The MMT Perspective on Conservativity

Florian Rabe
Jacobs University Bremen
September 2017
Basic Definitions

For the purposes of this talk, a logic L consists of

- theories T
- T-formulas $F : prop$
- T-proofs and provability judgment $\vdash_T F$
- T-models M and satisfaction $M \models_T F$

Theories are lists of symbol declarations.
- types, functions, predicates, axioms, proof rules, rewrite rules, ...

$S \hookrightarrow T$ is a theory **extension** if S-declarations $\subseteq T$-declarations
Two Conflicting Definitions of Conservativeness

Intuition: $S \hookrightarrow T$ is **conservative** if T-semantics does not substantially differ from S-semantics.

 e.g., T adds only definitions, theorems, admissible rules, ...

Problem: How to define that rigorously?

Two answers for “When is $S \hookrightarrow T$ conservative?”:

- **proof theorist**: for any T-proof of S-formula F, there is an S-proof of F

 proof retraction mentions only proofs, no models

- **model theorist**: for any S-model M, there is a T-model M' that agrees with M on S-symbols

 model extension mentions only models, no proofs
Tension between the Definitions

Are proofs or models primary for semantics?
practical, social, and philosophical difference

Not so unusual — compare “When is F a theorem?”
- proof theorist: if there is a proof of F
- model theorist: if F holds in all models
- both are equivalent via soundness/completeness
 achieved by fine-tuning the definitions

Ideally, model and proof-theoretical conservativity also equivalent.
(they aren’t)
Relating the Definitions

Theorem:

If L is sound and complete, then model-conservative implies proof-conservative.

But not the other way around.

causes confusion at best, conflict at worst
Motivation

Vision: UniFormal

a universal framework for the formal representation of knowledge

- integrate all domains
 - model theory, proof theory, computation, mathematics, ...
- be independent of foundational languages
 - logics, programming languages, foundations of mathematics, ...
- build generic, reusable implementations
 - type checker, module system, library manager, IDE, ...

My (evolving) solution: MMT

- a uniformal knowledge representation framework
 - developed since 2006, ~ 100,000 loc, ~ 500 pages of publications
- allows foundation-independent solutions
 - module system, type reconstruction, theorem proving, ...
 - IDE, search, build system, library, ...

http://uniformal.github.io/
Foundation-Independent Development

Foundation-specific workflow (almost all systems)

1. choose foundation
 type theories, set theories, first-order logics, higher-order logics, . . .
2. implement kernel
3. develop support algorithms, tools reconstruction, proving, IDE, . . .
4. build library

Foundation-independent workflow (MMT)

1. MMT provides generic kernel
 no built-in bias towards any foundation
2. develop generic support on top of MMT
3. flexibly customize MMT for desired foundation(s)
4. build multi-foundation universal library
Advantages of Foundation-Independence

- Avoids segregation into mutually incompatible systems
- Allows maximally general results (meta-theorems, algorithms, formalizations)
- Separation of concerns between
 - foundation developers
 - support service developers: search, axiom selection, ...
 - application developers: IDE, proof assistant, ...
- Rapid prototyping for logic systems
- Allows evolving and experimenting with foundations

But how much can be done foundation-independently? surprisingly much — this talk: conservativity
Logical Frameworks and Syntax

Logical framework LF in MMT

```plaintext
theory LF {
    type
    Pi     # Π V1 . 2
    arrow  # 1 → 2
    lambda # λ V1 . 2
    apply  # 1 2
}
```

Logics in MMT/LF

```plaintext
theory Logic : LF {
    prop : type
    ded : prop → type # ⊢ 1
}
```

```plaintext
theory FOLSyn : LF {
    include Logic
    term : type
    forall : (term → prop) → prop # ∀ V1 . 2
}
```
Proof Theory

FOLSyn from previous slide:

```plaintext
definition theory FOLSyn: LF { include Logic term : type forall : (term -> prop) -> prop # \forall V1 . 2 }
```

