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My Background

I Areas
I theoretical foundations

logic, programming languages foundations of mathematics
I formal knowledge representation

specification, formalized mathematics, ontologies, programming
I scalable applications

module systems, libraries, system integration

I Methods
I survey and abstract understand fundamental concepts
I relate and transfer unify different research areas
I long-term investment identify stable ideas, do them right
I modularity and reuse maximize sharing across languages, tools
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My Vision

UniFormal

a universal framework for the formal representation of knowledge

I integrate all domains
specification, deduction, compuation, mathematics, . . .

I integrate all formal systems
logics, programming languages, foundations of mathematics, . . .

I integrate all applications
theorem provers, library managers, IDEs, wikis . . .

My (evolving, partial) solution: MMT framework

I a uniformal knowledge representation framework
developed since 2006, ∼ 100, 000 loc, ∼ 500 pages of publications

I allows foundation-independent solutions
module system, type reconstruction, . . .

IDE, search, build system, library, . . .

http://uniformal.github.io/

http://uniformal.github.io/
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Logic in Computer Science

I ∼ 1930: computer science — vision of mechanizing logic
I Competition between multiple logics

I axiomatic set theory: ZF(C), GBvN, . . .
I λ-calculus:

I typed or untyped
I Church-style or Curry-style

I new types of logic modal, intuitionistic, paraconsistent ,. . .

I Diversification into many different logics
I fine-tuned for diverse problem domains

far beyond predicate calculus
I deep automation support

decision problems, model finding, proof search, . . .
I extensions towards programming languages
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Selected Major Successes

Verified mathematical proofs

I 2006–2012: Gonthier et al., Feit-Thompson theorem
170,000 lines of human-written formal logic

I 2003–2014: Hales et. al., Kepler conjecture (Flyspeck)
> 5, 000 processor hours needed to check proof

Software verification

I 2004–2010: Klein et al., L4 micro-kernel operating system
390,000 lines of human-written formal logic

I since 2005: Leroy et al., C compiler (CompCert)
almost complete, high performance

Knowledge-based Artificial intelligence

I since 1984: Lenat et al., common knowledge (CyC)
2 million facts in public version

I since 2000: Pease et. al., foundation ontology (SUMO)
25, 000 concepts
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Future Challenges

Huge potential, still mostly unrealized

Applications must reach much larger scales

I software verification successes dwarfed by practical needs
internet security, safety-critical systems, . . .

I automation of math barely taken seriously by mathematicians

Applications must become much cheaper
I mostly research prototypes

I usually require PhD in logic

I tough learning curve

I time-intensive formalization
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The Dilemma of Fixed Foundations

Each system fixes a logic and/or programming language

I type theories, set theories, first-order logics, higher-order logics, . . .
ACL2, Coq, HOL, Isabelle/HOL, Matita, Mizar, Nuprl, PVS,. . .

I functional, imperative, inheritance-oriented, soft typing . . .
Axiom, Sage, GAP, Maple, . . .

I Foundation-specific results
contrast to mathematics: foundation left implicit

I All systems mutually incompatible

Exacerbates the other bottlenecks
I Human resource bottleneck

I no reuse across systems
I very slow evolution of systems

I Knowledge management bottleneck
I retrofitting to fixed foundation systems very difficult

can be easier to restart from scratch
I best case scenario: duplicate effort for each system
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Two Formidable Bottlenecks

Each system requires ≈ 100 person-year investment to
I design the foundational logic

I implement it in a computer system

I build and verify a collection of formal definitions and theorems
e.g., covering undergraduate mathematics

I apply to practical problems

human resource bottleneck

New scales brought new challenges

I no good search for previous results
reproving can be faster than finding a theorem

I no change management support
system updates often break previous work

I no good user interfaces far behind software engineering IDEs

knowledge management bottleneck
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Example Problems

Collaborative QED Project, 1994
I high-profile attempt at building single library of formal mathematics

I failed partially due to disagreement on foundational logic

Voevodsky’s Homotopy Type Theory, since 2012
I high-profile mathematician interested in applying logic

I his first result: design of a new foundation

Multiple 100 person-year libraries of mathematics
I developed over the last ∼ 30 years

I overlapping but mutually incompatible major duplication of efforts

I translations mostly infeasible

Hales’s Kepler Proof
I distributed over two separate implementations of the same logic

I little hope of merging
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Vision

UniFormal

a universal framework for the
formal representation of all knowledge and its semantics

in math, logic, and computer science

I Avoid fixing languages wherever possible . . .

