Formal Logic Definitions for Interchange Languages

Fulya Horozal and Florian Rabe

Jacobs University Bremen, Computer Science

MKM track at CICM 2015

System Integration

Formal systems notoriously badly integrated

deduction, computation, knowledge management, \ldots

- different logical foundations
- no high-level APIs
- not designed with integration in mind
- little reward for integrating systems

usually just text files hard to retro-fit

let alone maintaining the integration

- To some degree unavoidable
 - each research group needs unique project
 - different systems have different strengths
 - experimentation requires new systems
 - many systems short-lived anyway

diversity can be a good thing

Need for Interchange Languages

Various research efforts towards tighter system integration not this talk

Interchange languages allow loose integration this talk

- intermediate format to exchange knowledge between systems
- less efficient
 send around text files
- much cheaper allows separation of concerns
- helps (requires) standardizing/documenting system interfaces beneficial in any case

Two major interchange languages

MathML/OpenMath/OMDoc

- rooted in CICM community
- designed as standardized interchange languages
- (mostly) XML-based, schema validation
- focus on covering all mathematical knowledge

TPTP

- rooted in deduction community (mostly CADE)
- grew out of Geoff Sutcliffe's tool suite (Univ. of Miami)
- text syntax, good parser support
- focus on capabilities of theorem provers

Advantages

MathML

- very simple abstract syntax
- good documentation
- wide logical coverage

TPTP

- both human- and machine-readable/writable
- widely adopted by deduction systems
- large centralized collection of challenge problems
- reference implementation and tool suite

Disadvantages

MathML

unwieldy XML syntax

intended for machines

- small collection of decentralized content dictionaries
- no reference implementation

several tools with varying degrees of coverage

no formal semantics

relegated to docmentation of content dictionaries

TPTP

- some syntax idiosyncrasies
- narrow focus: FOL, HOL, arithmetic, ...
- no formal semantics

defined in a few papers about individual fragments

Similarities

Pros and cons mostly disjoint

But 2 important similarities

- 1. Abstract logical properties
 - not that surprising if we think about it
 - but not that obvious either
- 2. Neither has formal semantics.
 - specifying semantics is hard
 - doing it formally is even harder

details on next 2 slides

Similarity: Syntax

Languages are quite similar if we abstract from

- concrete syntax
- intended purpose

- user community
- tool support

MathML Objects

- constants, variables, application, arbitrary binding
- all constants introduced/specified in content dictionaries

TPTP Formulas

- ▶ constant, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma \varepsilon$
- most constants introduced/specified in TPTP files
- built-in logic-related operators but no fixed type system or calculus

Similarity: No Formal Semantics

Standardizing syntax is easy

- sufficient for formal systems to talk to each other
- both get the job done

Standardizing semantics is much harder

- requires type system+calculus
- necessary for formal systems to understand each other syntax-only standard hides disagreements
- both allow variants with different semantics

Specifying the type system/calculus of a variant

MathML: give content dictionary with logical operators, rules

logic1, quant1, ...

TPTP: write paper

fof, tff, thf, thf1, ...

Specifying Semantics Formally

Problem: How to give formal semantics?

machine-understandable

Solution: Use logical framework!

Logical framework = meta-logic for specifying logics

- well-known examples: LF, Isabelle, λ Prolog
- specify logics, type theories, ...
- fully formal, machine-readable

Example: first-order logic in LF

form	:	type	term	:	type
\vdash	:	$\mathit{form} o \mathtt{type}$	\wedge	:	form $ ightarrow$ form $ ightarrow$ form
$\wedge I$:	П	A:form, B:form $\vdash A$	$\rightarrow \vdash B \rightarrow$	\vdash	$(A \wedge B)$

Practical Interchange?

Problem: logical frameworks not practical

- not good at handling concrete syntax separate tool must handle the actual interchange
- specifications often out of sync with actual interchange language syntax-only standard hides disagreements
- additional overhead

Solutions: use MMT

details on following slides

What's MMT?

- Foundation-independent framework
 - avoid fixing logic/type theory wherever possible
 - generic theory and implementation
 - easy to instantiate with specific foundations
 - continued development since 2006
- MMT language
 - generic concepts: theory, morphism, declaration, object
 - > 200 pages of publications
- MMT system
 - \blacktriangleright > 30,000 lines of Scala code
 - $ho~\sim 10$ CICM papers on individual aspects

https://svn.kwarc.info/repos/MMT/

MMT and MathML

- MMT \approx formal-ready version of MathML
 - MMT theories \approx MathML CDs

but with formal types, notations, axioms, theorems

• MMT objects \approx MathML objects

but with formal typing relation, provability judgment

- OMDoc/OpenMath/MathML retained as concrete syntax
- MMT adds
 - human-friendly text syntax
 - parser, type-checker
 - module system
 - scalable implementation
 - integration with knowledge management services

MMT and Logical Frameworks

- MMT type system parametric in set of rules
- Supply a set rules = implement a new logical framework

rapid prototyping

- Each rule provided as code snippet for LF: \sim 10 rules, \sim 10 lines of code each
- MMT handles
 - bureaucracy
 - error reporting
 - module system
 - knowledge management
- Rules provide logical core

good division of labor

MMT and TPTP

- Collaboration with Geoff Sutcliffe
 - TPTP type systems specified in LF
 - ► TPTP tools translate TPTP problems to LF
- Effectively: LF specifications official part of TPTP standard if it doesn't type-check, Geoff complains

Formal logic definitions for interchange languages

Problem summary

- System integration needs interchange languages
- MathML/TPTP standardize syntax but semantics is informal
- Logical frameworks formalize semantics but are not practical

Solution

- 1. implement logical framework in MMT
- 2. specify interchange language in MMT/LF
- 3. MMT induces
 - MathML content dictionary
 - TPTP type checker
 - MKM services

e.g., LF e.g., FOL

So we're done? — No: That's when this work started!

