Global, Regional, and Local Contexts

Florian Rabe

University Erlangen-Nuremberg

October 2025

Motivation 2

Motivation

Representing Polynomials

How would you represent this formula in your favorite system?

$$X^2 + 1 \in \mathbb{Q}[X]$$

Representing Polynomials

How would you represent this formula in your favorite system?

$$X^2 + 1 \in \mathbb{Q}[X]$$

How about these?

$$X^2+1\in\mathbb{Q}[Y]$$

$$Y^2+1\in\mathbb{Q}[X]$$

Representing Polynomials

How would you represent this formula in your favorite system?

$$X^2 + 1 \in \mathbb{Q}[X]$$

How about these?

$$X^2+1\in\mathbb{Q}[Y]$$

$$Y^2 + 1 \in \mathbb{Q}[X]$$

And are these true?

$$\mathbb{Q}[X,Y] = \mathbb{Q}[Y,X]$$

$$\mathbb{Q}[X] \cap \mathbb{Q}[Y] = \mathbb{Q}$$

Are Polynomial Variables Local or Global?

Option 1a: Bound local variables

like OpenMath OMV

- natural first choice
- lacktriangle α -equality has unexpected consequences
- requires implicit binders to interpret standard math

Option 1b: Nameless local binding

- 1a but with de-Bruijn indices
- ▶ Q[-] takes number of variables, not their names

Option 2: Global names

like OpenMath OMS

- avoids renaming/scoping issues
- no insertion of implicit binders everywhere
- but what would the content dictionary be?

local vs. global dichotomy ubiquitous in formal systems

Many Names are Neither Local nor Global

Any sets built inductively, e.g.,

generated groups as in

Let
$$G = \langle x, y | x^2 = e, y^5 = e \rangle$$
 and consider $xy^2 \in G \dots$

 \blacktriangleright μ -types with labeled sums as in

The natural numbers are given by $\mu X. zero() \mid succ(X)$. We write 1 for succ(zero).

Dual case: records

ightharpoonup field names are α -renamable inside the record type

$$\textbf{theory} \, \texttt{Monoid} = \{ \textbf{type} \, u, \, \, \textbf{term} \, \texttt{oper} : (u,u) \to u, \, \ldots \}$$

but have global scope as selector functions

$$m.\mathtt{oper}:(m.u,m.u) o m.u$$
 given $m:\mathtt{Monoid}$

lpha-equality not feasible — but semantics depends on context

Local vs. Global Names in MMT

Long-standing issue in MMT

- binary OMS vs. OMV system inherited from OpenMath/MathML and OMDoc
- problematic when representing certain language features record types, theory/diagram expressions, . . .
- multiple failed attempts to evolve MMT's binary identifier system increasingly blocking development in recent years

Since 2024: new language UniFormal

- originally a programming language experiment
- now evolving into MMT2-like MKM kernel language
- ▶ includes from scratch redesign of MMT module system enabling going around MMT's implicit assumptions

this talk: UniFormal's 3-tiered identifier system

UniFormal Syntax

UniFormal Syntax

Basic Syntax

As usual: terms t and types A

- numbers, functions, products, . . .
- subtyping, structure types, inductive types
- declarations
 - **b** typed term symbol: **term** c: A[=t] axioms via special types
 - **b** bounded type symbol: **type** a[=A]

Basic Syntax

As usual: terms t and types A

- numbers, functions, products, . . .
- subtyping, structure types, inductive types
- declarations
 - **typed term symbol: term c** : A[=t] axioms via special types
 - bounded type symbol: type a[= A]

Special: theory expressions T

- lacktriangledown declared/referenced like terms/types: theory au=T
- ▶ theory values: list of term/type/theory declarations theory Monoid = {type u, term oper : $(u, u) \rightarrow u$, ...}
- union/inheritance via include declarations
 theory Group = {include Monoid, ...}
- ▶ instantiation/sharing by declaration merging (next slide)

Example: Algebraic Hierarchy

"..." indicates formulas/proofs that are omitted for brevity

```
theory Monoid = {type u, term oper : (u, u) \rightarrow u, term e : u,
   term assoc : \triangleright \forall x, y, z : u. \ldots
   term neutL : \triangleright \forall x : u. \ldots, term neutR : \triangleright \forall x : u. \ldots
theory IntAdd = {total include Monoid,
   type u = \text{Int}, term oper = (x, y) \rightarrow x + y, term e = 0,
   term assoc := ..., term neutL := ..., term neutL := ...
                          total forces defining all included symbols
theory Group = {include Monoid, ..., term neutR := ...}
  declaration merging: neutR is defined in normal form of Group
```

Example: Models as Types

Theories as types and models:

- \blacktriangleright Mod(T): theory seen as a type of models
- mod(T): theory (with all fields defined) seen as an instance/model

