The Future of Formalized Mathematics

1

Florian Rabe

Friedrich-Alexander-University Erlangen-Nuremberg, Computer Science

January 2023

2

About Me and this Talk

About Me and this Talk

Florian Rabe

http://uniformal.github.io/

My vision: UniFormal

- a universal framework for formal mathematical knowledge
- $\blacktriangleright\,$ developed since 2006, \sim 100,000 loc, \sim 500 pages of publications

My interests

- structure and organize complex divergent theories logic, specification, computation, enginerring, ...
- connect disparate systems standard languages, interoperable tools, shared libraries, ...
- understand and bridge across communities and disciplines set/type theory, proof/computation, foundations/applications, ...

My methods

- breadth: mathematical approach to knowledge of all kinds
- depth: mathematical rigor from foundation to applications

The Future of Formalized Mathematics

Three Parts in this Talk

- 1. History, challenges, and opportunities
- 2. My research on understanding formal systems for math
 - languages
 - tools
 - libraries
 - communities
- 3. Vision and strategy for the future

Formal Mathematics: History and Future

Revolutions in Mathematical History

Formation of Empires in Antiquity

invention of logical deduction, proof

Scientific Revolution

mathematization of science

Foundational Crisis (around 1900)

- paradoxa, careful axiomatizations, formal systems
- Hilbert's program, search for the best formal system
- birth of computer science

Computerization (pprox 1970–today)

- automated proofs, e.g., Automath 1967, Four-Color Theorem 1976
- enormous diversification of formal systems
- large-scale collaborations, applications

large formal libraries

The Formalization of Mathematics

	search for a formal system for mathematics
1879	Frege: formal logic
1889	Peano: rigorous axiom system
1901	Peano, Russell: paradoxa
1908, 1913	Russell, Whitehead: type theory
1908, 1922	Zermelo, Fraenkel: axiomatic set theory
1920s	Hilbert: reduction of all math to effective means
1929, 1936	Gödel, Gentzen: modern logic
1931	Gödel: incompleteness
no single best formal system — computer science arises	
1930s	Turing, Church, Curry: formal computation
1958, 1969	Curry, Howard: proofs as formal objects
1967	de Bruijn: Automath — first major formalization
1973–today	Trybulec: Mizar — first formal mathematical library
1980s–today	HOL, Nuprl, Coq,: increasingly strong, diverse
	ongoing shift from foundations to applications

Situation Today

Flagship Successes

- 2003–2014: Hales et. al., Kepler conjecture (Flyspeck) > 5,000 processor hours needed to check proof
- 2006–2012: Gonthier et al., Feit-Thompson theorem 170,000 lines of human-written formal logic
- 2020–2022: Scholze, Commelin et. al., Liquid Tensor challenge major formalization in step with frontline research

potential to massively transform future mathematics — but how exactly?

Future Prospects

Opportunities

Computer support for large proofs, computations, databases

beyond one person's ability to comprehend

Complex distributed collaborations

polymath, finite simple groups, ...

- Faster understanding smart editors, interactive documents, ...
- Al for mathematics???

huge potential but very hard to predict

Challenges

- Scale: current formalizations still small systems still experiments
- Cost-benefit ratio: most applications still too expensive

and even harder to maintain

- Integration: about 10 major systems mutually incompatible 1994 QED manifesto call for integration: failed despite support
- Ecosystem: hard to build peripheral tools

current tools designed to be standalone

"Next generation Deduction systems"

Dagstuhl Seminar November 2023, quoted from the abstract:

Techniques in deduction are often implemented only as short-lived prototypes whose transfer to stable systems is uncertain.

Over time systems may become too big, monolithic, and unwieldy.

Portfolios of techniques may be useful for experiments, but do not seem to facilitate a conceptual synthesis or a breakthrough.

The field faces a "software crisis" that is also a "techniques crisis".

Gap between Formal Math and Standard Math

Formal math systems weak at capturing mathematical practice

- convey intuitions, motivation
- change (and abuse) of definitions and notations
- critical deep technical language features

subtyping, quotient typing, undefinedness identification via isomorphism, flexible records/structures

moreover: also very different from each other incompatible languages, tools, libraries; disjoint communities

Definition of Derivative in Isabelle, Lean, Coq, Mizar

 $\begin{array}{l} \mbox{definition has derivative :: "('a::real_normed_vector \Rightarrow 'b::real_normed_vector) \Rightarrow \\ ('a \Rightarrow 'b) \Rightarrow 'a filter \Rightarrow bool" (infix "(has'_derivative)" 50) \\ \mbox{where "(f has_derivative f') F & \longrightarrow \\ bounded linear f' & \\ ((\lambda y. ([f y - f(lim F (\lambda x. x))) - f' (y - Lim F (\lambda x. x))) /_R norm (y - Lim F (\lambda x. x))) & \longrightarrow 0) F" \end{array}$

def has_fderiv_at_filter (f : E \rightarrow F) (f' : E \rightarrow L[k] F) (x : E) (L : filter E) := ($\lambda x'$, f x' - f x - f' (x' - x)) =o[L] ($\lambda x'$, x' - x)