I . . . and instantiate them for different languages

I Use formal meta-languages in which to define languages . . .

I . . . and avoid fixing even the meta-language
I Obtain foundation-independent results

I Representation languages
I Soundness-critical algorithms
I Knowledge management services
I User-facing applications
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MMT = Meta-Meta-Theory/Tool
few primitives . . . that unify different domain concepts

I tiny but universal grammar for expressions
syntax trees with binding

I standardized semantics of identifiers crucial for interoperability

I high-level definitions derivation, model, soundness, . . .

I no built-in logic or type system all algorithms parametric

I theories and theory morphisms for large scale structure
translation, interpretation, semantics, . . .

Mathematics Logic Universal
Logic

Foundation-
Independence

MMT
meta-languages

logic, programming language, . . .

domain knowledge



MMT as a UniFormal Framework 15

Basic Concepts
Design principle

I few orthogonal concepts
I uniform representations of diverse languages

sweet spot in the expressivity-simplicity trade off
Concepts

I theory = named set of declarations
I foundations, logics, type theories, classes, specifications, . . .

I theory morphism = compositional translation
I inclusions, translations, models, katamorphisms, . . .

I constant = named atomic declaration
I function symbols, theorems, rules, . . .
I may have type, definition, notation

I term = unnamed complex entity, formed from constants
I expressions, types, formulas, proofs, . . .

I typing `T s : t between terms relative to a theory
I well-formedness, truth, consequence . . .
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Small Scale Example (1)
Logical frameworks in MMT

theory LF {
t y p e
Pi # Π V1 . 2 name[ : type][#notation]
arrow # 1 → 2
lambda # λ V1 . 2
a p p l y # 1 2

}

Logics in MMT/LF

theory L o g i c : LF {
prop : t y p e
ded : prop → t y p e # ` 1 judgments-as-types

}
theory FOL : LF {

i n c l ude L o g i c
term : t y p e higher-order abstract syntax
f o r a l l : ( term → prop ) → prop # ∀ V1 . 2

}
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Small Scale Example (2)

FOL from previous slide:

theory FOL : LF {
i n c l ude L o g i c
term : t y p e
f o r a l l : ( term → prop ) → prop # ∀ V1 . 2

}

Proof-theoretical semantics of FOL

theory FOLPF : LF {
i n c l ude FOL

rules are constants
f o r a l l I n t r o : ΠF:term→prop .

(Πx:term .` (F x ) ) → ` ∀(λx:term . F x )
f o r a l l E l i m : ΠF:term→prop .

` ∀(λx:term . F x ) → Πx:term .` (F x )
}
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Small Scale Example (3)

FOL from previous slide:

theory FOL : LF {
i n c l ude L o g i c
term : t y p e
f o r a l l : ( term → prop ) → prop # ∀ V1 . 2

}

Algebraic theories in MMT/LF/FOL:

theory Magma : FOL {
comp : term → term → term # 1 ◦ 2

}
theory SemiGroup : FOL { i n c l ude Magma , . . . }
theory CommutativeGroup : FOL { i n c l ude SemiGroup , . . . }
theory Ring : FOL {

a d d i t i v e : CommutativeGroup
m u l t i p l i c a t i v e : Semigroup
. . .

