Formal Representation of Scientific Knowledge

Florian Rabe (Advisory Board Member)

Computer Science, University Erlangen-Nuremberg, Germany

Background

Background

About Me

Theoretical Computer Science

- foundations logic, programming languages, formal systems
- knowledge representation specification, formalization, ontologies, programming
- scalable applications module systems, libraries, system integration, data sharing

Methods

- survey, abstract, and transfer unify, connect different research areas
- modularity and reuse maximize sharing across languages, tools
- system development: language design implementation library building – applications

Formal Knowledge in Computer Science

Early 20th century: vision of mechanizing mathematics

birth of computer science

- Development of formal logic
 - competition between set theory, λ -calculus
 - today many different logics
- Development of programming languages
 - competition between imperative, functional languages
 - today many different languages
- Sophisticated automation support for
 - formal modeling
 - computing
 - proving
 - querying

all in different highly-optimized systems

Selected Flagship Projects

Software verification

- 2004–2010: Klein et al., L4 micro-kernel operating system 390,000 lines of human-written formal logic
- since 2005: Leroy et al., C compiler (CompCert) almost complete, high performance

Mathematics

- 2006–2012: Gonthier et al., Feit-Thompson theorem 170,000 lines of human-written formal logic
- 2003–2014: Hales et. al., Kepler conjecture (Flyspeck) > 5,000 processor hours needed to check proof

Selected Flagship Projects (2)

Artificial intelligence

 since 1984: Lenat et al., common knowledge (CyC) 2 million facts in public version
 since 2000: Pease et. al., foundation ontology (SUMO) 25,000 concepts

Other fields

- since 2001: OBO Foundry, collection of biomedical ontologies > 1000 ontologies, > 10M classes
- ▶ since 2021: Wikidata, open data knowledge graph 100*M* data items

these are ontologies

Knowledge Sharing

Major Push for Sharing of Research Data

Major push towards open research data

- 2006: OECD Council recommendations
- 2016: FAIR principles for Findability, Accessibility, Interoperability, Reusability
- > 2018: European Open Science Cloud, EU infrastructure
- ▶ 2018 (Germany): NFDI, 30 consortia, up 5*M* EUR each

similar initiatives in most countries

But existing services essentially shallow

- represent data set as a whole
- little support finding/.../reusing individual data items

Shallow vs. Deep Services

Service	Shallow	Deep
Identification	DOI for a dataset	DOIs for each entry
Provenance	who created the dataset?	how was each entry computed?
Validation	is this a list of integers?	does it represent a 3×3 -matrix?
Finding	find a dataset	find entries with certain proper-
		ties
Access	download a dataset	download a specific record
Interoperability	only manually	automatable
Reuse	only manually	automatable

Shallow services are generic

easy to build

 Deep services require formal ontology of background knowledge much harder

4 Aspects of Knowledge (Tetrapod model)

- Documentation: informal but rigorous, math-based needed for human consumption
- Modeling: formal mathematical/physical properties needed for machine understanding
- Computation: data structures and algorithms

needed for practical applications

Data: large sets of objects

needed for exploration, analysis

Modeling

4 Aspects of Knowledge (Tetrapod model)

Documentation: informal but rigorous, math-based

needed for human consumption

- Modeling: formal mathematical/physical properties needed for machine understanding
- Computation: data structures and algorithms
- Data: large sets of objects
- Central ontology

needed for practical applications needed for exploration, analysis key to knowledge sharing

4 Aspects of Knowledge (Tetrapod model)

- Documentation: informal but rigorous, math-based needed for human consumption
- Modeling: formal mathematical/physical properties needed for machine understanding
- Computation: data structures and algorithms

needed for practical applications

Data: large sets of objects

needed for exploration, analysis

expressivity of ontology is bottleneck for knowledge sharing

Shallow vs. Deep Ontologies

Shallow Ontology Language

• high-level abstraction \rightarrow knowledge graph structure

scales well to large sets

modeling focuses on

concepts

- individuals
- relations
- properties

City, temperature Totnes:City Totnes in England Totnes temperature 15°*C*

temperature series

Deep Ontology Language

- fine-grained modeling prerequisite for sharing complex knowledge
- supports mathematical/physical
 - objects and operations
 - formulas and equations differential equations for temperature

My MMT System

My MMT System

A universal framework for formal knowledge

Vision: cover

- all aspects: modeling, logic, computation, documentation, data, ...
- all domains: CS, math, logic, STEM,
- all tools: search, library managers, IDEs, wikis, ...

