
1

MMT: A UniFormal Approach to Knowledge
Representation

Florian Rabe

Computer Science, University Erlangen-Nürnberg, Germany
LRI, University Paris-Sud, France

July 2018

About Me 2

About Me

About Me 3

My Background

I Areas
I theoretical foundations

logic, programming languages foundations of mathematics
I formal knowledge representation

specification, formalized mathematics, ontologies, programming
I scalable applications

module systems, libraries, system integration

I Methods
I survey and abstract understand fundamental concepts
I relate and transfer unify different research areas
I long-term investment identify stable ideas, do them right
I modularity and reuse maximize sharing across languages, tools

About Me 4

My Vision

UniFormal

a universal framework for the formal representation of knowledge

I integrate all domains
specification, deduction, compuation, mathematics, . . .

I integrate all formal systems
logics, programming languages, foundations of mathematics, . . .

I integrate all applications
theorem provers, library managers, IDEs, wikis . . .

My (evolving, partial) solution: MMT framework

I a uniformal knowledge representation framework
developed since 2006, ∼ 100, 000 loc, ∼ 500 pages of publications

I allows foundation-independent solutions
module system, type reconstruction, . . .

IDE, search, build system, library, . . .

http://uniformal.github.io/

http://uniformal.github.io/

Motivation 5

Motivation

Motivation 6

Logic in Computer Science

I ∼ 1930: computer science — vision of mechanizing logic
I Competition between multiple logics

I axiomatic set theory: ZF(C), GBvN, . . .
I λ-calculus:

I typed or untyped
I Church-style or Curry-style

I new types of logic modal, intuitionistic, paraconsistent ,. . .

I Diversification into many different logics
I fine-tuned for diverse problem domains

far beyond predicate calculus
I deep automation support

decision problems, model finding, proof search, . . .
I extensions towards programming languages

Motivation 7

Selected Major Successes

Verified mathematical proofs

I 2006–2012: Gonthier et al., Feit-Thompson theorem
170,000 lines of human-written formal logic

I 2003–2014: Hales et. al., Kepler conjecture (Flyspeck)
> 5, 000 processor hours needed to check proof

Software verification

I 2004–2010: Klein et al., L4 micro-kernel operating system
390,000 lines of human-written formal logic

I since 2005: Leroy et al., C compiler (CompCert)
almost complete, high performance

Knowledge-based Artificial intelligence

I since 1984: Lenat et al., common knowledge (CyC)
2 million facts in public version

I since 2000: Pease et. al., foundation ontology (SUMO)
25, 000 concepts

Motivation 8

Future Challenges

Huge potential, still mostly unrealized

Applications must reach much larger scales

I software verification successes dwarfed by practical needs
internet security, safety-critical systems, . . .

I automation of math barely taken seriously by mathematicians

Applications must become much cheaper
I mostly research prototypes

I usually require PhD in logic

I tough learning curve

I time-intensive formalization

Motivation 9

The Dilemma of Fixed Foundations

Each system fixes a logic and/or programming language

I type theories, set theories, first-order logics, higher-order logics, . . .
ACL2, Coq, HOL, Isabelle/HOL, Matita, Mizar, Nuprl, PVS,. . .

I functional, imperative, inheritance-oriented, soft typing . . .
Axiom, Sage, GAP, Maple, . . .

I Foundation-specific results
contrast to mathematics: foundation left implicit

I All systems mutually incompatible

Exacerbates the other bottlenecks
I Human resource bottleneck

I no reuse across systems
I very slow evolution of systems

I Knowledge management bottleneck
I retrofitting to fixed foundation systems very difficult

can be easier to restart from scratch
I best case scenario: duplicate effort for each system

Motivation 10

Two Formidable Bottlenecks

Each system requires ≈ 100 person-year investment to
I design the foundational logic

I implement it in a computer system

I build and verify a collection of formal definitions and theorems
e.g., covering undergraduate mathematics

I apply to practical problems

human resource bottleneck

New scales brought new challenges

I no good search for previous results
reproving can be faster than finding a theorem

I no change management support
system updates often break previous work

I no good user interfaces far behind software engineering IDEs

knowledge management bottleneck

Motivation 11

Example Problems

Collaborative QED Project, 1994
I high-profile attempt at building single library of formal mathematics

I failed partially due to disagreement on foundational logic

Voevodsky’s Homotopy Type Theory, since 2012
I high-profile mathematician interested in applying logic

I his first result: design of a new foundation

Multiple 100 person-year libraries of mathematics
I developed over the last ∼ 30 years

I overlapping but mutually incompatible major duplication of efforts

I translations mostly infeasible

Hales’s Kepler Proof
I distributed over two separate implementations of the same logic

I little hope of merging

Motivation 12

Vision

UniFormal

a universal framework for the
formal representation of all knowledge and its semantics

in math, logic, and computer science

I Avoid fixing languages wherever possible . . .