}
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Large Scale Example: The LATIN Atlas

I DFG project 2009-2012 (with DFKI Bremen and Jacobs Univ.)
I Highly modular network of little logic formalizations

I separate theory for each
I connective/quantifier
I type operator
I controversial axioms e.g., excluded middle, choice, . . .
I base type

I reference catalog of standardized logics
I documentation platform

I Written in MMT/LF

I 4 years, with ∼ 10 students, ∼ 1000 modules



The LATIN Atlas 21

The LATIN Atlas of Logical Systems
The LATIN Atlas is huge: That’s me pointing at the theory for
first-order logic
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Logic Diagrams in LATIN
An example fragment of the LATIN logic diagram

I nodes: MMT/LF theories

I edges: MMT/LF theory morphisms

PL

ML SFOL DFOL
FOL

CL

DL

OWL
HOL

MizarZFCHOL Light

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

I each node is root for library of that logic

I each edge yields library translation functor
library integration very difficult though
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Foundation-Independent Development

Typical workflow

1. choose foundation
type theories, set theories, first-order logics, higher-order logics, . . .

2. implement kernel

3. build support algorithms reconstruction, proving, editor, . . .

4. build library

Foundation-independent workflow in MMT

1. MMT provides generic kernel
no built-in bias towards any foundation

2. build support algorithms on top of MMT

3. choose foundation(s)

4. customize MMT kernel for foundation(s)

5. build foundation-spanning universal library
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Advantages

I Avoids segregation into mutually incompatible systems

I Formulate maximally general results
meta-theorems, algorithms, formalizations

I Rapid prototyping for logic systems
customize MMT as needed, reuse everyting else

I Separation of concerns between
I foundation developers
I support service developers: search, axiom selection, . . .
I application developers: IDE, proof assistant, wiki, . . .

I Allows evolving foundation along the way
design flaws often apparent only much later

I Migrate formalizations when systems die

I Archive formalizations for future rediscovery
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Paradigms

I judgments as types, proofs as terms
unifies expressions and derivations

I higher-order abstract syntax unifies operators and binders
I category of theories and theory morphisms

I languages as theories
unifies logical theories, logics, foundations

I relations as theory morphisms
unifies modularity, intepretations, representation theorems

I institution-style abstract model theory
uniform abstract concepts

I models as morphisms (categorical logic)
unifies models and translations and semantic interpretations
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MMT Tool
Mature implementation

I API for representation language foundation-independent
I Collection of reusable algorithms

no commitment to particular application
I Extensible wherever reasonable

storage backends, file formats, user interfaces, . . .
operators and rules, language features, checkers, . . .

Separation of concerns between

I Foundation developers e.g., language primitives, rules

I Service developers e.g., search, theorem prover

I Application developers e.g., IDE, proof assistant

Yields rapid prototyping for logic systems

But how much can really be done foundation-independently?
MMT shows: not everything, but a lot
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Ongoing: Open Archive of Formal Libraries
I Open Archive of Formalizations

Michael Kohlhase and myself, 2014-2017
I Goal: archival, comparison, integration of formal libraries

Mizar, HOL systems, IMPS, Coq/Matita, PVS, . . .
I Big, overlapping libraries – that are mutually incompatible

MMT

LF LF+X

LATIN logic library . . .HOL Light

HOL Light library Bool Arith
. . .

Mizar

Mizar library
XBoole XReal

. . .
Arith

. . .
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Library Integration
I Spec: mathematical theory axiomatic, foundation-independent
I Impli : implementation of Spec in system i
I µi : theory morphism describing how Spec is realized

maps Spec-identifiers to their implementing objects
I ηi : partial inverse of µi

Spec

Impl1

Impl2

µ1

µ2

η1

η2

Challenge:
I collect initial library of mathematical concepts
I collect alignments with individual libraries
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OpenDreamKit
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Virtual Research Environments for Mathematics

I OpenDreamKit project 2015-2019 open PhD positions!
EU project, 15 sites, 25 partners
http://opendreamkit.org/

I Support full life-cycle
I exploration, development, and publication
I archival and sharing of data and computation
I real mathematicians as target audience

