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Florian Rabe http://uniformal.github.io/

My vision: UniFormal
▶ a universal framework for formal mathematical knowledge

▶ developed since 2006, ∼ 100, 000 loc, ∼ 500 pages of publications

My interests

▶ structure and organize complex divergent theories
logic, specification, computation, enginerring, . . .

▶ connect disparate systems
standard languages, interoperable tools, shared libraries, . . .

▶ understand and bridge across communities and disciplines
set/type theory, proof/computation, foundations/applications, . . .

My methods
▶ breadth: mathematical approach to knowledge of all kinds

▶ depth: mathematical rigor from foundation to applications
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The Future of Formalized Mathematics

Three Parts in this Talk

1. History, challenges, and opportunities

2. My research on understanding formal systems for math
▶ languages
▶ tools
▶ libraries
▶ communities

3. Vision and strategy for the future
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Revolutions in Mathematical History

Formation of Empires in Antiquity
▶ invention of logical deduction, proof

Scientific Revolution
▶ mathematization of science

Foundational Crisis (around 1900)

▶ paradoxa, careful axiomatizations, formal systems

▶ Hilbert’s program, search for the best formal system

▶ birth of computer science

Computerization (≈ 1970–today)

▶ automated proofs, e.g., Automath 1967, Four-Color Theorem 1976

▶ enormous diversification of formal systems

▶ large-scale collaborations, applications large formal libraries
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The Formalization of Mathematics

search for a formal system for mathematics
1879 Frege: formal logic
1889 Peano: rigorous axiom system
1901 Peano, Russell: paradoxa
1908, 1913 Russell, Whitehead: type theory
1908, 1922 Zermelo, Fraenkel: axiomatic set theory
1920s Hilbert: reduction of all math to effective means
1929, 1936 Gödel, Gentzen: modern logic
1931 Gödel: incompleteness

no single best formal system — computer science arises
1930s Turing, Church, Curry: formal computation
1958, 1969 Curry, Howard: proofs as formal objects
1967 de Bruijn: Automath — first major formalization
1973–today Trybulec: Mizar — first formal mathematical library
1980s–today HOL, Nuprl, Coq, . . . : increasingly strong, diverse

ongoing shift from foundations to applications
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Situation Today

Flagship Successes

▶ 2003–2014: Hales et. al., Kepler conjecture (Flyspeck)
> 5, 000 processor hours needed to check proof

▶ 2006–2012: Gonthier et al., Feit-Thompson theorem
170,000 lines of human-written formal logic

▶ 2020–2022: Scholze, Commelin et. al., Liquid Tensor challenge
major formalization in step with frontline research

potential to massively transform future mathematics
— but how exactly?
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Future Prospects

Opportunities

▶ Computer support for large proofs, computations, databases
beyond one person’s ability to comprehend

▶ Complex distributed collaborations
polymath, finite simple groups, . . .

▶ Faster understanding smart editors, interactive documents, . . .

▶ AI for mathematics??? huge potential but very hard to predict

Challenges

▶ Scale: current formalizations still small systems still experiments

▶ Cost-benefit ratio: most applications still too expensive
and even harder to maintain

▶ Integration: about 10 major systems — mutually incompatible
1994 QED manifesto call for integration: failed despite support

▶ Ecosystem: hard to build peripheral tools
current tools designed to be standalone
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“Next generation Deduction systems”

Dagstuhl Seminar November 2023, quoted from the abstract:

Techniques in deduction are often implemented only as short-lived
prototypes whose transfer to stable systems is uncertain.

Over time systems may become too big, monolithic, and unwieldy.

Portfolios of techniques may be useful for experiments, but do not
seem to facilitate a conceptual synthesis or a breakthrough.