I . . . and instantiate them for different languages

I Use formal meta-languages in which to define languages . . .

I . . . and avoid fixing even the meta-language
I Obtain foundation-independent results

I Representation languages
I Soundness-critical algorithms
I Knowledge management services
I User-facing applications

MMT as a UniFormal Framework 13

MMT as a UniFormal Framework

MMT as a UniFormal Framework 14

MMT = Meta-Meta-Theory/Tool
few primitives . . . that unify different domain concepts

I tiny but universal grammar for expressions
syntax trees with binding

I standardized semantics of identifiers crucial for interoperability

I high-level definitions derivation, model, soundness, . . .

I no built-in logic or type system all algorithms parametric

I theories and theory morphisms for large scale structure
translation, interpretation, semantics, . . .

Mathematics Logic Universal
Logic

Foundation-
Independence

MMT
meta-languages

logic, programming language, . . .

domain knowledge

MMT as a UniFormal Framework 15

Basic Concepts
Design principle

I few orthogonal concepts
I uniform representations of diverse languages

sweet spot in the expressivity-simplicity trade off
Concepts

I theory = named set of declarations
I foundations, logics, type theories, classes, specifications, . . .

I theory morphism = compositional translation
I inclusions, translations, models, katamorphisms, . . .

I constant = named atomic declaration
I function symbols, theorems, rules, . . .
I may have type, definition, notation

I term = unnamed complex entity, formed from constants
I expressions, types, formulas, proofs, . . .

I typing `T s : t between terms relative to a theory
I well-formedness, truth, consequence . . .

MMT as a UniFormal Framework 16

Small Scale Example (1)
Logical frameworks in MMT

theory LF {
t y p e
Pi # Π V1 . 2 name[: type][#notation]
arrow # 1 → 2
lambda # λ V1 . 2
a p p l y # 1 2

}

Logics in MMT/LF

theory L o g i c : LF {
prop : t y p e
ded : prop → t y p e # ` 1 judgments-as-types

}
theory FOL : LF {

i n c l ude L o g i c
term : t y p e higher-order abstract syntax
f o r a l l : (term → prop) → prop # ∀ V1 . 2

}

MMT as a UniFormal Framework 17

Small Scale Example (2)

FOL from previous slide:

theory FOL : LF {
i n c l ude L o g i c
term : t y p e
f o r a l l : (term → prop) → prop # ∀ V1 . 2

}

Proof-theoretical semantics of FOL

theory FOLPF : LF {
i n c l ude FOL

rules are constants
f o r a l l I n t r o : ΠF:term→prop .

(Πx:term .` (F x)) → ` ∀(λx:term . F x)
f o r a l l E l i m : ΠF:term→prop .

` ∀(λx:term . F x) → Πx:term .` (F x)
}

MMT as a UniFormal Framework 18

Small Scale Example (3)

FOL from previous slide:

theory FOL : LF {
i n c l ude L o g i c
term : t y p e
f o r a l l : (term → prop) → prop # ∀ V1 . 2

}

Algebraic theories in MMT/LF/FOL:

theory Magma : FOL {
comp : term → term → term # 1 ◦ 2

}
theory SemiGroup : FOL { i n c l ude Magma , . . . }
theory CommutativeGroup : FOL { i n c l ude SemiGroup , . . . }
theory Ring : FOL {

a d d i t i v e : CommutativeGroup
m u l t i p l i c a t i v e : Semigroup
. . .

}

The LATIN Atlas 19

The LATIN Atlas

The LATIN Atlas 20

Large Scale Example: The LATIN Atlas

I DFG project 2009-2012 (with DFKI Bremen and Jacobs Univ.)
I Highly modular network of little logic formalizations

I separate theory for each
I connective/quantifier
I type operator
I controversial axioms e.g., excluded middle, choice, . . .
I base type

I reference catalog of standardized logics
I documentation platform

I Written in MMT/LF

I 4 years, with ∼ 10 students, ∼ 1000 modules

The LATIN Atlas 21

The LATIN Atlas of Logical Systems
The LATIN Atlas is huge: That’s me pointing at the theory for
first-order logic

The LATIN Atlas 22

Logic Diagrams in LATIN
An example fragment of the LATIN logic diagram

I nodes: MMT/LF theories

I edges: MMT/LF theory morphisms

PL

ML SFOL DFOL
FOL

CL

DL

OWL
HOL

MizarZFCHOL Light

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

I each node is root for library of that logic

I each edge yields library translation functor
library integration very difficult though

Discussion 23

Discussion

Discussion 24

Foundation-Independent Development

Typical workflow

1. choose foundation
type theories, set theories, first-order logics, higher-order logics, . . .

2. implement kernel

3. build support algorithms reconstruction, proving, editor, . . .

