ conservative extensions problematic with closed theories

▶ extensions typically distributed over many source files
▶ combining theories may require expensive renaming

▶ very neat solution that yields seamless interface extension

open theory Squaring = {
include Monoid, term square = x → oper(x , x)}

m.(Squaring .square) well-typed for m : Mod(Monoid)

Conclusion 22

Conclusion

Conclusion 23

Summary

In the paper
▶ core grammar for UniFormal

▶ example feature: record types/classes via closed theories

▶ rigorous definition of context

▶ sketch of context-sensitive type-checker

▶ motivating examples and side remarks

Not in the paper but implementation of UniFormal PL exists

▶ rich type system: dependent function types, number types, . . .

▶ additional features: term languages, inductive data types, quotation

▶ details of type checker

▶ operational semantics

https://github.com/UniFormal/UPL/

https://github.com/UniFormal/UPL/

Conclusion 24

Evaluation and Outlook

Knowledge gain
▶ open vs. closed theories now canon for me

▶ theory expressions superior to MMT’s 2-layer design
need to watch for scalability though

▶ 3-partite context with stack of regions feels right
smooth implementation for both logics and programming languages

but details still up for discussion

Open questions and plans
▶ connect MMT and UniFormal

▶ MMT to use open/closed theories and declaration-merging
▶ maybe MMT as logical framework instance of UniFormal

▶ formalize significant case study
▶ target: algorithms in AI course
▶ parallel design of math definitions (notes) and executable

algorithms (exercises)

	Motivation
	Representing Polynomials
	Representing Polynomials
	Representing Polynomials
	Are Polynomial Variables Local or Global?
	Many Names are Neither Local nor Global
	Local vs. Global Names in MMT

	UniFormal Syntax
	Basic Syntax
	Basic Syntax
	Example: Algebraic Hierarchy
	Example: Models as Types
	One More Novelty: Open vs. Closed Theories
	Open vs. Closed Theories in MMT
	Analogy to Open/Closed Worlds
	Language Features that Enumerate Inhabitants

	Contexts
	Context Design is Half the Work
	UniFormal Contexts
	Regional vs. Local/Global
	Regional vs. Local/Global
	Regional vs. Local/Global
	Regional vs. Local/Global
	Regional vs. Local/Global
	Regional vs. Local/Global
	Switching Regions: Examples
	Switching Regions: Examples
	Switching Regions: Examples
	Final Definition
	Advanced Detail: Mixing Open and Closed Declarations

	Conclusion
	Summary
	Evaluation and Outlook