The field faces a “software crisis” that is also a “techniques crisis”.
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Gap between Formal Math and Standard Math

Formal math systems weak at capturing mathematical practice
▶ convey intuitions, motivation

▶ change (and abuse) of definitions and notations

▶ critical deep technical language features
subtyping, quotient typing, undefinedness

identification via isomorphism, flexible records/structures

hard to remedy as an afterthought

Math

Lean Mizar

Isabelle

̸=

̸=

̸=

̸=

̸≠=

moreover: also very different from each other
incompatible languages, tools, libraries; disjoint communities
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Definition of Derivative in Isabelle, Lean, Coq, Mizar
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Why the gap exists and why it won’t go away

Current proof systems not developed for mathematics

▶ proof assistants are extremely hard to build
≈ 100 person-years to be competitive

▶ languages optimized for software/hardware verification
decidability, efficiency

▶ tools optimized for power users in large projects

formal math often an afterthought, overshadowed in practice
(some exceptions)

Counter-point: languages developed by/for mathematicians

▶ computer algebra systems mostly untyped

▶ recent approaches based on natural language
Koepke’s Naproche, Hales’s formal abstracts language

Paper: A Survey of Languages for Formalizing Mathematics
Intelligent Computer Mathematics, 2020

https://kwarc.info/people/frabe/Research/KR_ilfsurvey_20.pdf
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Strategic Questions

Should we
▶ change mathematics in a way that is easier to formalize, or

▶ build systems that capture better how mathematics is actually done?

Should we
▶ formalize math multiple times in each system, or

▶ insist on a compatibility layer between systems?

Kevin Buzzard’s answer
▶ CS must build systems that work for math

▶ he alone has neither resources nor interest to do it

My answer
▶ math as a whole does have the resources

▶ bring formal math home or watch it be an afterthought
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What To Do Concretely?

Evolve current optimized systems
▶ educate CS about math needs

▶ educate math about potential

▶ reach new scales to discover new challenges

Also develop new systems specifically for math
▶ optimized for adoption in math

▶ integrate proof, computation, natural language

▶ compatibility layers and open standards for system interoperability

Math UniFormal interoperability layer

Lean Mizar

Isabelle/HOL
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My UniFormal Research: Understanding

Languages, Tools, Libraries, Communities
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The UniFormal Library

2 dedicated DFG projects on formalization

▶ LATIN (2009–2012): modular formalization of formal systems
logics, type theories, set theories, . . .
by now ∼ 1000 modules, 20, 000 lines
3-10 contributors coordinated by me

▶ OAF (2014–2020): uniform representation of formal libraries
in particular: 6 major proof assistants

overall >200 Users >250 Repositories, >100 GB

One EU project on math (15 sites, 7.5M Euro)

▶ OpenDreamKit (2015–2019): integrate computational mathematics

▶ deep case studies on system integration

▶ prototyped UniFormal system as interface layer

Central part: My UniFormal framework and system
100k loc, 5-10 contributors coordinated by me
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Me pointing at first-order logic in the LATIN library
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Example: Modularity and Translations in UniFormal
An example fragment of the logic library:

PL

ML SFOL DFOL
FOL

CL

DL

OWL
HOL DHOL

MizarZFCHOL Light

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

Other Highlights
▶ type theory, category theory, variants of all logics

▶ controversial features in separate modules
choice axiom/operators, non-empty types, . . .

▶ advanced language features in separate modules
classes, inductive types, record types, . . .



My UniFormal Research: Understanding Languages, Tools, Libraries, Communities 20

Example: Prover Libraries in the UniFormal Library
UniFormal

LF Isabelle/PureLFX

PVS Coq HOL L. Mizar HOL ZF · · ·

PreludeNASA (> 200) std lib MML AFP

Language Library Modules Declarations

LF LATIN 529 2,824
PVS Prelude+NASA 974 24,084
Isabelle Distribution+AFP 12,318 2,116,638
HOL Light Basic 189 22,830
Coq > 200 in total > 10k > 1M
Mizar MML 1,194 69,710

Paper: Experiences from Exporting Major Proof Assistant Libraries

Journal of Automated Reasoning, 2021

https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf
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The Lean Logic in the UniFormal Library

Paper on the framework: How to Identify, Translate, and Combine Logics?

Journal of Logic and Computation, 2017

https://kwarc.info/people/frabe/Research/rabe_howto_14.pdf
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Example: Lean library in UniFormal
Lean −→ Lean kernel −→ UniFormal

▶ Lean surface:
def set (α : Type u) := α → Prop

▶ Lean kernel export:

5848 #NS 0 s e t
. . .
#DEF 5848 184818 184819 1

▶ UniFormal kernel:

<con s t an t name=” s e t ”>
<d e f i n i t i o n>
<op e r a t o r module=”LF” name=” app l y ”>
<symbol module=”Lean” name=”Lam”/>
. . .