4. build library

Foundation-independent workflow in MMT

1. MMT provides generic kernel
no built-in bias towards any foundation

2. build support algorithms on top of MMT

3. choose foundation(s)

4. customize MMT kernel for foundation(s)

5. build foundation-spanning universal library

Discussion 25

Advantages

I Avoids segregation into mutually incompatible systems

I Formulate maximally general results
meta-theorems, algorithms, formalizations

I Rapid prototyping for logic systems
customize MMT as needed, reuse everyting else

I Separation of concerns between
I foundation developers
I support service developers: search, axiom selection, . . .
I application developers: IDE, proof assistant, wiki, . . .

I Allows evolving foundation along the way
design flaws often apparent only much later

I Migrate formalizations when systems die

I Archive formalizations for future rediscovery

Discussion 26

Paradigms

I judgments as types, proofs as terms
unifies expressions and derivations

I higher-order abstract syntax unifies operators and binders
I category of theories and theory morphisms

I languages as theories
unifies logical theories, logics, foundations

I relations as theory morphisms
unifies modularity, intepretations, representation theorems

I institution-style abstract model theory
uniform abstract concepts

I models as morphisms (categorical logic)
unifies models and translations and semantic interpretations

Discussion 27

MMT Tool
Mature implementation

I API for representation language foundation-independent
I Collection of reusable algorithms

no commitment to particular application
I Extensible wherever reasonable

storage backends, file formats, user interfaces, . . .
operators and rules, language features, checkers, . . .

Separation of concerns between

I Foundation developers e.g., language primitives, rules

I Service developers e.g., search, theorem prover

I Application developers e.g., IDE, proof assistant

Yields rapid prototyping for logic systems

But how much can really be done foundation-independently?
MMT shows: not everything, but a lot

Discussion 27

MMT Tool
Mature implementation

I API for representation language foundation-independent
I Collection of reusable algorithms

no commitment to particular application
I Extensible wherever reasonable

storage backends, file formats, user interfaces, . . .
operators and rules, language features, checkers, . . .

Separation of concerns between

I Foundation developers e.g., language primitives, rules

I Service developers e.g., search, theorem prover

I Application developers e.g., IDE, proof assistant

Yields rapid prototyping for logic systems

But how much can really be done foundation-independently?
MMT shows: not everything, but a lot

The OAF Archive 28

The OAF Archive

The OAF Archive 29

Ongoing: Open Archive of Formal Libraries
I Open Archive of Formalizations

Michael Kohlhase and myself, 2014-2017
I Goal: archival, comparison, integration of formal libraries

Mizar, HOL systems, IMPS, Coq/Matita, PVS, . . .
I Big, overlapping libraries – that are mutually incompatible

MMT

LF LF+X

LATIN logic library . . .HOL Light

HOL Light library Bool Arith
. . .

Mizar

Mizar library
XBoole XReal

. . .
Arith

. . .

The OAF Archive 30

Library Integration
I Spec: mathematical theory axiomatic, foundation-independent
I Impli : implementation of Spec in system i
I µi : theory morphism describing how Spec is realized

maps Spec-identifiers to their implementing objects
I ηi : partial inverse of µi

Spec

Impl1

Impl2

µ1

µ2

η1

η2

Challenge:
I collect initial library of mathematical concepts
I collect alignments with individual libraries

OpenDreamKit 31

OpenDreamKit

OpenDreamKit 32

Virtual Research Environments for Mathematics

I OpenDreamKit project 2015-2019 open PhD positions!
EU project, 15 sites, 25 partners
http://opendreamkit.org/

I Support full life-cycle
I exploration, development, and publication
I archival and sharing of data and computation
I real mathematicians as target audience

I Key requirements
I allow using any foundation

any programming language, database
I integrate narration, computation, databases
I uniform user interfaces

http://opendreamkit.org/

OpenDreamKit 33

Math in the Middle Approach

I Official definitions represented narratively
MMT embedded into LaTeX to attach types

I Foundations written as MMT formal theories

I Computation: library interfaces exported as MMT theories

I Database schemata: written as formal MMT theories

Example work flow:

1. user input mentions specific object
e.g., the 13th transitive group with conductor 5

2. Systems X queries MMT for 13a5

3. MMT retrieves object from connected databases
e.g., LMFDb (L-functions and modular forms)

4. Database schema defines type and encoding of object

5. MMT builds 13a5 in high-level foundation

6. MMT exports 13a5 in input syntax of system X

MMT-Based Foundation-Independent Results 34

MMT-Based Foundation-Independent Results

MMT-Based Foundation-Independent Results 35

Logical Result: Representation Language

I MMT theories uniformly represent
I logics, set theories, type theories, algebraic theories, ontologies,

. . .
I module system: state every result in smallest possible theory

Bourbaki style applied to logic

I MMT theory morphisms uniformly represent
I extension and inheritance
I semantics and models
I logic translations

I MMT objects uniformly represent
I functions/predicates, axioms/theorems, inference rules, . . .
I expressions, types, formulas, proofs, . . .