Little-known problem

Common logical frameworks can't actually specify logics

not even the syntax of FOL

Problem: Can't specify shape of declarations

will give examples on next slides

Solved in Fulya Horozal's PhD thesis (2014)

Added declaration patterns to MMT

MKM 2012 (Horozal, Kohlhase, Rabe)

- Introduced new logical framework: LFS = LF with sequences MKM 2014 (Horozal, Rabe, Kohlhase)
- Formally specified TPTP logics in MMT/LFS
 this paper

Modular specifications

- ► Forms: formulas, propositional logic
- Types: types, typed terms
- FOF: untyped first-order logic
- TF: typed first-order logic
 - TF0: plain
 - ► *TF1*: with toplevel polymorphism
 - TFA: with arithmetic
- TH0: higher-order logic

Example: Untyped first-order logic

```
theory FOF = \{
                                      formulas
  o : type
  & : o \rightarrow o \rightarrow o
                                   connectives
 i : type
                                         terms
  ! : (i \rightarrow o) \rightarrow o
                                    quantifiers
  New: pattern for n-ary function symbols
  pattern fun = [n: nat] \{
     f : i^n \rightarrow i
  New: pattern for n-ary predicate symbols
  pattern pred = [n:nat] {
     p: i^n \rightarrow o
```

Effect: Reject III-Patterned Declaration

```
pattern fun = [n:nat] {
   f : i<sup>n</sup> \rightarrow i
}
pattern pred = [n:nat] {
   p : i<sup>n</sup> \rightarrow o
}
```

Plain LF allows inadequate declarations in FOF-theories

 $\begin{array}{rll} \textit{foo} & : & (\texttt{i} \rightarrow \texttt{i}) \rightarrow \texttt{i} & & \textit{higher-order} \\ \textit{bar} & : & \texttt{o} \rightarrow \texttt{i} & & \textit{formulas in terms} \end{array}$

LF with declaration patterns allows only

 $\begin{array}{rcl} \textit{foo} & : & \mathtt{i} \to \ldots \to \mathtt{i} \to \mathtt{i} & \textit{function symbols} \\ \textit{bar} & : & \mathtt{i} \to \ldots \to \mathtt{i} \to \mathtt{o} & \textit{predicate symbols} \end{array}$

Example: Typed first-order logic

```
theory TF = \{
 tType : type
                                                            types
                                          terms of a given type
  tm : tType \rightarrow type
  New: pattern for base types
 pattern baseType = {
     t : tType
  New: pattern for typed n-ary function symbols
 pattern typedFun = [n:nat][A:tType^n][B:tType] {
     f : [\operatorname{tm} A_i]_{i=1}^n \to \operatorname{tm} B
  }
  New: pattern for typed n-ary predicate symbols
 pattern typedPred = [n:nat][A:tType^n] {
     p : [\operatorname{tm} A_i]_{i=1}^n \to \mathrm{o}
```

Effect: Distinguish Languages

Plain and polymorphic logics only differ in declaration patterns

Plain TF0

```
pattern baseType = {
    t : tType
}
pattern typedFun = [n:nat][A:tType<sup>n</sup>][B:tType] {
    f : [tm A_i]<sup>n</sup><sub>i=1</sub> \rightarrow tm B
}
```

Polymorphic TF1

```
pattern typeOp = [n:nat] {
    t : tType<sup>n</sup> \rightarrow tType
}
pattern polyFun = [m:nat][n:nat]
    [A:(tType<sup>m</sup> \rightarrow tType)<sup>n</sup>][B:tType<sup>m</sup> \rightarrow tType]{
    f : \Pi_{a:tType^m}[tm(A<sub>i</sub> a)]<sup>n</sup><sub>i=1</sub> \rightarrow tm(B a)
```

Translating and Combining Logics

Theory morphisms translateuntyped FOL to typed FOL $FOF \rightarrow TF0$ typed FOL to polymorphic FOL $TF0 \rightarrow TF1$ typed FOL to higher-order logic $TF0 \rightarrow TH0$

Combination yields: polymorphic higher-order logic TH1

- no informal specification yet syntax already used anyway
- formal specification obtained out of the box

easier and more precise

Conclusion

- MathML/TPTP standardize syntax but semantics is informal
- Logical frameworks formalize semantics but are not practical
- Our approach
 - 1. use MMT with declaration patterns
 - 2. instantiate with LFS
 - 3. specify semantics of interchange languages
- Obtained specifications of all TPTP variants

concise, modular, fully formal new variants by combining features

24