I Key requirements
I allow using any foundation

any programming language, database
I integrate narration, computation, databases
I uniform user interfaces

http://opendreamkit.org/
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Math in the Middle Approach

I Official definitions represented narratively
MMT embedded into LaTeX to attach types

I Foundations written as MMT formal theories

I Computation: library interfaces exported as MMT theories

I Database schemata: written as formal MMT theories

Example work flow:

1. user input mentions specific object
e.g., the 13th transitive group with conductor 5

2. Systems X queries MMT for 13a5

3. MMT retrieves object from connected databases
e.g., LMFDb (L-functions and modular forms)

4. Database schema defines type and encoding of object

5. MMT builds 13a5 in high-level foundation

6. MMT exports 13a5 in input syntax of system X
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Logical Result: Representation Language

I MMT theories uniformly represent
I logics, set theories, type theories, algebraic theories, ontologies,

. . .
I module system: state every result in smallest possible theory

Bourbaki style applied to logic

I MMT theory morphisms uniformly represent
I extension and inheritance
I semantics and models
I logic translations

I MMT objects uniformly represent
I functions/predicates, axioms/theorems, inference rules, . . .
I expressions, types, formulas, proofs, . . .

I Reuse principle: theorems preserved along morphisms
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Logical Result: Concepts

MMT allows coherent formal definitions of essential concepts

I Logics are MMT theories

I Foundations are MMT theories e.g., ZFC set theory

I Semantics is an MMT theory morphism
e.g., from FOL to ZFC

I Logic translations are MMT theory morphisms

I Logic combinations are MMT colimits
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Logical Results: Algorithms

I Module system
modularity transparent to foundation developer

I Concrete/abstract syntax
notation-based parsing/presentation

I Interpreted symbols, literals
external model/implementation reflected into Mmt

I Type reconstruction
foundation plugin supplies only core rules

I Simplification
rule-based, integrated with type reconstruction

I Theorem proving?

I Code generation? Computation?
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Modular Framework Definitions in MMT

Individual features given by set of symbols, notations, rules

I λΠ

I Rewriting

I Polymorphism

I Subtyping (ongoing)

I . . .

Language definitions are modular themselves
e.g., Dedukti = LF + rewriting
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Knowledge Management Results

I Change management recheck only if affected

I Project management indexing, building

I Extensible export infrastructure
Scala, SVG graphs, LaTeX, HTML, . . .

I Search, querying substitution-tree and relational index

I Browser interactive web browser

I Editing IDE-like graphical interface
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IDE

I Inspired by programming language IDEs
I Components

I jEdit text editor (in Java): graphical interface
I MMT API (in Scala)
I jEdit plugin to tie them together

only ∼ 1000 lines of glue code

I Features
I outline view
I error list
I display of inferred information
I type inference of subterms
I hyperlinks: jump to definition
I search interface
I context-sensitive auto-completion: show identifiers that
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IDE: Example View
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An Interactive Library Browser

I MMT content presented as HTML5+MathML pages

I Dynamic page updates via Ajax

I MMT used through HTTP interface with JavaScript wrapper
I Features

I interactive display e.g., inferred types, redundant brackets
I smart navigation via MMT ontology

can be synchronized with jEdit
I dynamic computation of content

e.g., definition lookup, type inference
I graph view: theory diagram as SVG
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Browser: Example View
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Browser Features: 2-dimensional Notations
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Browser Features: Proof Trees
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Browser Features: Type Inferece
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Browser Features: Parsing
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Example Service: Search
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Envisioned: A Generic Theorem Prover

I Theorem proving currently highly logic-specific
I But many successful designs actually logic-independent, e.g.,

I Declarative proof languages
I Tactic languages
I Integration of decision procedures
I Axiom selection
I Modularity

Claim
I Logic-specific implementations a historical accident

I Possible to build MMT level proving technology
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Envisioned: Computational Knowledge

I So far: MMT focuses on declarative formal languages
I Goal: extend to programming languages

I understand key concepts foundation-independently
state/effects, recursion, inheritance, . . .

