
1

DHOL: HOL + dependent types + subtyping

Florian Rabe

Computer Science, University Erlangen-Nürnberg, Germany

HIM 2024

HOL+Dependent Types 2

HOL+Dependent Types

HOL+Dependent Types 3

Is This Formula True?

⊢ x : A ⊢ y : A ⊢ f : (x : A) → B(x)

⊢ f (x) : B(x) ⊢ f (y) : B(y)

x = y ⇒ f (x) = f (y)

not even well-typed
Should it be?

HOL+Dependent Types 3

Is This Formula True?

⊢ x : A ⊢ y : A ⊢ f : (x : A) → B(x)

⊢ f (x) : B(x) ⊢ f (y) : B(y)

x =A y ⇒ f (x) =??? f (y)

not even well-typed
Should it be?

HOL+Dependent Types 3

Is This Formula True?

⊢ x : A ⊢ y : A ⊢ f : (x : A) → B(x)

⊢ f (x) : B(x) ⊢ f (y) : B(y)

x =A y ⇒ f (x) =??? f (y)

not even well-typed
Should it be?

HOL+Dependent Types 4

2 Paths

x =A y ̸⊢B(x) ≡ B(y)

+ typing stays decidable

– need to explicitly transfer u : B(x) into B(y)

+/– equality behaves more like isomorphism

– need two equalities (one decidable, one undecidable)

x =A y ⊢B(x) ≡ B(y)

+ intuitive, simple

+ corresponds to mathematical practice

– typing undecidable

HOL+Dependent Types 5

How bad is undecidable typing?

Very bad

▶ needs major change to system design very difficult to retrofit

▶ breaks static checking of programs
a major argument for using types in the first place

But it’s being done successfully

▶ NuPRL, PVS, Mizar

▶ mathematics

Motivation for DHOL: reevaluate once a decade or so

▶ ATPs have gotten a lot better

▶ ultimate task (theorem proving) undecidable anyway

HOL+Dependent Types 5

How bad is undecidable typing?

Very bad

▶ needs major change to system design very difficult to retrofit

▶ breaks static checking of programs
a major argument for using types in the first place

But it’s being done successfully

▶ NuPRL, PVS, Mizar

▶ mathematics

Motivation for DHOL: reevaluate once a decade or so

▶ ATPs have gotten a lot better

▶ ultimate task (theorem proving) undecidable anyway

HOL+Dependent Types 5

How bad is undecidable typing?

Very bad

▶ needs major change to system design very difficult to retrofit

▶ breaks static checking of programs
a major argument for using types in the first place

But it’s being done successfully

▶ NuPRL, PVS, Mizar

▶ mathematics

Motivation for DHOL: reevaluate once a decade or so

▶ ATPs have gotten a lot better

▶ ultimate task (theorem proving) undecidable anyway

HOL+Dependent Types 6

Grammar

STT

T ::= ·
| T , a : Type type symbol
| T , c : A typed constant

| global assumption (axiom)

Γ ::= ·
| Γ, x : A typed variable

| local assumption

A,B ::= a | A → B
s, t,F ,G ::= c | x | λx : A.t | t s

note: type equality ≡ is a judgment, not a Boolean term

HOL+Dependent Types 6

Grammar

STT
HOL = STT + Booleans and equality

T ::= ·
| T , a : Type type symbol
| T , c : A typed constant
| T , F global assumption (axiom)

Γ ::= ·
| Γ, x : A typed variable
| Γ, F local assumption

A,B ::= a | A → B | bool
s, t,F ,G ::= c | x | λx : A.t | t s | s =A t

note: type equality ≡ is a judgment, not a Boolean term

HOL+Dependent Types 6

Grammar

STT
HOL = STT + Booleans and equality
DHOL = the same but start with dependent types

T ::= ·
| T , a : (Γ) →Type type symbol
| T , c : A typed constant
| T , F global assumption (axiom)

Γ ::= ·
| Γ, x : A typed variable
| Γ, F local assumption

A,B ::= a t . . . t | (x :A) → B | bool
s, t,F ,G ::= c | x | λx : A.t | t s | s =A t

note: type equality ≡ is a judgment, not a Boolean term

HOL+Dependent Types 7

Typing

T ::= · | T , a : (Γ) → Type | T , c : A | T , F
Γ ::= · | Γ, x : A | Γ, F
A,B ::= a t . . . t | (x : A) → B | bool
s, t,F ,G ::= c | x | λx : A.t | t s | s =A t

equality is for terms of the same type:

Γ ⊢T s : A Γ ⊢T t : A

Γ ⊢T s =A t : bool

congruence for type formation:

Γ ⊢T a : (x1 : A1, . . . , xn : An) → Type in T
Γ ⊢T s1 =A1 t1 · · · Γ ⊢T sn =An[x1/s1,...,xn−1/sn−1] tn

Γ ⊢T a s1 . . . sn ≡ a t1 . . . tn

the key rule that solves/creates all the problems

HOL+Dependent Types 8

Typing: Subtleties

T ::= · | T , a : (Γ) → Type | T , c : A | T , F
Γ ::= · | Γ, x : A | Γ, F
A,B ::= a t . . . t | (x : A) → B | bool
s, t,F ,G ::= c | x | λx : A.t | t s | s =A t

| F ⇒ G

Γ ⊢T a : (x1 : A1, . . . , xn : An) → Type in T
Γ ⊢T s1 =A1 t1 . . . Γ ⊢T sn =An tn

Γ ⊢T a s1 . . . sn ≡ a t1 . . . tn

Typing depends on assumptions in theory/context
order of declarations matters now!

Implication must be dependent:

Γ ⊢T F : bool Γ,F ⊢T G : bool

Γ ⊢T F ⇒ G : bool

same for conjunction, maybe disjunction
not definable from equality, needs to primitie

HOL+Dependent Types 8

Typing: Subtleties

T ::= · | T , a : (Γ) → Type | T , c : A | T , F
Γ ::= · | Γ, x : A | Γ, F
A,B ::= a t . . . t | (x : A) → B | bool
s, t,F ,G ::= c | x | λx : A.t | t s | s =A t | F ⇒ G

Γ ⊢T a : (x1 : A1, . . . , xn : An) → Type in T
Γ ⊢T s1 =A1 t1 . . . Γ ⊢T sn =An tn

Γ ⊢T a s1 . . . sn ≡ a t1 . . . tn

Typing depends on assumptions in theory/context
order of declarations matters now!

Implication must be dependent:

Γ ⊢T F : bool Γ,F ⊢T G : bool

Γ ⊢T F ⇒ G : bool

same for conjunction, maybe disjunction
not definable from equality, needs to primitie

HOL+Dependent Types 9

DHOL

Γ ⊢T a : (x1 : A1, . . . , xn : An) → Type in T
Γ ⊢T s1 =A1 t1 . . . Γ ⊢T sn =An tn

Γ ⊢T a s1 . . . sn ≡ a t1 . . . tn

Γ ⊢T s : A Γ ⊢T t : A

Γ ⊢T s =A t : bool

Γ ⊢T F : bool Γ,F ⊢T G : bool

Γ ⊢T F ⇒ G : bool

Type-checks now for f : (x : A) → B:

x =A y ⇒ f (x) =B(x) f (y)

HOL+Dependent Types 10

Theorem Proving

By translation DHOL ⇝ HOL

▶ Colin Rothgang, Rabe, Benzmüller CADE 2023
▶ translation to HOL via dependency erasure

▶ a t1 . . . tn ⇝ a, (x : A) → B ⇝ A → B
▶ sound/complete (only) for well-typed DHOL formulas

▶ recover dependencies via PER semantics
▶ Type-checker

▶ follow the typing rules as usual
▶ collect proof obligations and discharge them with HOL ATP

Native DHOL theorem prover

▶ Niederhauser, Brown, Kaliszyk IJCAR 2024

▶ Tableaux-based

▶ Challenge: synthesizing well-typed terms

HOL + Dependent Types + Subtyping 11

HOL + Dependent Types + Subtyping

HOL + Dependent Types + Subtyping 12

Undecidable Typing: Double Down

DHOL is expensive because typing is undecidable.

But once we’ve paid that prize, other features are relatively cheap,
e.g.,

▶ refinement types A|p for p : A → bool

▶ quotient types A/r for r : A → A → bool

both inherently undecidable

HOL + Dependent Types + Subtyping 13

Refinement Types

A,B ::= a t . . . t | (x : A) → B | bool | A|p
s, t,F ,G , p ::= c | x | λx : A.t | t s | s =A t | F ⇒ G

Typing:

Γ ⊢T p : A → bool Γ ⊢T s : A Γ ⊢T p s

Γ ⊢T s : A|p

Γ ⊢T u : A|p
Γ ⊢T u : A

Subtyping: A|p <: A

HOL + Dependent Types + Subtyping 14

Quotient Types
Dual to refinement types

▶ refinement: canonical injection A|p → A noop

▶ quotient: canonical projection A → A/r noop?

