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System Integration

I Formal systems notoriously badly integrated
deduction, computation, knowledge management, . . .

I different logical foundations
I no high-level APIs usually just text files
I not designed with integration in mind hard to retro-fit
I little reward for integrating systems

let alone maintaining the integration

I To some degree unavoidable
I each research group needs unique project
I different systems have different strengths
I experimentation requires new systems
I many systems short-lived anyway

diversity can be a good thing
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Need for Interchange Languages

Various research efforts towards tighter system integration
not this talk

Interchange languages allow loose integration this talk

I intermediate format to exchange knowledge between systems

I less efficient send around text files

I much cheaper allows separation of concerns

I helps (requires) standardizing/documenting system interfaces
beneficial in any case
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Two major interchange languages

MathML/OpenMath/OMDoc

I rooted in CICM community

I designed as standardized interchange languages

I (mostly) XML-based, schema validation

I focus on covering all mathematical knowledge

TPTP
I rooted in deduction community (mostly CADE)

I grew out of Geoff Sutcliffe’s tool suite (Univ. of Miami)

I text syntax, good parser support

I focus on capabilities of theorem provers
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Advantages

MathML
I very simple abstract syntax

I good documentation

I wide logical coverage

TPTP
I both human- and machine-readable/writable

I widely adopted by deduction systems

I large centralized collection of challenge problems

I reference implementation and tool suite
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Disadvantages

MathML

I unwieldy XML syntax intended for machines

I small collection of decentralized content dictionaries

I no reference implementation
several tools with varying degrees of coverage

I no formal semantics
relegated to docmentation of content dictionaries

TPTP
I some syntax idiosyncrasies

I narrow focus: FOL, HOL, arithmetic, . . .

I no formal semantics
defined in a few papers about individual fragments
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Similarities

Pros and cons mostly disjoint

But 2 important similarities

1. Abstract logical properties
I not that surprising if we think about it
I but not that obvious either

2. Neither has formal semantics.
I specifying semantics is hard
I doing it formally is even harder

details on next 2 slides
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Similarity: Syntax

Languages are quite similar if we abstract from
I concrete syntax

I intended purpose

I user community

I tool support

MathML Objects
I constants, variables, application, arbitrary binding

I all constants introduced/specified in content dictionaries

TPTP Formulas
I constant, variables, application, built-in binders ∀∃λΠΣε

I most constants introduced/specified in TPTP files

I built-in logic-related operators but no fixed type system or calculus
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Similarity: No Formal Semantics

Standardizing syntax is easy
I sufficient for formal systems to talk to each other

I both get the job done

Standardizing semantics is much harder
I requires type system+calculus

I necessary for formal systems to understand each other
syntax-only standard hides disagreements

I both allow variants with different semantics

Specifying the type system/calculus of a variant

I MathML: give content dictionary with logical operators, rules
logic1, quant1, . . .

I TPTP: write paper fof, tff, thf, thf1, . . .
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Specifying Semantics Formally

I Problem: How to give formal semantics?
machine-understandable

I Solution: Use logical framework!

Logical framework = meta-logic for specifying logics
I well-known examples: LF, Isabelle, λProlog

I specify logics, type theories, . . .

I fully formal, machine-readable

Example: first-order logic in LF
form : type

` : form→ type

term : type

∧ : form→ form→ form

∧I : ΠA:form,B:form ` A → ` B → ` (A ∧ B)
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Practical Interchange?

Problem: logical frameworks not practical

I not good at handling concrete syntax
separate tool must handle the actual interchange

I specifications often out of sync with actual interchange language
syntax-only standard hides disagreements

I additional overhead

Solutions: use MMT

details on following slides
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What’s MMT?

I Foundation-independent framework
I avoid fixing logic/type theory wherever possible
I generic theory and implementation
I easy to instantiate with specific foundations
I continued development since 2006

I MMT language
I generic concepts: theory, morphism, declaration, object
I > 200 pages of publications

I MMT system
I > 30, 000 lines of Scala code
I ∼ 10 CICM papers on individual aspects

https://svn.kwarc.info/repos/MMT/

https://svn.kwarc.info/repos/MMT/
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MMT and MathML

I MMT ≈ formal-ready version of MathML
I MMT theories ≈ MathML CDs

but with formal types, notations, axioms, theorems
I MMT objects ≈ MathML objects

but with formal typing relation, provability judgment

I OMDoc/OpenMath/MathML retained as concrete syntax
I MMT adds

I human-friendly text syntax
I parser, type-checker
I module system
I scalable implementation
I integration with knowledge management services
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MMT and Logical Frameworks