I Reuse principle: theorems preserved along morphisms

MMT-Based Foundation-Independent Results 36

Logical Result: Concepts

MMT allows coherent formal definitions of essential concepts

I Logics are MMT theories

I Foundations are MMT theories e.g., ZFC set theory

I Semantics is an MMT theory morphism
e.g., from FOL to ZFC

I Logic translations are MMT theory morphisms

I Logic combinations are MMT colimits

MMT-Based Foundation-Independent Results 37

Logical Results: Algorithms

I Module system
modularity transparent to foundation developer

I Concrete/abstract syntax
notation-based parsing/presentation

I Interpreted symbols, literals
external model/implementation reflected into Mmt

I Type reconstruction
foundation plugin supplies only core rules

I Simplification
rule-based, integrated with type reconstruction

I Theorem proving?

I Code generation? Computation?

MMT-Based Foundation-Independent Results 38

Modular Framework Definitions in MMT

Individual features given by set of symbols, notations, rules

I λΠ

I Rewriting

I Polymorphism

I Subtyping (ongoing)

I . . .

Language definitions are modular themselves
e.g., Dedukti = LF + rewriting

MMT-Based Foundation-Independent Results 39

Knowledge Management Results

I Change management recheck only if affected

I Project management indexing, building

I Extensible export infrastructure
Scala, SVG graphs, LaTeX, HTML, . . .

I Search, querying substitution-tree and relational index

I Browser interactive web browser

I Editing IDE-like graphical interface

MMT-Based Foundation-Independent Results 40

IDE

I Inspired by programming language IDEs
I Components

I jEdit text editor (in Java): graphical interface
I MMT API (in Scala)
I jEdit plugin to tie them together

only ∼ 1000 lines of glue code

I Features
I outline view
I error list
I display of inferred information
I type inference of subterms
I hyperlinks: jump to definition
I search interface
I context-sensitive auto-completion: show identifiers that

MMT-Based Foundation-Independent Results 41

IDE: Example View

MMT-Based Foundation-Independent Results 42

An Interactive Library Browser

I MMT content presented as HTML5+MathML pages

I Dynamic page updates via Ajax

I MMT used through HTTP interface with JavaScript wrapper
I Features

I interactive display e.g., inferred types, redundant brackets
I smart navigation via MMT ontology

can be synchronized with jEdit
I dynamic computation of content

e.g., definition lookup, type inference
I graph view: theory diagram as SVG

MMT-Based Foundation-Independent Results 43

Browser: Example View

MMT-Based Foundation-Independent Results 44

Browser Features: 2-dimensional Notations

MMT-Based Foundation-Independent Results 45

Browser Features: Proof Trees

MMT-Based Foundation-Independent Results 46

Browser Features: Type Inferece

MMT-Based Foundation-Independent Results 47

Browser Features: Parsing

MMT-Based Foundation-Independent Results 48

Example Service: Search

MMT-Based Foundation-Independent Results 49

Envisioned: A Generic Theorem Prover

I Theorem proving currently highly logic-specific
I But many successful designs actually logic-independent, e.g.,

I Declarative proof languages
I Tactic languages
I Integration of decision procedures
I Axiom selection
I Modularity

Claim
I Logic-specific implementations a historical accident

I Possible to build MMT level proving technology

MMT-Based Foundation-Independent Results 50

Envisioned: Computational Knowledge

I So far: MMT focuses on declarative formal languages
I Goal: extend to programming languages

I understand key concepts foundation-independently
state/effects, recursion, inheritance, . . .

I represent features modularly
I freely mix logic and computation share declarative aspects

I Syntax is (kind of) easy:
I programming languages are MMT theories
I classes/modules are MMT theories
I programs are expressions

I Semantics is open question: What is the general judgment?

Big Challenges 51

Big Challenges

Big Challenges 52

Exporting System Libraries

Major interoperability obstacle
I Communities very focused on

I honing their system
I curating their library

I Little effort for making libraries accessible
I Slowly improving

I more people interested in sharing and generic tools
I OAF a driving force

MMT good candidate for truly universal standard

Big Challenges 53

Universal Library of Elementary Knowledge

Requirements

I language-independent

I system-independent

I easy to write for practitioners

Vision

I Central library uses modular library of language features

I Focus on names, types, properties no definitions, no proofs

I Individual contributions piece together minimal needed
language

I All existing systems
I remain in use e.g., for optimized proof support
I allow refactoring results for submission to central library

Big Challenges 54

Summary

I MMT: foundation-independent framework for declarative
languages

I representation language
I implementation

I Easy to instantiate with specific foundations
rapid prototyping logic systems

I Deep foundation-independent results
I logical: parsing, type reconstruction, module system, . . .
I knowledge management: search, browser, IDE, . . .