Definition D_x (D:R -> Prop) (y x:R) : Prop := D x /\ y <> x.
Definition D_in (f d:R -> R) (D:R -> Prop) (x0:R) : Prop :=
 limit1_in (fun x:R => (f x - f x0) / (x - x0)) (D_x D x0) (d x0) x0.

definition

```
let f be PartFunc of REAL,REAL;
let x0 be Real;
pred f is_differentiable_in x0 means :: FDIFF_1:def 4
ex N being Neighbourhood of x0 st
( N c= dom f & ex L being LinearFunc ex R being RestFunc st
for x being Real st x in N holds
(f . x) - (f . x0) = (L . (x - x0)) + (R . (x - x0)) );
end;
```

Why the gap exists and why it won't go away

Current proof systems not developed for mathematics

proof assistants are extremely hard to build

 ≈ 100 person-years to be competitive

- languages optimized for software/hardware verification decidability. efficiency
- tools optimized for power users in large projects

formal math often an afterthought, overshadowed in practice (some exceptions)

Why the gap exists and why it won't go away

Current proof systems not developed for mathematics

proof assistants are extremely hard to build

 ≈ 100 person-years to be competitive

languages optimized for software/hardware verification decidability, efficiency

tools optimized for power users in large projects

formal math often an afterthought, overshadowed in practice (some exceptions)

Counter-point: languages developed by/for mathematicians

- computer algebra systems mostly untyped
- recent approaches based on natural language Koepke's Naproche, Hales's formal abstracts language

Paper: A Survey of Languages for Formalizing Mathematics Intelligent Computer Mathematics, 2020

Strategic Questions

Should we

- change mathematics in a way that is easier to formalize, or
- build systems that capture better how mathematics is actually done?

Should we

- formalize math multiple times in each system, or
- insist on a compatibility layer between systems?

Strategic Questions

Should we

- change mathematics in a way that is easier to formalize, or
- build systems that capture better how mathematics is actually done?

Should we

- formalize math multiple times in each system, or
- insist on a compatibility layer between systems?

Kevin Buzzard's answer

- CS must build systems that work for math
- he alone has neither resources nor interest to do it

Strategic Questions

Should we

- change mathematics in a way that is easier to formalize, or
- build systems that capture better how mathematics is actually done?

Should we

- formalize math multiple times in each system, or
- insist on a compatibility layer between systems?

Kevin Buzzard's answer

- CS must build systems that work for math
- he alone has neither resources nor interest to do it

My answer

- math as a whole does have the resources
- bring formal math home or watch it be an afterthought

What To Do Concretely?

Evolve current optimized systems

- educate CS about math needs
- educate math about potential
- reach new scales to discover new challenges

Also develop new systems specifically for math

- optimized for adoption in math
- integrate proof, computation, natural language
- compatibility layers and open standards for system interoperability

My UniFormal Research: Understanding Languages, Tools, Libraries, Communities

The UniFormal Library

2 dedicated DFG projects on formalization

► LATIN (2009–2012): modular formalization of formal systems

logics, type theories, set theories, \ldots by now \sim 1000 modules, 20,000 lines 3-10 contributors coordinated by me

▶ OAF (2014–2020): uniform representation of formal libraries

% in particular: 6 major proof assistants overall ${>}200$ Users ${>}250$ Repositories, ${>}100$ GB

One EU project on math (15 sites, 7.5M Euro)

- OpenDreamKit (2015–2019): integrate computational mathematics
- deep case studies on system integration
- prototyped UniFormal system as interface layer

Central part: My UniFormal framework and system 100k loc, 5-10 contributors coordinated by me

Me pointing at first-order logic in the LATIN library

Example: Modularity and Translations in UniFormal An example fragment of the logic library:

Other Highlights

- type theory, category theory, variants of all logics
- controversial features in separate modules

choice axiom/operators, non-empty types, ...

advanced language features in separate modules

classes, inductive types, record types, ...

Paper: Experiences from Exporting Major Proof Assistant Libraries Journal of Automated Reasoning, 2021

The Lean Logic in the UniFormal Library

```
theory Lean : LF =
  // universe hierarchy (maximum operators not shown)
 level: type
  Zero: level
  Succ: level → level
 // terms, types, universes (only main constructors shown)
  expr: type
  Sort: level - expr
  App: expr \rightarrow expr \rightarrow expr \# 1 @ 2
  Lam: expr \rightarrow (expr \rightarrow expr) \rightarrow expr # \lambda 1 2
  Pi: expr \rightarrow (expr \rightarrow expr) \rightarrow expr # \Pi 1 2
  // typing and equality of expressions (only a few rules shown)
  typing : expr \rightarrow expr \rightarrow type # 1 % 2
  equal: expr \rightarrow expr \rightarrow type # 1 = 2 prec 0
  typing Sort: {1} Sort 1 % Sort (Succ 1)
  typing App: \{A, B, f, a\} f % (II A [x] B x) \rightarrow a % A \rightarrow f@a % B a
  typing Lam: {1,A,B,F} A % Sort 1 \rightarrow ({x} x%A \rightarrow F x % B x) \rightarrow (\lambda A [x] F x) % II A [x] B x
  equal Beta: \{a, A, F\} (\lambda A F) @ a = F a
```