I represent features modularly
I freely mix logic and computation share declarative aspects

I Syntax is (kind of) easy:
I programming languages are MMT theories
I classes/modules are MMT theories
I programs are expressions

I Semantics is open question: What is the general judgment?
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Exporting System Libraries

Major interoperability obstacle
I Communities very focused on

I honing their system
I curating their library

I Little effort for making libraries accessible
I Slowly improving

I more people interested in sharing and generic tools
I OAF a driving force

MMT good candidate for truly universal standard
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Universal Library of Elementary Knowledge

Requirements

I language-independent

I system-independent

I easy to write for practitioners

Vision

I Central library uses modular library of language features

I Focus on names, types, properties no definitions, no proofs

I Individual contributions piece together minimal needed
language

I All existing systems
I remain in use e.g., for optimized proof support
I allow refactoring results for submission to central library
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Summary

I MMT: foundation-independent framework for declarative
languages

I representation language
I implementation

I Easy to instantiate with specific foundations
rapid prototyping logic systems

I Deep foundation-independent results
I logical: parsing, type reconstruction, module system, . . .
I knowledge management: search, browser, IDE, . . .

I MMT quite mature now, ready for larger applications
about to break even

I Serious contender for
I universal library
I generic applications/services
I system integration/combination
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Further Resources
Web sites

I MMT: http://uniformal.github.io

I OAF web server (experimental): http://mathhub.info:8080/

Selected publications all available from https://kwarc.info/people/frabe

I the primary paper on the MMT language (I&C 2013, with M. Kohlhase):
A Scalable Module System

I a more recent paper on the MMT approach to logic (JLC 2014):
How to Identify, Translate, and Combine Logics?

I Foundations in LATIN: (MSCS 2011, with M. Iancu)
Formalizing Foundations of Mathematics

I Modular logics in LATIN (TCS 2011, with F. Horozal):
Representing Model Theory in a Type-Theoretical Logical Framework

I the primary paper on OAF (under review 2015, with M. Kohlhase)
QED Reloaded

I Mizar in OAF (JAR 2013, with M. Iancu, M. Kohlhase, J. Urban):
The Mizar Mathematical Library in OMDoc: Translation and Applications

I HOL Light in OAF: (CICM 2014, with C. Kaliszyk)
Towards Knowledge Management for HOL Light

http://uniformal.github.io
http://mathhub.info:8080/
https://kwarc.info/people/frabe
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Foundations

I Foundation = the most primitive formalism on which
everything else is built

set theories, type theories, logics, category theory, . . .

I We can fix the foundation once and for all — but which one?

I In math: usually implicit and arbitrary foundation
I can be seen as avoiding subtle questions
I but also as a strength: it’s more general

I In CS: each system fixes its own foundational language
e.g., a variant of type theory or HOL

I Programming languages foundations as well
but representation of state in MMT still open problem
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Fixed Foundations

I Fixing foundation the first step of most implementations
often foundation and implementation have the same name

I No two implementations for the exact same foundation
even reimplementations diverge quickly

I Negative effects
I isolated, mutually incompatible systems

no sharing of results, e.g., between proof assistants
I no large scale libraries

each system’s library starts from scratch
I no library archival

libraries die with the system
I comparison of systems difficult

no common problem set
I slow evolution

evaluating a new idea can take years
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Logical Frameworks

= meta-logic in which syntax and semantics of object logics are
defined

Advantages

I Universal concepts expressions, substitution, typing, equality, . . .

I Meta-reasoning consistency, logic translations, . . .

I Rapid prototyping type reconstruction, theorem proving, . . .

Simplicity vs. expressivity
I Meta-logic must be simple to be scalable, trustworthy

I Object logic must be expressive to be practical

I Big challenge for frameworks
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Designing Logical Frameworks
Typical approach:

I choose a λ-calculus

I add a meta-logic
I add other features

I second level for induction on syntax (Twelf, Abella)
I proof assistant for object logic (Isabelle)
I concurrency (CLF)
I reasoning about contexts (Beluga)
I rewriting (Dedukti)
I external side conditions (LLFP)
I coupling with proof-assistant support (Hybrid)
I . . .