I MMT quite mature now, ready for larger applications
about to break even

I Serious contender for
I universal library
I generic applications/services
I system integration/combination

55

56

Further Resources
Web sites

I MMT: http://uniformal.github.io

I OAF web server (experimental): http://mathhub.info:8080/

Selected publications all available from https://kwarc.info/people/frabe

I the primary paper on the MMT language (I&C 2013, with M. Kohlhase):
A Scalable Module System

I a more recent paper on the MMT approach to logic (JLC 2014):
How to Identify, Translate, and Combine Logics?

I Foundations in LATIN: (MSCS 2011, with M. Iancu)
Formalizing Foundations of Mathematics

I Modular logics in LATIN (TCS 2011, with F. Horozal):
Representing Model Theory in a Type-Theoretical Logical Framework

I the primary paper on OAF (under review 2015, with M. Kohlhase)
QED Reloaded

I Mizar in OAF (JAR 2013, with M. Iancu, M. Kohlhase, J. Urban):
The Mizar Mathematical Library in OMDoc: Translation and Applications

I HOL Light in OAF: (CICM 2014, with C. Kaliszyk)
Towards Knowledge Management for HOL Light

http://uniformal.github.io
http://mathhub.info:8080/
https://kwarc.info/people/frabe

Details: Foundations 57

Details: Foundations

Details: Foundations 58

Foundations

I Foundation = the most primitive formalism on which
everything else is built

set theories, type theories, logics, category theory, . . .

I We can fix the foundation once and for all — but which one?

I In math: usually implicit and arbitrary foundation
I can be seen as avoiding subtle questions
I but also as a strength: it’s more general

I In CS: each system fixes its own foundational language
e.g., a variant of type theory or HOL

I Programming languages foundations as well
but representation of state in MMT still open problem

Details: Foundations 59

Fixed Foundations

I Fixing foundation the first step of most implementations
often foundation and implementation have the same name

I No two implementations for the exact same foundation
even reimplementations diverge quickly

I Negative effects
I isolated, mutually incompatible systems

no sharing of results, e.g., between proof assistants
I no large scale libraries

each system’s library starts from scratch
I no library archival

libraries die with the system
I comparison of systems difficult

no common problem set
I slow evolution

evaluating a new idea can take years

Details: Logical Frameworks 60

Details: Logical Frameworks

Details: Logical Frameworks 61

Logical Frameworks

= meta-logic in which syntax and semantics of object logics are
defined

Advantages

I Universal concepts expressions, substitution, typing, equality, . . .

I Meta-reasoning consistency, logic translations, . . .

I Rapid prototyping type reconstruction, theorem proving, . . .

Simplicity vs. expressivity
I Meta-logic must be simple to be scalable, trustworthy

I Object logic must be expressive to be practical

I Big challenge for frameworks

Details: Logical Frameworks 62

Designing Logical Frameworks
Typical approach:

I choose a λ-calculus

I add a meta-logic
I add other features

I second level for induction on syntax (Twelf, Abella)
I proof assistant for object logic (Isabelle)
I concurrency (CLF)
I reasoning about contexts (Beluga)
I rewriting (Dedukti)
I external side conditions (LLFP)
I coupling with proof-assistant support (Hybrid)
I . . .

Problems
I Recent trend: divergence due to choice of other features

I Even hypothetical union not expressive enough for real-life logics
no way to define, e.g., HOL Light, Mizar, PVS

Details: Logical Frameworks 63

Customizable Formal Systems

Parallel trend in formal system design

I increasingly complex problem domains
e.g., mathematics, programming languages

I plain formalization introduces too many artifacts to be
human-readable

I therefore: allow users to define how to interpret human input
e.g., custom parsing, type reconstruction

Examples:
I unification hints (Coq, Matita)

I extra-logical declarations
I allow users to guide incomplete algorithms (e.g., unification)

I meta-programming (Idris, Lean)
I expose internal datatypes to user
I allow users to program extensions in the language itself

Details: MMT Syntax 64

Details: MMT Syntax

Details: MMT Syntax 65

Abstract Syntax of Terms

Key ideas

I no predefined constants

I single general syntax tree constructor c(Γ; ~E)

I c(Γ; ~E) binds variables and takes arguments
I non-binding operators: Γ empty e.g., apply(·; f , a) for (f a)

I typical binders: Γ and ~E have length 1
e.g., lambda(x :A; t) for λx :A.t

contexts Γ ::= (x [: E][= E])∗

terms E ::=
constants | c
variables | x
complex terms | c(Γ; E ∗)

Terms are relative to theory T that declares the constants c

Details: MMT Syntax 66

Concrete Syntax of Terms

I Theories may attach notation(s) to each constant declaration

I Notations of c introduce concrete syntax for c(Γ; ~E)

e.g., for type theory

concrete syntax constant declaration abstract syntax

E ::=
type type # type

Πx : E1.E2 Pi # Π V1 . 2 Pi(x :E1; E2)
E1 → E2 arrow # 1 → 2 arrow(·; E1,E2)
λx : E1.E2 lambda # λ V1 . 2 lambda(x :E1; E2)
E1 E2 apply # 1 2 apply(·; E1,E2)