Product monoid as a function:

```
	extbf{term} 	ext{ prod}: (Mod(	exttt{Monoid}), Mod(	exttt{Monoid})) 
ightarrow Mod(	exttt{Monoid}) = (m, n) 
ightarrow mod( \\ 	extbf{type} u = (m.u, n.u), \\ 	extbf{term} 	ext{ oper} = (p, q) 
ightarrow (m.	ext{oper}(p_1, q_1), n.	ext{oper}(p_2, q_2)), \\ 	ext{...} ) \\ 	ext{term} \, \mathbb{Z}^2 = 	ext{prod}(mod(	ext{IntAdd}), mod(	ext{IntAdd}))
```

One More Novelty: Open vs. Closed Theories

Ubiquitous dichotomy of structuring mechanisms:

system	open	closed
OpenMath/MathML	content dictionary	_
MMT	_	theory
Isabelle	theory	locale, type class
Rocq	package	module, record
sTeX	module	mathstruct
Java	package	class
C++	namespace	class, struct

Key difference

- open: namespaces, cataloging of objects different theory = different qualified identifier
- closed: named set of assumptions

different theory = different context

Open vs. Closed Theories in MMT

OMDoc

- Michael built OMDoc merging influences from
 - ► OpenMath only open theories
- development graphs (e.g., Isabelle locales) only closed theories
- design flaw: no open/closed distinction

MMT

- inherited design flaw from OMDoc
- major source of friction ever since

in UniFormal: theories declared as either open or closed

Analogy to Open/Closed Worlds

Analogy

- worlds = theories
- inhabitant = named declarations

Open world

- ▶ inhabitants can be added/deleted at will
- at worst, downstream references must be adapted
- all language features must anticipate future changes to the world no relying on the current set of inhabitants

Closed world

- world "fenced off"
- changing the inhabitants creates a different world
- world itself has meaning by fixing a set of inhabitants/assumptions language features may enumerate inhabitants

Language Features that Enumerate Inhabitants

Theories as Interfaces, record types

- closed world declares signature, axioms
 e.g., Monoid
- ▶ implementation must define every abstract field of C e.g., IntAdd

Grammars, inductive types, term languages

closed world declares constructors

```
e.g., type n, term z : n, term s : n \rightarrow n
```

induction on terms must have case for every constructor

Herbrand models, free generation

- closed world fixes true atomic statements
- negation-as-failure: atom is false if all proof paths exhausted

UniFormal goal: represent all such features through closed theories

Contexts

Context Design is Half the Work

Formal systems use judgments like $\Gamma \vdash t : A$ relative to context Γ

Function of context Γ

- provide identifiers currently in scope related to scoping rules
- retrieve their types, definitions, etc.

may be intertwined with elaboration

Typical textbook/paper

- context = list of bound variables with their types
- practical systems need more complex contexts

Practical formal system

- ▶ imported packages, nested scopes, long-range dependencies, ...
- context semantics interacts with the entire language semantics

complex languages require complex data structures for the context

UniFormal Contexts

3 Context levels

- ▶ global: forest of open theories
 - toplevel names, imports, the whole library, . . .
- regional: the current closed theory
- ▶ local: list of bound variables blocks, binders, meta-variables, . . .

```
open theory \tau_1 = \{
\vec{D}, \text{ open theory } \tau_2 = \{
\vec{E}, \text{ theory } \tau_3 = \{
\vec{F}, \text{ theory } \tau_4 = \{\vec{G}, \text{ term } c = \lambda x : A.t\}\}\}
```

Example: context for t consists of

- ▶ global: \vec{D} , \vec{E} global access to, e.g., $\tau_1.\tau_2.\tau_3$
- regional: \vec{F} , \vec{G} access to \vec{F} and τ_4 requires instance of τ_3
- ightharpoonup local: x no access to x from outside t

Regional vs. Local/Global

Scoping

- **p** global: visible everywhere resolve name clashes by qualified names
- regional:
- local: narrow syntactic scope

resolve name clashes by shadowing, $\alpha\text{-equality}$

Regional vs. Local/Global

Scoping

- ▶ global: visible everywhere resolve name clashes by qualified names
- regional: globally visible but controlled access resolve name clashes by declaration merging
- local: narrow syntactic scope resolve name clashes by shadowing, α -equality

Regional vs. Local/Global

Scoping

- ▶ global: visible everywhere resolve name clashes by qualified names
- regional: globally visible but controlled access resolve name clashes by declaration merging
- local: narrow syntactic scope resolve name clashes by shadowing, α -equality

Behavior during traversal

- global: fixed, never changes
- regional:
- local: grows as we traverse binders in expressions

Regional vs. Local/Global

Scoping

- ▶ global: visible everywhere resolve name clashes by qualified names
- regional: globally visible but controlled access resolve name clashes by declaration merging
- local: narrow syntactic scope
 resolve name clashes by shadowing, α-equality

Behavior during traversal

- global: fixed, never changes
- regional: switch to a different closed theory
- local: grows as we traverse binders in expressions

