DHOL: HOL + dependent types + subtyping

Florian Rabe

Computer Science, University Erlangen-Niirnberg, Germany

HIM 2024

HOL+Dependent lypes

HOL+Dependent Types

HOL+Dependent lypes

Is This Formula True?

x=y = f(x)=1f(y)

HOL+Dependent lypes

Is This Formula True?

Fx:A Fy:A Ff:(x:A)— B(x)
Ff(x):B(x) Ff(y):B(y)

x=pay = f(x) =7 f(y)

HOL+Dependent lypes

Is This Formula True?

Fx:A Fy:A Ff:(x:A)— B(x)
Ff(x):B(x) Ff(y):B(y)

x=pay = f(x) =7 f(y)

not even well-typed
Should it be?

HOL+Dependent lypes
2 Paths

x =ayl/B(x) = B(y)

+ typing stays decidable

— need to explicitly transfer u : B(x) into B(y)
+/— equality behaves more like isomorphism

— need two equalities (one decidable, one undecidable)

x =ayk B(x) = B(y)
+ intuitive, simple
+ corresponds to mathematical practice
— typing undecidable

HOL+Dependent lypes

How bad is undecidable typing?

Very bad
P needs major change to system design very difficult to retrofit

> breaks static checking of programs
a major argument for using types in the first place

HOL+Dependent lypes

How bad is undecidable typing?

Very bad
P needs major change to system design very difficult to retrofit

» breaks static checking of programs
a major argument for using types in the first place

But it's being done successfully
» NuPRL, PVS, Mizar

» mathematics

HOL+Dependent lypes

How bad is undecidable typing?

Very bad
P needs major change to system design very difficult to retrofit

> breaks static checking of programs
a major argument for using types in the first place

But it's being done successfully
» NuPRL, PVS, Mizar

» mathematics

Motivation for DHOL: reevaluate once a decade or so
> ATPs have gotten a lot better

» ultimate task (theorem proving) undecidable anyway

HOL+Dependent lypes

Grammar
STT
T =.
| T,a:Type type symbol
| T,c:A typed constant
r =
| T, x: A typed variable
A B =a |A—B

s,t,F,Gu=c|x|Ax:At|ts

HOL+Dependent lypes

Grammar

STT
HOL = STT + Booleans and equality

T =
| T,a:Type type symbol
| T,c:A typed constant
| T,F global assumption (axiom)
r =
| T,x:A typed variable
| T F local assumption
A B i=a | A— B|bool
s, t,F,G:=c| x| Ax:At|ts|s=pt

note: type equality = is a judgment, not a Boolean term

HOL+Dependent lypes 6

Grammar

STT
HOL = STT + Booleans and equality
DHOL = the same but start with dependent types

T n=-
| T,a:(I') —Type type symbol
| T,c:A typed constant
| T,F global assumption (axiom)
r =
| T,x:A typed variable
| T, F local assumption
A B n=at...t|(x:A) — B|bool
s,t,F,G:::c]x])\x At|ts|s=at

note: type equality = is a judgment, not a Boolean term

HOL+Dependent lypes

Typing
T =-|T,a:(lN) —>Type | T,c:A|T, F
r n=- |, x: AT, F
A B t=at. t\(x A) = B | bool
s

)
7t,F,G:::c|x\)\x:A.t\ts\s:At

equality is for terms of the same type:

[Frs:A TTHrt:A
[Frs=4t:bool

congruence for type formation:

Fhra:(x1:A1,...,xn: Ay) = Type in T
ThErsi=att - [TErsh=aa/s. 0 1/s 1] tn
[Fras;...sp,=at; ... t,

the key rule that solves/creates all the problems

HOL+Dependent lypes

Typing: Subtleties

T w=-|T,a: () > Type| T,c:A|T,F
r =, x:A|T,F
A B n=at...t|(x:A)— B|bool

s,;t,F,Gu=c| x| Ax:At|ts|s=at

Fbra:(xq:A,...,xp: Ay) = Typein T
Fl—Tslel tl...rl_TS,,:A" th
[Fras ...sp,=aty ... t,

Typing depends on assumptions in theory/context
order of declarations matters now!

HOL+Dependent lypes

Typing: Subtleties

T w=-|T,a: () > Type| T,c:A|T,F
r =, x:A|T,F
A B n=at...t|(x:A)— B|bool

s;t,F,Gi=c| x| Ax:At|ts|s=at|F =G

Fbra:(xq:A,...,xp: Ay) = Typein T
Fl—Tslel tl...rl_TS,,:A" th
[Fras ...sp,=aty ... t,

Typing depends on assumptions in theory/context
order of declarations matters now!