Details: MMT Syntax 67

Notations

MMT implements parsing and rendering foundation-independently
relative to notations declared in current theory

Notations (ARG | VAR | DELIM)∗[PREC]
Bound variable VAR ::= Vn for n ∈ N
Argument ARG ::= n for n ∈ N
Delimiter DELIM ::= Unicode string
Precedence PREC ::= integer

Bound variabes forall # ∀V 1.2
Mixfix setComprehension # {V 1 ∈ 2|3}
Argument sequences plus # 1 + . . .
Variable sequences forall # ∀V 1, . . . 2
Implicit arguments functionComposition # 4 ◦ 5

Details: MMT Syntax 68

Abstract Syntax of Theories

I Theories are named lists of declarations

I Theory names yield globally unique identifiers for all constants

I Module system: Previously defined theories can be
included/instantiated

theory declaration T = {Dec∗}
Dec ::=

constant declaration | c[: E][= E][#Notation]
theory inclusion | include T
theory instantiation | structure c : T where{Dec∗}

Flattening: Every theory is semantically equivalent to one without
inclusions/instantiations intuition: theories are named contexts

Details: Typing 69

Details: Typing

Details: Typing 70

Judgments

I MMT terms subsume terms of specific languages

I Type systems singles out the well-typed terms

For any theory Σ:

` Σ T = {Σ} is a valid theory definition
`T Γ Γ is a valid context

Γ `T t : A t has type A
Γ `T E = E ′ E and E ′ are equal
Γ `T : A A is inhabitable

I MMT defines some rules once and for all
foundation-independent rules

I Foundation-independent declared in theories
rule for c defines when c(Γ; E ∗) well-typed

Details: Typing 71

Foundation-Independent Rules

I Lookup rules for atomic terms over a theory T = {Σ}

c : A in Σ

`T c : A

c = t in Σ

`T c = t

I Equivalence and congruence rules for equality

I Rules for well-formed theories T = {Σ}

` ·
` Σ [`Σ : A] [`T t : A]

` Σ, c[: A][= t]

I Rules for well-formed contexts similar to theories

Details: Typing 72

Foundation-Specific Rules
I Declared in theories as constants
I Module system allows composing foundations

Two options to give rules
1. For a few dedicated meta-logics

I rules are constants without type, definiens, or notation
I meaning provided externally on paper or as code snippet
I necessary to get off the ground
I Examples:

I logical framework LF: ∼ 10 rules
I shallow polymorphism: 1 rule
I modulo rewriting: 1 rule family

2. For any other language
I include a meta-logic
I use meta-logic to give rules as typed constants
I example: modus ponens using meta-logic LF

o : type

⇒ : o → o → o
ded : o → type

mp : ΠA,Bded (A ⇒ B) → dedA → dedB

Details: Typing 73

Type Reconstruction

Type checking:

I input: judgement, e.g., Γ `T t : A

I output: true/false, error information

Type reconstruction
I input judgment with unknown meta-variables

I implicit arguments, type parameters
I omitted types of bound variables

I output: unique solution of meta-variables that makes
judgement true

I much harder than type checking

MMT implements foundation-independent type reconstruction

I transparent to foundations

I no extra cost for foundation developer

Details: Typing 74

Implementation

MMT implements foundation-independent parts of type checker

I foundation-independent rules

I simplification, definition expansion

I error reporting
I abstract interfaces for foundation-specific rules, e.g.,

I infer type
I check term at given type
I check equality of two given terms
I simplify a term

Foundation-specific plugins add concrete rules

I each rule can recurse into other judgements

I example LF: ∼ 10 rules for LF, ∼ 10 lines of code each

Details: Theory Morphisms 75

Details: Theory Morphisms

Details: Theory Morphisms 76

One More Basic Concept: Theory Morphisms

Theories
I uniform representation of

I foundations e.g., logical frameworks, set theories, . . .
I logics, type theories
I domain theories e.g., algebra, arithmetic, . . .

I little theories: state every result in smallest possible theory
maximizes reuse

Theory morphisms
I uniform representation of

I extension e.g., Monoid → Group
I inheritance e.g., superclass → subclass
I semantics e.g., FOL → ZFC
I models e.g., Nat: Monoid → ZFC
I translation e.g., typed to untyped FOL

I homomorphic translation of expressions

I preserve typing (and thus truth)

Details: LATIN 77

Details: LATIN

Details: LATIN 78

Logic Example

I FOLSyn: term : type, prop : type, ded : o → type, ¬, ∧, . . .

