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Representing Polynomials

How would you represent this formula in your favorite system?

X 2 + 1 ∈ Q[X ]

How about these?
X 2 + 1 ∈ Q[Y ]

Y 2 + 1 ∈ Q[X ]

And are these true?

Q[X ,Y ] = Q[Y ,X ]

Q[X ] ∩Q[Y ] = Q
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Are Polynomial Variables Local or Global?

Option 1a: Bound local variables like OpenMath OMV

▶ natural first choice

▶ α-equality has unexpected consequences

▶ requires implicit binders to interpret standard math

Option 1b: Nameless local binding
▶ 1a but with de-Bruijn indices

▶ Q[−] takes number of variables, not their names

Option 2: Global names like OpenMath OMS

▶ avoids renaming/scoping issues

▶ no insertion of implicit binders everywhere

▶ but what would the content dictionary be?

local vs. global dichotomy ubiquitous in formal systems
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Many Names are Neither Local nor Global

Any sets built inductively, e.g.,
▶ generated groups as in

Let G = ⟨x , y |x2 = e, y5 = e⟩ and consider xy2 ∈ G . . .

▶ µ-types with labeled sums as in

The natural numbers are given by µX . zero() | succ(X ).
We write 1 for succ(zero).

Dual case: records
▶ field names are α-renamable inside the record type

theory Monoid = {type u, term oper : (u, u) → u, . . .}

▶ but have global scope as selector functions

m.oper : (m.u,m.u) → m.u given m : Monoid

α-equality not feasible — but semantics depends on context



Motivation 6

Local vs. Global Names in MMT

Long-standing issue in MMT
▶ binary OMS vs. OMV system inherited from OpenMath/MathML

and OMDoc

▶ problematic when representing certain language features
record types, theory/diagram expressions, . . .

▶ multiple failed attempts to evolve MMT’s binary identifier system
increasingly blocking development in recent years

Since 2024: new language UniFormal
▶ originally a programming language experiment

▶ now evolving into MMT2-like MKM kernel language

▶ includes from scratch redesign of MMT module system
enabling going around MMT’s implicit assumptions

this talk: UniFormal’s 3-tiered identifier system
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Basic Syntax

As usual: terms t and types A
▶ numbers, functions, products, . . .

▶ subtyping, structure types, inductive types

▶ declarations
▶ typed term symbol: term c : A[= t] axioms via special types
▶ bounded type symbol: type a[= A]

Special: theory expressions T

▶ declared/referenced like terms/types: theory τ = T

▶ theory values: list of term/type/theory declarations
theory Monoid = {type u, term oper : (u, u) → u, . . .}

▶ union/inheritance via include declarations
theory Group = {include Monoid, . . .}

▶ instantiation/sharing by declaration merging (next slide)
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Example: Algebraic Hierarchy

“. . . ” indicates formulas/proofs that are omitted for brevity

theory Monoid = {type u, term oper : (u, u) → u, term e : u,
term assoc : ▶ ∀x , y , z : u. . . . ,
term neutL : ▶ ∀x : u. . . . , term neutR : ▶ ∀x : u. . . .}

theory IntAdd = {total include Monoid,
type u = Int, term oper = (x , y) → x + y , term e = 0,
term assoc := . . . , term neutL := . . . , term neutL := . . .

}
total forces defining all included symbols

theory Group = {include Monoid, . . . , term neutR := . . .}

declaration merging: neutR is defined in normal form of Group
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Example: Models as Types

Theories as types and models:

▶ Mod(T ): theory seen as a type of models

▶ mod(T ): theory (with all fields defined) seen as an
instance/model

Product monoid as a function:

term prod : (Mod(Monoid),Mod(Monoid)) → Mod(Monoid) =
(m, n) → mod(

type u = (m.u, n.u),
term oper = (p, q) → (m.oper(p1, q1), n.oper(p2, q2)),
. . .

)

termZ2 = prod(mod(IntAdd),mod(IntAdd))
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One More Novelty: Open vs. Closed Theories

Ubiquitous dichotomy of structuring mechanisms:

system open closed

OpenMath/MathML content dictionary —
MMT — theory
Isabelle theory locale, type class
Rocq package module, record
sTeX module mathstruct
Java package class
C++ namespace class, struct

Key difference

▶ open: namespaces, cataloging of objects
different theory = different qualified identifier

▶ closed: named set of assumptions
different theory = different context
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Open vs. Closed Theories in MMT

OMDoc
▶ Michael built OMDoc merging influences from

▶ OpenMath only open theories
▶ development graphs (e.g., Isabelle locales) only closed theories

▶ design flaw: no open/closed distinction

MMT
▶ inherited design flaw from OMDoc

▶ major source of friction ever since

in UniFormal: theories declared as either open or closed
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Analogy to Open/Closed Worlds

Analogy
▶ worlds = theories

▶ inhabitant = named declarations

Open world
▶ inhabitants can be added/deleted at will

▶ at worst, downstream references must be adapted

▶ all language features must anticipate future changes to the world
no relying on the current set of inhabitants

Closed world
▶ world “fenced off”