I MMT type system parametric in set of rules

I Supply a set rules = implement a new logical framework
rapid prototyping

I Each rule provided as code snippet
for LF: ∼ 10 rules, ∼ 10 lines of code each

I MMT handles
I bureaucracy
I error reporting
I module system
I knowledge management

I Rules provide logical core good division of labor
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MMT and TPTP

I Collaboration with Geoff Sutcliffe
I TPTP type systems specified in LF
I TPTP tools translate TPTP problems to LF

I Effectively: LF specifications official part of TPTP standard
if it doesn’t type-check, Geoff complains
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Formal logic definitions for interchange languages

Problem summary
I System integration needs interchange languages

I MathML/TPTP standardize syntax but semantics is informal

I Logical frameworks formalize semantics but are not practical

Solution

1. implement logical framework in MMT e.g., LF

2. specify interchange language in MMT/LF e.g., FOL

3. MMT induces
I MathML content dictionary
I TPTP type checker
I MKM services
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So we’re done? — No: That’s when this work started!

Little-known problem

I Common logical frameworks can’t actually specify logics
not even the syntax of FOL

I Problem: Can’t specify shape of declarations
will give examples on next slides

Solved in Fulya Horozal’s PhD thesis (2014)

I Added declaration patterns to MMT
MKM 2012 (Horozal, Kohlhase, Rabe)

I Introduced new logical framework: LFS = LF with sequences
MKM 2014 (Horozal, Rabe, Kohlhase)

I Formally specified TPTP logics in MMT/LFS this paper
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Modular specifications

FOF

Forms Types

TF

TH0TF0 TF1

TFA

I Forms: formulas, propositional logic

I Types: types, typed terms

I FOF : untyped first-order logic
I TF : typed first-order logic

I TF0 : plain
I TF1 : with toplevel polymorphism
I TFA: with arithmetic

I TH0 : higher-order logic
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Example: Untyped first-order logic

theory FOF = {
o : type formulas
& : o→ o→ o connectives
i : type terms
! : (i→ o)→ o quantifiers
...
New: pattern for n-ary function symbols
pattern fun = [n : nat] {

f : in → i

}
New: pattern for n-ary predicate symbols
pattern pred = [n : nat] {

p : in → o

}
}
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Effect: Reject Ill-Patterned Declaration

pattern fun = [n : nat] {
f : in → i

}
pattern pred = [n : nat] {

p : in → o

}

Plain LF allows inadequate declarations in FOF -theories

foo : (i→ i)→ i higher-order
bar : o→ i formulas in terms

LF with declaration patterns allows only

foo : i→ . . .→ i→ i function symbols
bar : i→ . . .→ i→ o predicate symbols
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Example: Typed first-order logic

theory TF = {
tType : type types
tm : tType→ type terms of a given type
New: pattern for base types
pattern baseType = {

t : tType

}
New: pattern for typed n-ary function symbols
pattern typedFun = [n : nat] [A : tTypen] [B : tType] {

f : [tmAi ]
n
i=1 → tmB

}
New: pattern for typed n-ary predicate symbols
pattern typedPred = [n : nat] [A : tTypen] {

p : [tmAi ]
n
i=1 → o

}
}
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Effect: Distinguish Languages

Plain and polymorphic logics only differ in declaration patterns

Plain TF0

pattern baseType = {
t : tType

}
pattern typedFun = [n : nat] [A : tTypen] [B : tType] {

f : [tmAi ]
n
i=1 → tmB

}

Polymorphic TF1

pattern typeOp = [n : nat] {
t : tTypen → tType

}
pattern polyFun = [m : nat] [n : nat]

[A : (tTypem → tType)n] [B : tTypem → tType] {
f : Πa:tTypem [tm (Ai a)]ni=1 → tm (B a)

}
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Translating and Combining Logics

Theory morphisms translate
untyped FOL to typed FOL FOF → TF0
typed FOL to polymorphic FOL TF0 → TF1
typed FOL to higher-order logic TF0 → TH0

FOF TF0 TH0

TF1 TH1

Combination yields: polymorphic higher-order logic TH1

I no informal specification yet syntax already used anyway

I formal specification obtained out of the box
easier and more precise



24

Conclusion

I MathML/TPTP standardize syntax but semantics is informal
I Logical frameworks formalize semantics but are not practical
I Our approach

1. use MMT with declaration patterns
2. instantiate with LFS
3. specify semantics of interchange languages

I Obtained specifications of all TPTP variants
concise, modular, fully formal

new variants by combining features

FOF

Forms Types

TF

TH0

TF0 TF1

TFA TH1
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