Problems
I Recent trend: divergence due to choice of other features

I Even hypothetical union not expressive enough for real-life logics
no way to define, e.g., HOL Light, Mizar, PVS
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Customizable Formal Systems

Parallel trend in formal system design

I increasingly complex problem domains
e.g., mathematics, programming languages

I plain formalization introduces too many artifacts to be
human-readable

I therefore: allow users to define how to interpret human input
e.g., custom parsing, type reconstruction

Examples:
I unification hints (Coq, Matita)

I extra-logical declarations
I allow users to guide incomplete algorithms (e.g., unification)

I meta-programming (Idris, Lean)
I expose internal datatypes to user
I allow users to program extensions in the language itself
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Abstract Syntax of Terms

Key ideas

I no predefined constants

I single general syntax tree constructor c(Γ; ~E )

I c(Γ; ~E ) binds variables and takes arguments
I non-binding operators: Γ empty e.g., apply(·; f , a) for (f a)

I typical binders: Γ and ~E have length 1
e.g., lambda(x :A; t) for λx :A.t

contexts Γ ::= (x [: E ][= E ])∗

terms E ::=
constants | c
variables | x
complex terms | c(Γ; E ∗)

Terms are relative to theory T that declares the constants c
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Concrete Syntax of Terms

I Theories may attach notation(s) to each constant declaration

I Notations of c introduce concrete syntax for c(Γ; ~E )

e.g., for type theory

concrete syntax constant declaration abstract syntax

E ::=
type type # type

Πx : E1.E2 Pi # Π V1 . 2 Pi(x :E1; E2)
E1 → E2 arrow # 1 → 2 arrow(·; E1,E2)
λx : E1.E2 lambda # λ V1 . 2 lambda(x :E1; E2)
E1 E2 apply # 1 2 apply(·; E1,E2)
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Notations

MMT implements parsing and rendering foundation-independently
relative to notations declared in current theory

Notations (ARG | VAR | DELIM)∗[PREC ]
Bound variable VAR ::= Vn for n ∈ N
Argument ARG ::= n for n ∈ N
Delimiter DELIM ::= Unicode string
Precedence PREC ::= integer

Bound variabes forall # ∀V 1.2
Mixfix setComprehension # {V 1 ∈ 2|3}
Argument sequences plus # 1 + . . .
Variable sequences forall # ∀V 1, . . . 2
Implicit arguments functionComposition # 4 ◦ 5
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Abstract Syntax of Theories

I Theories are named lists of declarations

I Theory names yield globally unique identifiers for all constants

I Module system: Previously defined theories can be
included/instantiated

theory declaration T = {Dec∗}
Dec ::=

constant declaration | c[: E ][= E ][#Notation]
theory inclusion | include T
theory instantiation | structure c : T where{Dec∗}

Flattening: Every theory is semantically equivalent to one without
inclusions/instantiations intuition: theories are named contexts
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Judgments

I MMT terms subsume terms of specific languages

I Type systems singles out the well-typed terms

For any theory Σ:

` Σ T = {Σ} is a valid theory definition
`T Γ Γ is a valid context

Γ `T t : A t has type A
Γ `T E = E ′ E and E ′ are equal
Γ `T : A A is inhabitable

I MMT defines some rules once and for all
foundation-independent rules

I Foundation-independent declared in theories
rule for c defines when c(Γ; E ∗) well-typed
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Foundation-Independent Rules

I Lookup rules for atomic terms over a theory T = {Σ}

c : A in Σ

`T c : A

c = t in Σ

`T c = t

I Equivalence and congruence rules for equality

I Rules for well-formed theories T = {Σ}

` ·
` Σ [`Σ : A] [`T t : A]

` Σ, c[: A][= t]