Paper on the framework: How to Identify, Translate, and Combine Logics? Journal of Logic and Computation, 2017

Example: Lean library in UniFormal

 $\mathsf{Lean} \longrightarrow \mathsf{Lean} \; \mathsf{kernel} \longrightarrow \mathsf{UniFormal}$

- Lean surface: def set $(\alpha : Type u) := \alpha \rightarrow Prop$
- Lean kernel export:

```
5848 #NS 0 set
```

#DEF 5848 184818 184819 1

UniFormal kernel:

```
<constant name="set">
  <definition>
  <operator module="LF" name="apply">
     <symbol module="Lean" name="Lam" />
```

```
UniFormal surface:
set = λ [α : Type u] α → Prop
```

Example: Using Lean in UniFormal

Importing Lean theories in the UniFormal IDE:

```
theory Test : latin:/lean?Lean =
include ☞latin:/lean?nat
double = λ nat [n] nat/add @ n @ n
```

Browsing the Lean library in the UniFormal web browser:

Support Tool Example: Search Service

Enter Java regular expression	as to filter based on the URI of a declaration
Namespace	
Theory	
Name	

Enter an expression over theory http://code.google.com/p/hol-light/source/browse/trunl

```
$x,y,p: x MOD p = y MOD p
```

Use \$x,y,z:query to enter unification variables.

Search

type of MOD_EQ

 $\vdash \forall m$: num . $\forall n$: num . $\forall p$: num . $\forall q$: num . $m = n + q * p \Longrightarrow m \text{ MOD } p = n \text{ MOD } p$

type of MOD_MULT_ADD

 $\vdash \forall m: \text{num} . \forall n: \text{num} . \forall p: \text{num} . (m * n + p) \text{ MOD } n = p \text{ MOD } n$

Extremely challenging

Deep understanding needed of

languages

type systems, proof systems, computation systems, module systems

tools: provers, knowledge management

implementation, scalability, maintenance and how to change them

libraries and knowledge structuring

translations, interfaces, modularity

communities

e.g., Coq: Sacerdoti Coen, Isabelle: Wenzel, Metamath: Carneiro Mizar: Urban, PVS: Shankar, TPTP: Sutcliffe

future users in math

computer algebra systems, mathematical databases others, e.g., Weierstrass Institute, zbMath

My UniFormal Vision and Goals for the Next 5-10 Years

Goal 1: Natural Formalization

Design an Intermediate Language (IL) to bridge the gap

abstract syntax close to standard mathematical language

much more expressive than current formal systems

but designed with full formalization in mind

more rigorous formal semantics than current languages

Advantages

- step (1) for mathematicians intuitive, readable, fun, scalable
- step (2) for prover-specific engineering trade-offs
- step (1) often sufficient
 e.g., for search, interaction, typechecking, machine learning

massively lowers entrance barrier for formalization

Goal 2: A Standard Math Library

IL as standard library language for Math

- no commitment to single foundation or tool accessible to humans robust under change of foundations
- formal syntax, semantics

accessible to provers

modern, scalable implementations

Universal standard libraries highly successful in low-math sciences but we need IL to get the same for math

Concrete Case Studies for the Next 5 Years

Formal Lecture Notes

Formalize Bonn's undergraduate mathematics lecture notes

surprisingly feasible if we omit proofs!

Coherent formalization across all courses handling incompatible definitions is my specialty

Realize Hales's Formal Abstracts Vision

- curated formal library of 5,000 definitions 2,000 theorems
- widely adopted service for mathematicians to search and contribute
- offers many collaboration options

 e.g., Scholze's proposed change to definition of topological space

Long-Term Goal: Hausdorff Library of Mathematics

- interface between standard and formal math
- adopted by major math stakeholders

Goal 3: Cross-System Proofs via IL

- IL does not replace existing proof systems
 - IL optimized for creating formalizations
 - provers optimized for processing formalizations

But IL enables high-level cross-systems proofs

- split big proof into subproofs that are attacked by different, optimized provers
 e.g., needed for Flyspeck proof
- accordingly for cross-system computation

Side Note: The Other Kind of Formalization

Computer Algebra Systems are also formal systems

- focus on algorithms instead of proofs
- developed in parallel to formal proof systems

Macsyma/Maxima since 1968, Axiom family since 1977

But they differ from provers in pragmatic aspects

- mostly untyped systems, no logic unaffected by foundational issues
- easier to apply, integrate

computation systems useful as black-box tools

And that has made them much more successful

- major commercial systems e.g., Mathematica, Maple
- many mathematicians among users and developers
- integrative force on mathematical community

e.g., SageMath platform

despite shared history, today mostly disconnected from provers

Cross-System Computation via IL

Conclusion

- Computerization+formalization will be transformative
- My dual strategy:
 - embrace and evolve current systems
 - build new systems by and for math
- Intermediate language with math-owned standard library