I FOLPf : ¬I , ¬E , ∧El , ∧Er , ∧I , . . .

I ZFC : set : type, wff : type, thm : wff → type, ∅ : set, . . .

I FOLMod : univ : set, nonempty : true (univ 6= ∅)

I FOLmod : term := univ , prop := {0, 1}, ded := λp.p
.

= 1

FOLSyn

FOLPf

FOLMod

ZFC

FOLmod

Details: LATIN 79

Current State

I Little theories including
I propositional, common, modal, description, linear logic,

unsorted/sorted/dependently-sorted first-order logic, CASL,
higher-order logic

I λ-calculi (λ-cube), product types, union types, . . .
I ZFC set theory, Mizar’s set theory, Isabelle/HOL
I category theory

I Little morphisms including
I relativization of quantifiers from sorted first-order, modal, and

description logics to unsorted first-order logic
I negative translation from classical to intuitionistic logic
I translation from type theory to set theory
I translations between ZFC, Mizar, Isabelle/HOL
I Curry-Howard correspondence between logic, type theory, and

category theory

Details: LATIN 80

Representing Logics in LATIN

I Lsyn: Syntax of L: connectives, quantifiers, etc.
e.g., ⇒: o → o → o

I Lpf : Proof theory of L: judgments, proof rules
e.g., impE : ded (A ⇒ B) → dedA → dedB

I Lmod : Model theory of L in terms of foundation F
e.g., univ : set, nonempty : true (univ 6= ∅)

Lsyn

Lpf

F

Lmod

Details: LATIN 80

Representing Logics in LATIN

I Lsyn: Syntax of L: connectives, quantifiers, etc.
e.g., ⇒: o → o → o

I Lpf : Proof theory of L: judgments, proof rules
e.g., impE : ded (A ⇒ B) → dedA → dedB

I Lmod : Model theory of L in terms of foundation F
e.g., univ : set, nonempty : true (univ 6= ∅)

Lsyn

Lpf

F

Lmod

Details: LATIN 80

Representing Logics in LATIN

I Lsyn: Syntax of L: connectives, quantifiers, etc.
e.g., ⇒: o → o → o

I Lpf : Proof theory of L: judgments, proof rules
e.g., impE : ded (A ⇒ B) → dedA → dedB

I Lmod : Model theory of L in terms of foundation F
e.g., univ : set, nonempty : true (univ 6= ∅)

Lsyn

Lpf

F

Lmod

Details: LATIN 81

Representing Logics and Models

F

LMod

L

Lmod

Σ

ΣMod

Σmod

F

M

idF L encodes syntax and proof theory
F encodes foundation of mathematics
LMod axiomatizes models
Lmod interprets syntax in model

Σ encodes a theory of L,
extends L with functions, axioms, etc.
ΣMod correspondingly extends LMod

Σmod interprets syntax in model

M encodes a model of Σ,
interprets free symbols of LMod and ΣMod

in terms of F

Details: LATIN 81

Representing Logics and Models

F

LMod

L

Lmod

Σ

ΣMod

Σmod

F

M

idF L encodes syntax and proof theory
F encodes foundation of mathematics
LMod axiomatizes models
Lmod interprets syntax in model

Σ encodes a theory of L,
extends L with functions, axioms, etc.
ΣMod correspondingly extends LMod

Σmod interprets syntax in model

M encodes a model of Σ,
interprets free symbols of LMod and ΣMod

in terms of F

Details: LATIN 81

Representing Logics and Models

F

LMod

L

Lmod

Σ

ΣMod

Σmod

F

M

idF L encodes syntax and proof theory
F encodes foundation of mathematics
LMod axiomatizes models
Lmod interprets syntax in model

Σ encodes a theory of L,
extends L with functions, axioms, etc.
ΣMod correspondingly extends LMod

Σmod interprets syntax in model

M encodes a model of Σ,
interprets free symbols of LMod and ΣMod

in terms of F

Details: Open Archive of Formalizations 82

Details: Open Archive of Formalizations

Details: Open Archive of Formalizations 83

Goal: Universal Library Infrastructure

I MMT as representation language
I Repository backend: MathHub

I based on GitLab – open-source analog of GitHub server
I GitLab instance hosted at Jacobs University
I free registration of accounts, creation of repositories

I Generic library management
I browser
I inter-library navigation
I search
I change management

Details: Open Archive of Formalizations 84

Goal: Exports from Proof Assistants

I Export major libraries into MMT
I Representative initial targets

I Mizar: set theoretical initial export done (with Josef Urban)
I HOL Light: higher-order logic

initial export done (with Cezary Kaliszyk)
I Coq or Matita: type theoretical
I IMPS: little theories method
I PVS: rich foundational language

I Major technical difficulty
I exports must be written as part of proof assistant
I not all information available