I Rules for well-formed contexts similar to theories
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Foundation-Specific Rules
I Declared in theories as constants
I Module system allows composing foundations

Two options to give rules
1. For a few dedicated meta-logics

I rules are constants without type, definiens, or notation
I meaning provided externally on paper or as code snippet
I necessary to get off the ground
I Examples:

I logical framework LF: ∼ 10 rules
I shallow polymorphism: 1 rule
I modulo rewriting: 1 rule family

2. For any other language
I include a meta-logic
I use meta-logic to give rules as typed constants
I example: modus ponens using meta-logic LF

o : type

⇒ : o → o → o
ded : o → type

mp : ΠA,Bded (A ⇒ B) → dedA → dedB
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Type Reconstruction

Type checking:

I input: judgement, e.g., Γ `T t : A

I output: true/false, error information

Type reconstruction
I input judgment with unknown meta-variables

I implicit arguments, type parameters
I omitted types of bound variables

I output: unique solution of meta-variables that makes
judgement true

I much harder than type checking

MMT implements foundation-independent type reconstruction

I transparent to foundations

I no extra cost for foundation developer
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Implementation

MMT implements foundation-independent parts of type checker

I foundation-independent rules

I simplification, definition expansion

I error reporting
I abstract interfaces for foundation-specific rules, e.g.,

I infer type
I check term at given type
I check equality of two given terms
I simplify a term

Foundation-specific plugins add concrete rules

I each rule can recurse into other judgements

I example LF: ∼ 10 rules for LF, ∼ 10 lines of code each
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One More Basic Concept: Theory Morphisms

Theories
I uniform representation of

I foundations e.g., logical frameworks, set theories, . . .
I logics, type theories
I domain theories e.g., algebra, arithmetic, . . .

I little theories: state every result in smallest possible theory
maximizes reuse

Theory morphisms
I uniform representation of

I extension e.g., Monoid → Group
I inheritance e.g., superclass → subclass
I semantics e.g., FOL → ZFC
I models e.g., Nat: Monoid → ZFC
I translation e.g., typed to untyped FOL

I homomorphic translation of expressions

I preserve typing (and thus truth)
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Logic Example

I FOLSyn: term : type, prop : type, ded : o → type, ¬, ∧, . . .

I FOLPf : ¬I , ¬E , ∧El , ∧Er , ∧I , . . .

I ZFC : set : type, wff : type, thm : wff → type, ∅ : set, . . .

I FOLMod : univ : set, nonempty : true (univ 6= ∅)

I FOLmod : term := univ , prop := {0, 1}, ded := λp.p
.

= 1

FOLSyn

FOLPf

FOLMod

ZFC

FOLmod
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Current State

I Little theories including
I propositional, common, modal, description, linear logic,

unsorted/sorted/dependently-sorted first-order logic, CASL,
higher-order logic

I λ-calculi (λ-cube), product types, union types, . . .
I ZFC set theory, Mizar’s set theory, Isabelle/HOL
I category theory

I Little morphisms including
I relativization of quantifiers from sorted first-order, modal, and

description logics to unsorted first-order logic
I negative translation from classical to intuitionistic logic
I translation from type theory to set theory
I translations between ZFC, Mizar, Isabelle/HOL
I Curry-Howard correspondence between logic, type theory, and

category theory
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Representing Logics in LATIN

I Lsyn: Syntax of L: connectives, quantifiers, etc.
e.g., ⇒: o → o → o

I Lpf : Proof theory of L: judgments, proof rules
e.g., impE : ded (A ⇒ B) → dedA → dedB

I Lmod : Model theory of L in terms of foundation F
e.g., univ : set, nonempty : true (univ 6= ∅)

Lsyn

Lpf

F

Lmod
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Representing Logics in LATIN
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Representing Logics in LATIN

I Lsyn: Syntax of L: connectives, quantifiers, etc.
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e.g., impE : ded (A ⇒ B) → dedA → dedB

I Lmod : Model theory of L in terms of foundation F
e.g., univ : set, nonempty : true (univ 6= ∅)

