
Work-in-progress: An MMT-Based User-Interface

Mihnea Iancu and Florian Rabe

Jacobs University Bremen

UITP 2012

1



MMT https://trac.kwarc.info/MMT

I Prototypical declarative language
theories, morphisms, declarations, expressions

module system

I OMDoc/OpenMath-based XML syntax with Scala-based API
I Foundation-independent

I no commitment to particular logic or logical framework
both represented as MMT theories themselves

I concise and natural representations of wide variety of formal
systems virtually all of them

2

https://trac.kwarc.info/MMT


Example: small scale
I Little theories: state every definition/theorem/algorithm in

the smallest possible theory
I Extended to little logics and little logical frameworks

s i g Types { t y p e }
s i g LF { i n c l u d e Types , Π , → , λ , @ }

s i g L o g i c { meta LF , form : type , ded : form → t y p e }
s i g FOL { meta LF ,

i n c l u d e Log ic ,
term : t y p e . ∧ : form → form → form , . . .

}

s i g Magma { meta FOL , ◦ : term → term → term }
...
s i g Ring {meta FOL ,

a d d i t i v e : CGroup ,
m u l t i p l i c a t i v e : Semigroup ,
. . .

}
3



Example: large scale

I LATIN atlas of logics: highly interconnected network of logic
formalizations

I Written in MMT/LF using Twelf

I 4 years, ∼ 10 authors, ∼ 1000 modules

I Focus on breadth (= many formal systems represented), not
so much depth (= theorems in particular systems)

I Each logic in the graph serves as root for theory graph in that
logic

4



demo

5



MMT Vision

I Universal framework for mathematical-logical content
I Close relatives

I LF, Isabelle: but more universal, more MKM support, more
system integration

I OMDoc/OpenMath: but formal semantics, more automation
support

I Typical use case

1. define a logical framework in MMT e.g., LF
2. use it to define a logic in MMT e.g., HOL
3. optionally: write and register plugins e.g., type checking
4. MMT induces a system for that logic

provides logical and MKM services
handles system integration

6



Applications

I No competitor yet for dedicated “first-tier” systems
Isabelle, Mizar, Coq

I For the community
I experimental languages
I new languages
I small communities
I “systems where an emacs mode is the state of the art”

I For me
I logic and even logical framework in flux
I need to experiment
I want to evolve logic and UI independently

7



MMT Design Methodology

1. Choose a typical problem
logical: e.g., type reconstruction, reflection
MKM: e.g., change management, querying

2. Survey and analyze the existing solutions

3. Differentiate between foundation-specific and
foundation-independent definitions/theorems/algorithms

4. Integrate the foundation-independent aspects into MMT
language and API

5. Define plugin interfaces to supply the logic-specific aspects

6. Repeat

So far no theorem prover (except humans!)

8



MMT Design Methodology

1. Choose a typical problem
logical: e.g., type reconstruction, reflection
MKM: e.g., change management, querying

2. Survey and analyze the existing solutions

3. Differentiate between foundation-specific and
foundation-independent definitions/theorems/algorithms

4. Integrate the foundation-independent aspects into MMT
language and API

5. Define plugin interfaces to supply the logic-specific aspects

6. Repeat

So far no theorem prover (except humans!)

8



So what are we doing at UITP?

I UI and TP notoriously hard to integrate

I Strength of MMT in the intersection: the data structures

I Implicit claim in MMT project:

Investment in getting the data structures right
eventually benefits

I MKM services
I logical services
I user interfaces

I Evaluation long-term endeavor
I So far

I MKM services: very positive results
I logical services, user interfaces: promising outlook

9



MMT Design, so far

I Foundation-independent MKM aspects
I abstract syntax for theories, declarations, expressions
I module system, canonical identifiers
I notation-based presentation MKM 2008
I interactive browsing MKM 2009
I database MKM 2010
I archival, project management MKM 2011
I foundations of system integration Calculemus 2011
I change management Friday, AISC 2012
I querying MKM 2012
I extension principles MKM 2012

I Foundation-specific interfaces
I parsing of files or expressions (e.g., Twelf, TPTP, Mizar, OWL)
I type checking of abstract syntax (e.g., LF)

10



MMT Design, current/future work

So far: MMT as a background and MKM system
I content developed using dedicated foundations

I foundation-specific plugins treated as black boxes

I plugins often wrappers around external tools

decent support in user interface

Next: open up black boxes
I generic parser customized by notations

I generic type-checker customized by rules

I generic computation engine customized by rules or code
snippets

I generic theorem prover customized by plugins

much better support in user interface

11



MMT Design, current/future work

So far: MMT as a background and MKM system
I content developed using dedicated foundations

I foundation-specific plugins treated as black boxes

I plugins often wrappers around external tools

decent support in user interface

Next: open up black boxes
I generic parser customized by notations

I generic type-checker customized by rules

I generic computation engine customized by rules or code
snippets

I generic theorem prover customized by plugins

much better support in user interface

11



MMT Design, current/future work

So far: MMT as a background and MKM system
I content developed using dedicated foundations