Details: Open Archive of Formalizations 85

Goal: Towards Library Integration

I Refactor exports to introduce modularity
I 2 options

I systematically during export
e.g., one theory for every HOL type definition

I heuristic or interactive MMT-based refactoring

I Collect correspondences between concepts in different libraries
heuristically or interactively

I Relate isomorphic theories across languages

I Use partial morphisms to translate libraries

Details: Systems 86

Details: Systems

Details: Systems 87

MMT and Hets

I Hets
I integration system for specification languages and associated

tools
I developed at DFKI by Till Mossakowski et al.
I limited foundation-independence

I multiple foundations possible
I but must be implemented individually

I Integration

1. logics defined declaratively in MMT
2. MMT generates Hets logic definitions

includes logic-specific abstract data types
3. new logics dynamically available in Hets

I Generated logics use MMT via HTTP for
parsing/type-checking

Details: Systems 88

LATEX Integration

I MMT declarations spliced into LATEX documents
shared MMT-LATEX knowledge space

I LATEX macros for MMT-HTTP interface
I Semantic processing of formulas

I parsing
I type checking
I semantic enrichment: cross-references, tooltips

I Design not LATEX-specific
e.g., integration with word processors possible

LATEX Integration: Example
Inferred arguments are inserted during compilation:

I upper part: LATEX source for the item on associativity
I lower part: pdf after compiling with LATEX-MMT
I type argument M of equality symbol is inferred and added by

MMT

Details: Systems 90

SMGloM glossary

I Multi-lingual mathematical glossary
https://mathhub.info/mh/glossary

Kohlhase and others, 2013–2015

I Includes notations and verbalizations
. . . but makes no commitment to formal system

I Cross-referenced and searchable

I ≈ 1000 entries

I Uses MMT as background representation language
integrates MMT with natural language

https://mathhub.info/mh/glossary

Details: Systems 91

MMT in the Semantic Alliance System

I Semantic Alliance System
I developed by Michael Kohlhase et al.
I two DFG projects

I SiSSi (Hutter, Kohlhase) spreadsheet applications
I FormalCAD (Kohlhase, Schröder) CAD applications

I Enrich domain-specific applications with semantic services
I Ontology used to

I formalize background knowledge
I share knowledge between applications

I MMT used as interface to ontology

	About Me
	My Background
	My Vision

	Motivation
	Logic in Computer Science
	Selected Major Successes
	Future Challenges
	The Dilemma of Fixed Foundations
	Two Formidable Bottlenecks
	Example Problems
	Vision

	MMT as a UniFormal Framework
	MMT = Meta-Meta-Theory/Tool
	Basic Concepts
	Small Scale Example (1)
	Small Scale Example (2)
	Small Scale Example (3)

	The LATIN Atlas
	Large Scale Example: The LATIN Atlas
	The LATIN Atlas of Logical Systems
	Logic Diagrams in LATIN

	Discussion
	Foundation-Independent Development
	Advantages
	Paradigms
	MMT Tool
	MMT Tool

	The OAF Archive
	Ongoing: Open Archive of Formal Libraries
	Library Integration

	OpenDreamKit
	Virtual Research Environments for Mathematics
	Math in the Middle Approach

	MMT-Based Foundation-Independent Results
	Logical Result: Representation Language
	Logical Result: Concepts
	Logical Results: Algorithms
	Modular Framework Definitions in MMT
	Knowledge Management Results
	IDE
	IDE: Example View
	An Interactive Library Browser
	Browser: Example View
	Browser Features: 2-dimensional Notations
	Browser Features: Proof Trees
	Browser Features: Type Inferece
	Browser Features: Parsing
	Example Service: Search
	Envisioned: A Generic Theorem Prover
	Envisioned: Computational Knowledge

	Big Challenges
	Exporting System Libraries
	Universal Library of Elementary Knowledge
	Summary
	Further Resources

	Details: Foundations
	Foundations
	Fixed Foundations

	Details: Logical Frameworks
	Logical Frameworks
	Designing Logical Frameworks
	Customizable Formal Systems

	Details: MMT Syntax
	Abstract Syntax of Terms
	Concrete Syntax of Terms
	Notations
	Abstract Syntax of Theories

	Details: Typing
	Judgments
	Foundation-Independent Rules
	Foundation-Specific Rules
	Type Reconstruction
	Implementation

	Details: Theory Morphisms
	One More Basic Concept: Theory Morphisms

	Details: LATIN
	Logic Example
	Current State
	Representing Logics in LATIN
	Representing Logics in LATIN
	Representing Logics in LATIN
	Representing Logics and Models
	Representing Logics and Models
	Representing Logics and Models

	Details: Open Archive of Formalizations
	Goal: Universal Library Infrastructure
	Goal: Exports from Proof Assistants
	Goal: Towards Library Integration

	Details: Systems
	MMT and Hets
	LaTeX Integration
	LaTeX Integration: Example
	SMGloM glossary
	MMT in the Semantic Alliance System