▶ UniFormal surface:
set = λ [α : Type u] α → Prop
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Example: Using Lean in UniFormal
Importing Lean theories in the UniFormal IDE:

Browsing the Lean library in the UniFormal web browser:
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Support Tool Example: Search Service
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Extremely challenging

Deep understanding needed of

▶ languages
type systems, proof systems, computation systems, module systems

▶ tools: provers, knowledge management
implementation, scalability, maintenance

and how to change them

▶ libraries and knowledge structuring
translations, interfaces, modularity

▶ communities
e.g., Coq: Sacerdoti Coen, Isabelle: Wenzel, Metamath: Carneiro

Mizar: Urban, PVS: Shankar, TPTP: Sutcliffe

▶ future users in math
computer algebra systems, mathematical databases

others, e.g., Weierstrass Institute, zbMath
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My UniFormal Vision and Goals for the Next

5-10 Years
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Goal 1: Natural Formalization

Design an Intermediate Language (IL) to bridge the gap

▶ abstract syntax close to standard mathematical language
much more expressive than current formal systems

▶ but designed with full formalization in mind
more rigorous formal semantics than current languages

Standard Math

IL

(1) formalize

Lean Mizar Isabelle

(2) translate

Advantages

▶ step (1) for mathematicians
intuitive, readable, fun, scalable

▶ step (2) for prover-specific
engineering trade-offs

▶ step (1) often sufficient
e.g, for search, interaction, type-

checking, machine learning

massively lowers entrance barrier for formalization
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Goal 2: A Standard Math Library

IL as standard library language for Math

▶ no commitment to single foundation or tool accessible to humans
robust under change of foundations

▶ formal syntax, semantics accessible to provers

▶ modern, scalable implementations

My team’s contribution

Math

IL+library

Lean

Mizar

Isabelle

Universal standard libraries highly successful in low-math sciences
but we need IL to get the same for math
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Concrete Case Studies for the Next 5 Years

Formal Lecture Notes

▶ Formalize Bonn’s undergraduate mathematics lecture notes
surprisingly feasible if we omit proofs!

▶ Coherent formalization across all courses
handling incompatible definitions is my specialty

Realize Hales’s Formal Abstracts Vision
▶ curated formal library of 5,000 definitions 2,000 theorems

▶ widely adopted service for mathematicians to search and contribute

▶ offers many collaboration options
e.g., Scholze’s proposed change to definition of topological space

Long-Term Goal: Hausdorff Library of Mathematics
▶ interface between standard and formal math

▶ adopted by major math stakeholders
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Goal 3: Cross-System Proofs via IL

IL does not replace existing proof systems
▶ IL optimized for creating formalizations

▶ provers optimized for processing formalizations

But IL enables high-level cross-systems proofs
▶ split big proof into subproofs that are attacked by different,

optimized provers e.g., needed for Flyspeck proof

▶ accordingly for cross-system computation

User

IL proof

prove B

LeanIsabelle

prove A ⇒ B
✓

prove A
✓
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Side Note: The Other Kind of Formalization

Computer Algebra Systems are also formal systems
▶ focus on algorithms instead of proofs

▶ developed in parallel to formal proof systems
Macsyma/Maxima since 1968, Axiom family since 1977

But they differ from provers in pragmatic aspects

▶ mostly untyped systems, no logic unaffected by foundational issues

▶ easier to apply, integrate
computation systems useful as black-box tools

And that has made them much more successful

▶ major commercial systems e.g., Mathematica, Maple

▶ many mathematicians among users and developers

▶ integrative force on mathematical community
e.g., SageMath platform

despite shared history, today mostly disconnected from provers
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Cross-System Computation via IL
OpenDreamKit prototype
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Conclusion
▶ Computerization+formalization will be transformative
▶ My dual strategy:

▶ embrace and evolve current systems
▶ build new systems by and for math

▶ Intermediate language with math-owned standard library

Math

IL+library

Databases

Documents

C
om

p
u
ter

A
lgebraT

h
eo
re
m

P
ro
ve
rs

Lean

...

Isabelle

SageMath

...

Mathematica

LaTeX · · · HTML

OEIS · · · GAP Groups
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