Implication must be dependent:

[F+ F:bool [I,FF+ G:bool
[F+ F= G :bool

same for conjunction, maybe disjunction
not definable from equality, needs to primitie

HOL+Dependent lypes

DHOL

FEra:(xa:AL,....xn: Ay) = Typein T
[Fr s =A t1...r}—T5,,:An th

[Fras;...sp,=at; ... t,
[Frs:A TTHrt:A
[Frs=4t:bool
[F+ F:bool [,FF+ G:bool
[+ F= G :bool

Type-checks now for f : (x : A) — B:

x=ay = f(x) =B(x) f(y)

HOL+Depenaent lypes

Theorem Proving

By translation DHOL ~» HOL
» Colin Rothgang, Rabe, Benzmiiller CADE 2023
» translation to HOL via dependency erasure

> at; ... t, ~ a, (x:A)=» B~A—B
» sound/complete (only) for well-typed DHOL formulas

» recover dependencies via PER semantics

P> Type-checker

» follow the typing rules as usual
» collect proof obligations and discharge them with HOL ATP

Native DHOL theorem prover
» Niederhauser, Brown, Kaliszyk [JCAR 2024
» Tableaux-based
» Challenge: synthesizing well-typed terms

HOL + Depenaent lypes + Subtyping

HOL + Dependent Types + Subtyping

HOL + Depenaent lypes + Subtyping

Undecidable Typing: Double Down

DHOL is expensive because typing is undecidable.

But once we've paid that prize, other features are relatively cheap,
e.g.,
» refinement types A|p for p: A — bool
» quotient types A/r for r : A— A — bool
both inherently undecidable

HOL + Depenaent lypes + Subtyping

Refinement Types

A B c=at...t|(x:A)— B|bool | Alp
s,t, F,G,p:=c|x|Mx:At|ts|s=at|F=G
Typing:
+rp:A—=bool [Fyrs:A [Frps
FErs:Alp
FEru:Alp
lFru:A

Subtyping: Alp <: A

HOL + Depenaent lypes + Subtyping

Quotient Types
Dual to refinement types
» refinement: canonical injection Ajp — A
> quotient: canonical projection A — A/r

noop

noop?

HOL + Depenaent lypes + Subtyping

Quotient Types
Dual to refinement types
» refinement: canonical injection Ajp — A noop
» quotient: canonical projection A — A/r noop?

Yes — if the A in s =4 t defines the equivalence relation to use

HOL + Depenaent lypes + Subtyping

Quotient Types
Dual to refinement types
» refinement: canonical injection Ajp — A noop
» quotient: canonical projection A — A/r noop?

Yes — if the A in s =4 t defines the equivalence relation to use
A B n=at...t|(x:A)— B|bool|A/s
s,t,F,Gui=c|x|Mx:At|ts|s=at|F=G

Typing:
[Frt:A TFrr:A— A—bool

FI—Tt:A/r

=4/r is equivalence closure of r

TEru:Alr Tx:A X DA x=p,xFrf(x):B
7 f(u): B

Subtyping: A <: A/r

HOL + Depenaent lypes + Subtyping

Subtype Hierarchy

A/dx,y. T

Alr

AMXT=A=A/ x,y. L

Alp

Aldx.L

ROL + Dependent lypes + Subtyping

Subtype Characterization

[FrA<:B
iff
x:AFrx:B
iff
[x:A y:AXx=ayFrx=gy
iff
[T VX, y:AX=py = x=BYy

*

not ATP-ready because true iff well-formed
and DHOL~~HOL only sound/complete for well-formed formulas

HOL + Depenaent lypes + Subtyping

Theorem Prover

» Translation to HOL generalizes easily
» Soundness/completeness as before

» Type-checker: as before but

» needs subtype-checking
» open question: how to reduce A <: BtohF F

HOL + Depenaent lypes + Subtyping

Trying to Eliminate Refinement/Quotient Types

Provable:
(x:A)=Blp = ((x:A) = B)larvxa p (f x)
(X : A/r) - B = ((X : A) - B)|)\f.VX,y:A. r x y=(f x)=p(f y)
(X : A|p) - B > ((X : A) - B)/)\f,g.Vx:A. (p x)=(f x)=g(g x)
(x:A) = B/r > ((x:A) = B)/xrgvxA r (f x) (g x)

What about the other two directions?
» < for refined domain: not true — B(x) might depend on p x

> <: for quotiented codomain: can be axiom

	HOL+Dependent Types
	Is This Formula True?
	Is This Formula True?
	Is This Formula True?
	2 Paths
	How bad is undecidable typing?
	How bad is undecidable typing?
	How bad is undecidable typing?
	Grammar
	Grammar
	Grammar
	Typing
	Typing: Subtleties
	Typing: Subtleties
	DHOL
	Theorem Proving

	HOL + Dependent Types + Subtyping
	Undecidable Typing: Double Down
	Refinement Types
	Quotient Types
	Quotient Types
	Quotient Types
	Subtype Hierarchy
	Subtype Characterization
	Theorem Prover
	Trying to Eliminate Refinement/Quotient Types