evolving, partial solution

- developed since 2006 (with Michael Kohlhase)
- > 100k loc, > 1k pages of publications

```
http://uniformal.github.io/
```

MMT as Ontology-Based Mediator

Deep ontologies and tool interfaces formalized in MMT enables sharing knowledge across tools

Small Scale Example

```
theory Logic {
   prop : type
   assert : prop \rightarrow type
}
theory OntologyLanguage {
  include Logic
  conc : type
  individual : type
  is A : ind \rightarrow conc \rightarrow prop
}
```

```
theory MyOntology : OntologyLanguage {
  city : conc
  Totnes : individual
  assert (Totnes isA city)
}
```

Large Scale Example: The LATIN Atlas

Highly modular network of formal systems and translations

- formal logics
- mathematical foundations
- type systems
- programming languages
- Written in MMT since 2008
- Originally with T. Mossakowski, M. Kohlhase, 20 contributors by now
- \blacktriangleright ~ 1000 MMT modules

My MMT System

Large Scale Example: The LATIN Atlas (2) It's big — that's me pointing at logic 101

Very Large Scale Example: The MathHub Portal

GitHub-like but for MMT projects

- 251 Repositories
- 187 Users
- 28.5 GB in 2021, probably doubled by now

Example: proof assistant libraries in MathMub

System	# Modules	# Declarations
PVS	1k	20 <i>k</i>
Isabelle	10 <i>k</i>	1 <i>M</i>
HOL Light	200	20 <i>k</i>
Coq	2 <i>k</i>	150 <i>K</i>
Mizar	1k	70 <i>k</i>

https://gl.mathhub.info

Case Study: Concrete Datasets

Problem

Mathematical datasets are getting huge

- dozens of datasets of $> 10^6$ objects
- generated programmatically

akin to measurements in experimental sciences

ad hoc maintenance, no systematic FAIRness

Example:

- ▶ file "ec.csv" with 3*M* lines
- column headers: "label", "isogMat"
- some line: 11a1,"1,5,25,5,1,5,25,5,1"
- background knowledge needed to interpret: isogeny is a property of elliptic curves and

isogeny(
$$X_0(11)$$
) = $\begin{pmatrix} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{pmatrix}$

Solution: The MathDataHub System

$\mathsf{MathDataHub} = \mathsf{SQL} + \mathsf{MMT}$

- SQL database for mathematical datasets
- semantic schemata defined in MMT

collaboration with K. Bercic

Semantic database schema

- ontology of background knowledge in MMT definition of isogeny
- database table formalized as MMT record type

 $isogMat: \mathbb{Z}^{3\times 3}$ and isogeny assertions

metadata annotation for database encodings

 3×3 matrix encoded as 9-element list

 MMT generates SQL database schema and encode/decode functions

Other systems can now Find/.../Reuse each record via its mathematical representation.

Case study: Mathematical Modeling and Simulation of Physical Systems

Case study: Mathematical Modeling and Simulation of Physical Systems

23

Problem

Hard to Solve Differential Equations

- systems of differential equations without closed solutions
- numerical solutions found by discretization, fixed point iteration
- feedback loops between iterations

Case study: Mathematical Modeling and Simulation of Physical Systems

Experience and Solution

Collaboration with T. Koprucki, K. Tabelow (WIAS Berlin)

- 2 days to understand each other
- 1 week to design ontology
- ► 3 student months to adapt MMT into useful system

visualize and design iteration strategies

24

Observation:

- Domain experts tend not to separate ontology-relevant from other knowledge
- Ontology modeling in MMT helps design interfaces for tool integration

knowledge	domain expert concerns	needed in deep ontology
geometry	exact shape, discretization	set of parameters
physical quantities	measurement, initial conditions	existence
equations	derivation, using	formal statement
iteration	pros/cons of strategies	concept of a strategy

25

Conclusion

Take-Home Messages

Knowledge often spread over many optimized systems applies to any scientific domain

- Sharing demanded by researchers and political bodies but practical details separate research problem
- Formal ontologies can mediate knowledge sharing depth of ontology limits complexity of shared knowledge
- MMT is a system for
 - developing ontology languages and deep ontologies no commitment to a particular domain or logic
 - building knowledge management applications

general or domain-specific

 Collaboration of knowledge management experts and domain experts fosters knowledge sharing