Yes — if the A in s =A t defines the equivalence relation to use

A,B ::= a t . . . t | (x : A) → B | bool | A/s
s, t,F ,G ::= c | x | λx : A.t | t s | s =A t | F ⇒ G

Typing:
Γ ⊢T t : A Γ ⊢T r : A → A → bool

Γ ⊢T t : A/r

=A/r is equivalence closure of r

Γ ⊢T u : A/r Γx : A, x ′ : A, x =A/r x
′ ⊢T f (x) : B

Γ ⊢T f (u) : B

Subtyping: A <: A/r

HOL + Dependent Types + Subtyping 14

Quotient Types
Dual to refinement types

▶ refinement: canonical injection A|p → A noop

▶ quotient: canonical projection A → A/r noop?

Yes — if the A in s =A t defines the equivalence relation to use

A,B ::= a t . . . t | (x : A) → B | bool | A/s
s, t,F ,G ::= c | x | λx : A.t | t s | s =A t | F ⇒ G

Typing:
Γ ⊢T t : A Γ ⊢T r : A → A → bool

Γ ⊢T t : A/r

=A/r is equivalence closure of r

Γ ⊢T u : A/r Γx : A, x ′ : A, x =A/r x
′ ⊢T f (x) : B

Γ ⊢T f (u) : B

Subtyping: A <: A/r

HOL + Dependent Types + Subtyping 14

Quotient Types
Dual to refinement types

▶ refinement: canonical injection A|p → A noop

▶ quotient: canonical projection A → A/r noop?

Yes — if the A in s =A t defines the equivalence relation to use

A,B ::= a t . . . t | (x : A) → B | bool | A/s
s, t,F ,G ::= c | x | λx : A.t | t s | s =A t | F ⇒ G

Typing:
Γ ⊢T t : A Γ ⊢T r : A → A → bool

Γ ⊢T t : A/r

=A/r is equivalence closure of r

Γ ⊢T u : A/r Γx : A, x ′ : A, x =A/r x
′ ⊢T f (x) : B

Γ ⊢T f (u) : B

Subtyping: A <: A/r

HOL + Dependent Types + Subtyping 15

Subtype Hierarchy

A/λx , y .⊤
...

A/r

...

A|λx .⊤ ≡ A ≡ A/λx , y .⊥
...

A|p
...

A|λx .⊥

HOL + Dependent Types + Subtyping 16

Subtype Characterization

Γ ⊢T A <: B

iff

Γ, x : A ⊢T x : B

iff

Γ, x : A, y : A, x =A y ⊢T x =B y

iff

Γ ⊢T ∀x , y : A. x =A y ⇒ x =B y ∗

∗ not ATP-ready because true iff well-formed
and DHOL⇝HOL only sound/complete for well-formed formulas

HOL + Dependent Types + Subtyping 17

Theorem Prover

▶ Translation to HOL generalizes easily

▶ Soundness/completeness as before
▶ Type-checker: as before but

▶ needs subtype-checking
▶ open question: how to reduce A <: B to ⊢ F

HOL + Dependent Types + Subtyping 18

Trying to Eliminate Refinement/Quotient Types

Provable:

(x : A) → B|p ≡ ((x : A) → B)|λf .∀x :A. p (f x)

(x : A/r) → B ≡ ((x : A) → B)|λf .∀x ,y :A. r x y⇒(f x)=B(f y)

(x : A|p) → B :> ((x : A) → B)/λf ,g .∀x :A. (p x)⇒(f x)=B(g x)

(x : A) → B/r :> ((x : A) → B)/λf ,g .∀x :A. r (f x) (g x)

What about the other two directions?

▶ <: for refined domain: not true — B(x) might depend on p x

▶ <: for quotiented codomain: can be axiom

	HOL+Dependent Types
	Is This Formula True?
	Is This Formula True?
	Is This Formula True?
	2 Paths
	How bad is undecidable typing?
	How bad is undecidable typing?
	How bad is undecidable typing?
	Grammar
	Grammar
	Grammar
	Typing
	Typing: Subtleties
	Typing: Subtleties
	DHOL
	Theorem Proving

	HOL + Dependent Types + Subtyping
	Undecidable Typing: Double Down
	Refinement Types
	Quotient Types
	Quotient Types
	Quotient Types
	Subtype Hierarchy
	Subtype Characterization
	Theorem Prover
	Trying to Eliminate Refinement/Quotient Types