Proof-theory = syntax + calculus

```plaintext
definition theory FOL: LF { include FOLSyn rules are constants forall Intro : \Pi F:term \rightarrow prop. (\Pi x:term. \Gamma (F x)) \rightarrow \Gamma \forall (\lambda x:term.F x) forall Elim : \Pi F:term \rightarrow prop. \Gamma \forall (\lambda x:term.F x) \rightarrow \Pi x:term. \Gamma (F x) }
```

Domain Theories

FOLSyn from previous slide:

```plaintext
theory FOLSyn : LF {
    include Logic
    term : type
    forall : (term → prop) → prop # ∀ V1 . 2
}
```

Algebraic theories in MMT/LF/FOL:

```plaintext
theory Magma : FOL {
    comp : term → term → term # 1 ∘ 2
}
theory SemiGroup : FO {
    include Magma
    associative : ⊨ ∀ x,y,z. (x ∘ y) ∘ z = x ∘ (y ∘ z)
}
```
MMT Theory Morphisms (highly simplified)

An MMT **theory** is a list of declarations \(c[: E] \), where \(E \) is an expression using the previous symbols.

An MMT theory **morphism** \(m : S \rightarrow T \) maps every \(S \)-symbol to a \(T \)-expression such that

if \(\vdash S A : B \) then \(\vdash T m(A) : m(B) \)

preservation of typing/truth
Model Theory

Universe = set theory, category theory, programming languages, ...

```plaintext
theory ZFC: LF {
  set : type
  prop : type
  in : set → set → prop # 1 ∈ 2
  equal : set → set → prop # 1 = 2
  ded : prop → type # ⊢ 1
  ...
  bool : set = {0,1}
  ...
}
```

Interpretation = theory morphism from syntax+calculus to semantics

```plaintext
morphism FOLMod : FOL → ZFC {
  prop ⊢→ bool
  ded ⊢→ \( \lambda x \in bool . x = 1 \)
  ...
  (proof rules mapped to their soundness proofs)
}
```
Individual Models

FOLMod from previous slide:

\[
\text{morphism } \text{FOLMod} : \text{FOL} \rightarrow \text{ZFC} \quad \{ \\
\text{prop} \mapsto \text{bool} \\
\text{ded} \mapsto \lambda x \in \text{bool}. x = 1 \\
\ldots \\
\} \\
\]

Integer addition as a model of SemiGroup:

\[
\text{morphism } \text{IntegerAddition} : \text{SemiGroup} \rightarrow \text{ZFC} \quad \{ \\
\text{include} \; \text{FOLMod} \\
\text{term} \mapsto \mathbb{Z} \\
\text{comp} \mapsto + \\
\text{assoc} \mapsto \ldots \; \text{(proof that } + \text{ is associative)} \\
\} \\
\]
Conservativity in MMT

Derivable and Admissible Rules

Consider an extension $S \hookrightarrow T$ in MMT.

Example: $T = S$, $cut : R$

S is a cut-free sequent calculus and R is the cut rule.

We say that $S \hookrightarrow T$ is

- **derivable** if
 - example case: there is a term $r : R$ over S
 - general case: there is a retraction morphism $r : T \rightarrow S$

- **\vdash$$-admissible** if $\vdash F$ is inhabited over S whenever it is inhabited over T
Conservative as a Special Case of Derivable/Admissible

\[\text{FOL} \xrightarrow{\text{FOLMod}} \text{ZFC} \]

\[\xymatrix{ \text{FOLMod} & \text{ZFC} \\ \text{FOLMod} \ast S & \text{FOLMod}(S) \\ \text{FOLMod} \ast T & \text{FOLMod}(T) } \]

\[M \in \text{Mod}(S) \]

\[\text{FOLMod}(S) \]

- pushout of \(L \leftrightarrow S \) along \(\text{FOLMod} \)
- obtained by homomorphic translation of \(S \)-declarations
Conservative as a Special Case of Derivable/Admissible

Theorem: $S \leftrightarrow T$ is

- proof-conservative iff $S \leftrightarrow T$ is \vdash-admissible
- model-conservative iff $\text{FOLMod}(S) \leftrightarrow \text{FOLMod}(T)$ is derivable
Different Kinds of Conservativity