▶ changing the inhabitants creates a different world

▶ world itself has meaning by fixing a set of inhabitants/assumptions
language features may enumerate inhabitants
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Language Features that Enumerate Inhabitants

Theories as Interfaces, record types

▶ closed world declares signature, axioms e.g., Monoid

▶ implementation must define every abstract field of C e.g., IntAdd

Grammars, inductive types, term languages

▶ closed world declares constructors
e.g., type n, term z : n, term s : n → n

▶ induction on terms must have case for every constructor

Herbrand models, free generation
▶ closed world fixes true atomic statements

▶ negation-as-failure: atom is false if all proof paths exhausted

UniFormal goal: represent all such features through closed theories
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Context Design is Half the Work

Formal systems use judgments like Γ ⊢ t : A relative to context Γ

Function of context Γ

▶ provide identifiers currently in scope related to scoping rules

▶ retrieve their types, definitions, etc.
may be intertwined with elaboration

Typical textbook/paper

▶ context = list of bound variables with their types

▶ practical systems need more complex contexts

Practical formal system
▶ imported packages, nested scopes, long-range dependencies, . . .

▶ context semantics interacts with the entire language semantics

complex languages require complex data structures for the context
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UniFormal Contexts

3 Context levels

▶ global: forest of open theories
toplevel names, imports, the whole library, . . .

▶ regional: the current closed theory

▶ local: list of bound variables blocks, binders, meta-variables, . . .

open theory τ1 = {
D⃗, open theory τ2 = {

E⃗ , theory τ3 = {
F⃗ , theory τ4 = {G⃗ , term c = λx : A.t}}}}

Example: context for t consists of

▶ global: D⃗, E⃗ global access to, e.g., τ1.τ2.τ3

▶ regional: F⃗ , G⃗ access to F⃗ and τ4 requires instance of τ3
▶ local: x no access to x from outside t
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Regional vs. Local/Global

Scoping

▶ global: visible everywhere resolve name clashes by qualified names

▶ regional:

globally visible but controlled access
resolve name clashes by declaration merging

▶ local: narrow syntactic scope
resolve name clashes by shadowing, α-equality

Behavior during traversal
▶ global: fixed, never changes

▶ regional:

switch to a different closed theory

▶ local: grows as we traverse binders in expressions

Semantics
▶ global: fixed, tied to qualified identifier

▶ regional:

depends on how the containing theory is used

▶ local: none, just α-renamable placeholder
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Switching Regions: Examples

Model types: type-check m.oper for m : Monoid
▶ infer m : Monoid

▶ switch to region Monoid and infer type oper : A

▶ return and translate A to current region

Explicit theory morphisms application
▶ given theory morphism ϑ : C → D and C -term t: use ϑ(t) in D

▶ switch the current region from D to C to check term t

Nesting of Theories
▶ a closed anonymous theory inside a closed one inside an open one:

open theory Algebra = {theory Monoid = {. . . ,
term unitGroup = Group{type u = up.u|hasInverse, . . .}}}

▶ up refers to the enclosing region, i.e., the monoid
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Final Definition

A UniFormal context consists of
▶ global part: an open theory

▶ stack of pairs of
▶ regional part: closed theory
▶ local part: list of bound variables

roughly corresponds to call stack in programming languages

Controlled visibility of lower stack frames
▶ nested theories: lower regions visible via up qualifier

▶ most other features: no visibility

▶ some features: lower frames may escape back into higher ones
e.g., quotation and evaluation
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Advanced Detail: Mixing Open and Closed Declarations

Open symbols in a closed theory
▶ corresponds to Java-style static declarations

▶ allows including constructors/factory methods within a theory

closed theory Monoid = {
. . . , open term make : . . . → Mod(Monoid) = . . .}

Closed symbols in an open theory
▶ conservative extensions problematic with closed theories

▶ extensions typically distributed over many source files
▶ combining theories may require expensive renaming

▶ very neat solution that yields seamless interface extension

open theory Squaring = {
include Monoid, term square = x → oper(x , x)}

m.(Squaring .square) well-typed for m : Mod(Monoid)
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Conclusion
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Summary

In the paper
▶ core grammar for UniFormal

▶ example feature: record types/classes via closed theories

▶ rigorous definition of context

▶ sketch of context-sensitive type-checker

▶ motivating examples and side remarks

Not in the paper but implementation of UniFormal PL exists

▶ rich type system: dependent function types, number types, . . .

▶ additional features: term languages, inductive data types, quotation

▶ details of type checker

▶ operational semantics

https://github.com/UniFormal/UPL/

https://github.com/UniFormal/UPL/
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Evaluation and Outlook

Knowledge gain
▶ open vs. closed theories now canon for me

▶ theory expressions superior to MMT’s 2-layer design
need to watch for scalability though

▶ 3-partite context with stack of regions feels right
smooth implementation for both logics and programming languages

but details still up for discussion

Open questions and plans
▶ connect MMT and UniFormal

▶ MMT to use open/closed theories and declaration-merging
▶ maybe MMT as logical framework instance of UniFormal

▶ formalize significant case study
▶ target: algorithms in AI course
▶ parallel design of math definitions (notes) and executable

algorithms (exercises)
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