Lsyn

Lpf

F

Lmod
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Representing Logics and Models

F

LMod

L

Lmod

Σ

ΣMod

Σmod

F

M

idF L encodes syntax and proof theory
F encodes foundation of mathematics
LMod axiomatizes models
Lmod interprets syntax in model

Σ encodes a theory of L,
extends L with functions, axioms, etc.
ΣMod correspondingly extends LMod

Σmod interprets syntax in model

M encodes a model of Σ,
interprets free symbols of LMod and ΣMod

in terms of F
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Representing Logics and Models

F

LMod

L

Lmod

Σ

ΣMod

Σmod

F

M

idF L encodes syntax and proof theory
F encodes foundation of mathematics
LMod axiomatizes models
Lmod interprets syntax in model

Σ encodes a theory of L,
extends L with functions, axioms, etc.
ΣMod correspondingly extends LMod

Σmod interprets syntax in model

M encodes a model of Σ,
interprets free symbols of LMod and ΣMod

in terms of F



Details: Open Archive of Formalizations 82

Details: Open Archive of Formalizations



Details: Open Archive of Formalizations 83

Goal: Universal Library Infrastructure

I MMT as representation language
I Repository backend: MathHub

I based on GitLab – open-source analog of GitHub server
I GitLab instance hosted at Jacobs University
I free registration of accounts, creation of repositories

I Generic library management
I browser
I inter-library navigation
I search
I change management
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Goal: Exports from Proof Assistants

I Export major libraries into MMT
I Representative initial targets

I Mizar: set theoretical initial export done (with Josef Urban)
I HOL Light: higher-order logic

initial export done (with Cezary Kaliszyk)
I Coq or Matita: type theoretical
I IMPS: little theories method
I PVS: rich foundational language

I Major technical difficulty
I exports must be written as part of proof assistant
I not all information available
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Goal: Towards Library Integration

I Refactor exports to introduce modularity
I 2 options

I systematically during export
e.g., one theory for every HOL type definition

I heuristic or interactive MMT-based refactoring

I Collect correspondences between concepts in different libraries
heuristically or interactively

I Relate isomorphic theories across languages

I Use partial morphisms to translate libraries
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MMT and Hets

I Hets
I integration system for specification languages and associated

tools
I developed at DFKI by Till Mossakowski et al.
I limited foundation-independence

I multiple foundations possible
I but must be implemented individually

I Integration

1. logics defined declaratively in MMT
2. MMT generates Hets logic definitions

includes logic-specific abstract data types
3. new logics dynamically available in Hets

I Generated logics use MMT via HTTP for
parsing/type-checking
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LATEX Integration

I MMT declarations spliced into LATEX documents
shared MMT-LATEX knowledge space

I LATEX macros for MMT-HTTP interface
I Semantic processing of formulas

I parsing
I type checking
I semantic enrichment: cross-references, tooltips

I Design not LATEX-specific
e.g., integration with word processors possible



LATEX Integration: Example
Inferred arguments are inserted during compilation:

I upper part: LATEX source for the item on associativity
I lower part: pdf after compiling with LATEX-MMT
I type argument M of equality symbol is inferred and added by

MMT
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SMGloM glossary

I Multi-lingual mathematical glossary
https://mathhub.info/mh/glossary

Kohlhase and others, 2013–2015

I Includes notations and verbalizations
. . . but makes no commitment to formal system

I Cross-referenced and searchable

I ≈ 1000 entries

I Uses MMT as background representation language
integrates MMT with natural language

https://mathhub.info/mh/glossary
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MMT in the Semantic Alliance System

I Semantic Alliance System
I developed by Michael Kohlhase et al.
I two DFG projects

I SiSSi (Hutter, Kohlhase) spreadsheet applications
I FormalCAD (Kohlhase, Schröder) CAD applications

I Enrich domain-specific applications with semantic services
I Ontology used to

I formalize background knowledge
I share knowledge between applications

I MMT used as interface to ontology
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