I foundation-specific plugins treated as black boxes

I plugins often wrappers around external tools

decent support in user interface

Next: open up black boxes
I generic parser customized by notations

I generic type-checker customized by rules

I generic computation engine customized by rules or code
snippets

I generic theorem prover customized by plugins

much better support in user interface

11



MMT Design, current/future work

So far: MMT as a background and MKM system
I content developed using dedicated foundations

I foundation-specific plugins treated as black boxes

I plugins often wrappers around external tools

decent support in user interface

Next: open up black boxes
I generic parser customized by notations

I generic type-checker customized by rules

I generic computation engine customized by rules or code
snippets

I generic theorem prover customized by plugins

much better support in user interface

11



MMT Design, current/future work

So far: MMT as a background and MKM system
I content developed using dedicated foundations

I foundation-specific plugins treated as black boxes

I plugins often wrappers around external tools

decent support in user interface

Next: open up black boxes
I generic parser customized by notations

I generic type-checker customized by rules

I generic computation engine customized by rules or code
snippets

I generic theorem prover customized by plugins

much better support in user interface

11



MMT Design, current/future work

So far: MMT as a background and MKM system
I content developed using dedicated foundations

I foundation-specific plugins treated as black boxes

I plugins often wrappers around external tools

decent support in user interface

Next: open up black boxes
I generic parser customized by notations

I generic type-checker customized by rules

I generic computation engine customized by rules or code
snippets

I generic theorem prover customized by plugins

much better support in user interface

11



Two User Interfaces

Editing

I author-oriented

I local text editor (jEdit)

I jEdit plugin based on MMT API

Browsing

I reader-oriented

I MMT API acts as web server

I interaction through browser via Javascript, Ajax

Side remark: Do we need both? Should they be integrated? How?

12



Editing: Envisioned Architecture

Pipeline
1. structure parsing (outer syntax)

abstract syntax with some unparsed strings

2. refine by object parsing: generic parser using notations
result may be ill-typed

3. refine further: type reconstruction, computation, theorem
proving

Principles
I unified internal representation

I cross-linked to source locations
I exposed to plugins, user interface

I separate compilation (module system), change management

I internal representation

I provenance tracking for refinement operations
13



Editing: Envisioned Architecture

Pipeline
1. structure parsing (outer syntax)

abstract syntax with some unparsed strings

2. refine by object parsing: generic parser using notations
result may be ill-typed

3. refine further: type reconstruction, computation, theorem
proving

Principles
I unified internal representation

I cross-linked to source locations
I exposed to plugins, user interface

I separate compilation (module system), change management

I internal representation

I provenance tracking for refinement operations
13



Editing: Current State

Structure Parsing: done

I Fast, (essentially) never fails, local (no loading of other files)

I Produces valid MMT data structures
I Sufficient for

I outline view
I context-sensitive auto-completion (suggest only identifiers that

are in scope
I tool tips (hover over operator, see (e.g.) qualified and origin
I hyperlinks (= click on operator, jump to declaration/definition)
I file and theory level dependency management

Current/ongoing work

I Term parsing, type reconstruction, computation: going well

I Theorem proving: still in surveying phase

14



Editing: Current State

Structure Parsing: done

I Fast, (essentially) never fails, local (no loading of other files)

I Produces valid MMT data structures
I Sufficient for

I outline view
I context-sensitive auto-completion (suggest only identifiers that

are in scope
I tool tips (hover over operator, see (e.g.) qualified and origin
I hyperlinks (= click on operator, jump to declaration/definition)
I file and theory level dependency management

Current/ongoing work

I Term parsing, type reconstruction, computation: going well

I Theorem proving: still in surveying phase

14



Editing: Current State

Structure Parsing: done

I Fast, (essentially) never fails, local (no loading of other files)

I Produces valid MMT data structures
I Sufficient for

I outline view
I context-sensitive auto-completion (suggest only identifiers that

are in scope
I tool tips (hover over operator, see (e.g.) qualified and origin
I hyperlinks (= click on operator, jump to declaration/definition)
I file and theory level dependency management

Current/ongoing work

I Term parsing, type reconstruction, computation: going well

I Theorem proving: still in surveying phase

14



Editing: Current State

Structure Parsing: done

I Fast, (essentially) never fails, local (no loading of other files)

I Produces valid MMT data structures
I Sufficient for

I outline view
I context-sensitive auto-completion (suggest only identifiers that

are in scope
I tool tips (hover over operator, see (e.g.) qualified and origin
I hyperlinks (= click on operator, jump to declaration/definition)
I file and theory level dependency management

Current/ongoing work

I Term parsing, type reconstruction, computation: going well

I Theorem proving: still in surveying phase

14



demo

15



Browser Interface

I MMT API exposed through HTTP server

I Javascript/Ajax for interactive browsing of MMT projects
e.g., dynamic type inference

I Interactive graph view

I Immediate editing ongoing work not totally sure what for

16



demo

17



Conclusion

I MMT: rapid prototyping logic systems

I user interface making good progress

I theorem prover still future work but considered in the design

I Interface no competitor of dedicated systems yet
I But interface already good for

I less well-supported logics
I new logics
I changing logics

18