General case: 4 notions of conservativity

$\text{FOLMod} \ast S \quad \text{FOLMod}(S)$

$\mathcal{S} \hookrightarrow \mathcal{T}$ is \vdash-admissible proof-conservative

$\mathcal{S} \hookrightarrow \mathcal{T}$ is derivable model-conservative

$\text{FOLMod}(\mathcal{S}) \hookrightarrow \text{FOLMod}(\mathcal{T})$ is derivable

$\text{FOLMod}(\mathcal{S}) \hookrightarrow \text{FOLMod}(\mathcal{T})$ is \vdash-admissible
Relating the Different Kinds of Conservativity

- $S \hookrightarrow T$ is derivable
 - syntax has witness for conservativity
 - minimal/strongest reasonable definition

- $S \hookrightarrow T$ is \vDash-admissible
 - syntax has no counter-example for conservativity
 - maximal/weakest reasonable definition

- $\text{FOLMod}(S) \hookrightarrow \text{FOLMod}(T)$ is derivable
 - semantics has witness for conservativity
 - in between the above

- $\text{FOLMod}(S) \hookrightarrow \text{FOLMod}(T)$ is \vDash-admissible
 - equivalent to proof-conservative for sound and complete logics

proof-conservative

model-conservative
Conservativity under Refinement of Semantics

Refinement chain of multiple interpretations, e.g.,

\[\text{ModalLogic} \xrightarrow{\rho} \text{FOL} \xrightarrow{\sigma} \text{HOL} \xrightarrow{\tau} \text{ZFC} \]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[S \xrightarrow{\rho} p(S) \xrightarrow{\sigma} q(p(S)) \xrightarrow{\tau} r(q(p(S))) \]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[T \xrightarrow{\rho} p(T) \xrightarrow{\sigma} q(p(T)) \xrightarrow{\tau} r(q(p(T))) \]

At each step, 2 notions of conservativity of \(S \leftrightarrow T \):

- using \(\vdash \)-admissibility:
 - all notions equivalent for sound + complete interpretations
 - strongest possible notion \(\text{proof-conservativity (absolute)} \)
- Using derivability: \(\text{model-conservativity relative to semantics} \)
 - notions grow weaker as semantics is more refined
 - converges to proof-conservativity for increasing refinements
Summary

- MMT: foundation-independent framework for formal systems maximally general conceptualizations, theorems, implementations
- Allows resolving conflict between notions of conservativity results apply to arbitrary logic defined in arbitrary logical framework
- Proof-conservativity
 - corresponds to ⊢-admissibility of rules
 - weakest possible notion
- Model-conservativity
 - corresponds to derivability of rules
 - relative to chosen model theory
 - strongest possible notion if applied to initial semantics
 - grows weaker as semantics is more refined
 - converges against proof-conservativity
Terms

Abstract syntax

<table>
<thead>
<tr>
<th>contexts</th>
<th>(\Gamma ::= (x[: E][= E])^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>terms</td>
<td>(E ::=)</td>
</tr>
<tr>
<td></td>
<td>constants (c)</td>
</tr>
<tr>
<td></td>
<td>variables (x)</td>
</tr>
<tr>
<td></td>
<td>complex terms (c(\Gamma; E^*))</td>
</tr>
</tbody>
</table>

Complex term examples

- typical operators: \(\Gamma \) empty
 e.g., \(\text{apply(;} f, a) \) for \((f \ a) \)
- typical binders: \(\Gamma \) and \(E \) have length 1
 e.g., \(\text{lambda(}x:A; t) \) for \(\lambda x:A.t \)

Judgments relative to a theory \(T \) that declares the constants \(c \)

\(\Gamma \vdash_T t : E \)	\(t \) has type \(E \)
\(\Gamma \vdash_T E = E' \)	\(E \) and \(E' \) are equal
\(\Gamma \vdash_T _ : E \)	\(E \) is inhabitable