Regional vs. Local/Global

Scoping

- ▶ global: visible everywhere resolve name clashes by qualified names
- regional: globally visible but controlled access resolve name clashes by declaration merging
- local: narrow syntactic scope resolve name clashes by shadowing, α -equality

Behavior during traversal

- global: fixed, never changes
- regional: switch to a different closed theory
- local: grows as we traverse binders in expressions

Semantics

- ▶ global: fixed, tied to qualified identifier
- regional:
- local: none, just α -renamable placeholder

18

Regional vs. Local/Global

Scoping

- ▶ global: visible everywhere resolve name clashes by qualified names
- regional: globally visible but controlled access resolve name clashes by declaration merging
- local: narrow syntactic scope resolve name clashes by shadowing, α -equality

Behavior during traversal

- global: fixed, never changes
- regional: switch to a different closed theory
- local: grows as we traverse binders in expressions

Semantics

- ▶ global: fixed, tied to qualified identifier
- regional: depends on how the containing theory is used
- local: none, just α -renamable placeholder

Switching Regions: Examples

Model types: type-check m.oper for m:Monoid

- ▶ infer *m* : Monoid
- switch to region Monoid and infer type oper : A
- return and translate A to current region

Model types: type-check m.oper for m: Monoid

- ▶ infer *m* : Monoid
- switch to region Monoid and infer type oper : A
- return and translate A to current region

Explicit theory morphisms application

Proof given theory morphism $\vartheta: C \to D$ and C-term t: use $\vartheta(t)$ in D

Contexts

ightharpoonup switch the current region from D to C to check term t

Switching Regions: Examples

Model types: type-check m.oper for m: Monoid

- ▶ infer *m* : Monoid
- switch to region Monoid and infer type oper : A
- return and translate A to current region

Explicit theory morphisms application

- **P** given theory morphism $\vartheta: C \to D$ and C-term t: use $\vartheta(t)$ in D
- ▶ switch the current region from *D* to *C* to check term *t*

Nesting of Theories

▶ a closed anonymous theory inside a closed one inside an open one:

```
\begin{aligned} & \textbf{open theory } \texttt{Algebra} = \{ \textbf{theory } \texttt{Monoid} = \{ \dots, \\ & \textbf{term } \texttt{unit} \texttt{Group} = \texttt{Group} \{ \textbf{type } u = \textbf{up}. u | \texttt{hasInverse}, \ \ldots \} \} \} \end{aligned}
```

up refers to the enclosing region, i.e., the monoid

Final Definition

A UniFormal context consists of

- global part: an open theory
- stack of pairs of
 - regional part: closed theory
 - local part: list of bound variables

roughly corresponds to call stack in programming languages

Controlled visibility of lower stack frames

- nested theories: lower regions visible via up qualifier
- most other features: no visibility
- ▶ some features: lower frames may escape back into higher ones

e.g., quotation and evaluation

Advanced Detail: Mixing Open and Closed Declarations

Open symbols in a closed theory

- corresponds to Java-style static declarations
- allows including constructors/factory methods within a theory

```
 \begin{array}{l} \textbf{closed theory } \texttt{Monoid} = \{ \\ \dots, \ \textbf{open term } \texttt{make} : \dots \rightarrow \textit{Mod}(\texttt{Monoid}) = \dots \} \end{array}
```

Closed symbols in an open theory

- conservative extensions problematic with closed theories
 - extensions typically distributed over many source files
 - combining theories may require expensive renaming
- very neat solution that yields seamless interface extension

```
\begin{array}{l} \textbf{open theory } \texttt{Squaring} = \{ \\ \textbf{include} \, \texttt{Monoid}, \, \, \textbf{term} \, \texttt{square} = x \rightarrow \texttt{oper}(x,x) \} \end{array}
```

m.(Squaring.square) well-typed for m:Mod(Monoid)

Conclusion 22

Conclusion

Conclusion 23

Summary

In the paper

- core grammar for UniFormal
- example feature: record types/classes via closed theories
- rigorous definition of context
- sketch of context-sensitive type-checker
- motivating examples and side remarks

Not in the paper

but implementation of UniFormal PL exists

- rich type system: dependent function types, number types, ...
- additional features: term languages, inductive data types, quotation
- details of type checker
- operational semantics

https://github.com/UniFormal/UPL/

Conclusion 24

Evaluation and Outlook

Knowledge gain

- open vs. closed theories now canon for me
- theory expressions superior to MMT's 2-layer design need to watch for scalability though
- 3-partite context with stack of regions feels right smooth implementation for both logics and programming languages but details still up for discussion

Open questions and plans

- connect MMT and UniFormal
 - ▶ MMT to use open/closed theories and declaration-merging
 - maybe MMT as logical framework instance of UniFormal
- ► formalize significant case study
 - ► target: algorithms in Al course
 - parallel design of math definitions (notes) and executable algorithms (exercises)