
1

Formal Logic Definitions for Interchange
Languages

Fulya Horozal and Florian Rabe

Jacobs University Bremen, Computer Science

MKM track at CICM 2015



Interchange Languages 2

System Integration

I Formal systems notoriously badly integrated
deduction, computation, knowledge management, . . .

I different logical foundations
I no high-level APIs usually just text files
I not designed with integration in mind hard to retro-fit
I little reward for integrating systems

let alone maintaining the integration

I To some degree unavoidable
I each research group needs unique project
I different systems have different strengths
I experimentation requires new systems
I many systems short-lived anyway

diversity can be a good thing



Interchange Languages 3

Need for Interchange Languages

Various research efforts towards tighter system integration
not this talk

Interchange languages allow loose integration this talk

I intermediate format to exchange knowledge between systems

I less efficient send around text files

I much cheaper allows separation of concerns

I helps (requires) standardizing/documenting system interfaces
beneficial in any case



MathML vs. TPTP 4

Two major interchange languages

MathML/OpenMath/OMDoc

I rooted in CICM community

I designed as standardized interchange languages

I (mostly) XML-based, schema validation

I focus on covering all mathematical knowledge

TPTP
I rooted in deduction community (mostly CADE)

I grew out of Geoff Sutcliffe’s tool suite (Univ. of Miami)

I text syntax, good parser support

I focus on capabilities of theorem provers



MathML vs. TPTP 5

Advantages

MathML
I very simple abstract syntax

I good documentation

I wide logical coverage

TPTP
I both human- and machine-readable/writable

I widely adopted by deduction systems

I large centralized collection of challenge problems

I reference implementation and tool suite



MathML vs. TPTP 6

Disadvantages

MathML

I unwieldy XML syntax intended for machines

I small collection of decentralized content dictionaries

I no reference implementation
several tools with varying degrees of coverage

I no formal semantics
relegated to docmentation of content dictionaries

TPTP
I some syntax idiosyncrasies

I narrow focus: FOL, HOL, arithmetic, . . .

I no formal semantics
defined in a few papers about individual fragments



MathML vs. TPTP 7

Similarities

Pros and cons mostly disjoint

But 2 important similarities

1. Abstract logical properties
I not that surprising if we think about it
I but not that obvious either

2. Neither has formal semantics.
I specifying semantics is hard
I doing it formally is even harder

details on next 2 slides



MathML vs. TPTP 8

Similarity: Syntax

Languages are quite similar if we abstract from
I concrete syntax

I intended purpose

I user community

I tool support

MathML Objects
I constants, variables, application, arbitrary binding

I all constants introduced/specified in content dictionaries

TPTP Formulas
I constant, variables, application, built-in binders ∀∃λΠΣε

I most constants introduced/specified in TPTP files

I built-in logic-related operators but no fixed type system or calculus



MathML vs. TPTP 9

Similarity: No Formal Semantics

Standardizing syntax is easy
I sufficient for formal systems to talk to each other

I both get the job done

Standardizing semantics is much harder
I requires type system+calculus

I necessary for formal systems to understand each other
syntax-only standard hides disagreements

I both allow variants with different semantics

Specifying the type system/calculus of a variant

I MathML: give content dictionary with logical operators, rules
logic1, quant1, . . .

I TPTP: write paper fof, tff, thf, thf1, . . .



Logical Frameworks 10

Specifying Semantics Formally

I Problem: How to give formal semantics?
machine-understandable

I Solution: Use logical framework!

Logical framework = meta-logic for specifying logics
I well-known examples: LF, Isabelle, λProlog

I specify logics, type theories, . . .

I fully formal, machine-readable

Example: first-order logic in LF
form : type

` : form→ type

term : type

∧ : form→ form→ form

∧I : ΠA:form,B:form ` A → ` B → ` (A ∧ B)



Logical Frameworks 11

Practical Interchange?

Problem: logical frameworks not practical

I not good at handling concrete syntax
separate tool must handle the actual interchange

I specifications often out of sync with actual interchange language
syntax-only standard hides disagreements

I additional overhead

Solutions: use MMT

details on following slides



Solution: Define Interchange Languages in MMT 12

What’s MMT?

I Foundation-independent framework
I avoid fixing logic/type theory wherever possible
I generic theory and implementation
I easy to instantiate with specific foundations
I continued development since 2006

I MMT language
I generic concepts: theory, morphism, declaration, object
I > 200 pages of publications

I MMT system
I > 30, 000 lines of Scala code
I ∼ 10 CICM papers on individual aspects

https://svn.kwarc.info/repos/MMT/

https://svn.kwarc.info/repos/MMT/


Solution: Define Interchange Languages in MMT 13

MMT and MathML

I MMT ≈ formal-ready version of MathML
I MMT theories ≈ MathML CDs

but with formal types, notations, axioms, theorems
I MMT objects ≈ MathML objects

but with formal typing relation, provability judgment

I OMDoc/OpenMath/MathML retained as concrete syntax
I MMT adds

I human-friendly text syntax
I parser, type-checker
I module system
I scalable implementation
I integration with knowledge management services



Solution: Define Interchange Languages in MMT 14

MMT and Logical Frameworks

I MMT type system parametric in set of rules

I Supply a set rules = implement a new logical framework
rapid prototyping

I Each rule provided as code snippet
for LF: ∼ 10 rules, ∼ 10 lines of code each

I MMT handles
I bureaucracy
I error reporting
I module system
I knowledge management

I Rules provide logical core good division of labor



Solution: Define Interchange Languages in MMT 15

MMT and TPTP

I Collaboration with Geoff Sutcliffe
I TPTP type systems specified in LF
I TPTP tools translate TPTP problems to LF

I Effectively: LF specifications official part of TPTP standard
if it doesn’t type-check, Geoff complains



Solution: Define Interchange Languages in MMT 16

Formal logic definitions for interchange languages

Problem summary
I System integration needs interchange languages

I MathML/TPTP standardize syntax but semantics is informal

I Logical frameworks formalize semantics but are not practical

Solution

1. implement logical framework in MMT e.g., LF

2. specify interchange language in MMT/LF e.g., FOL

3. MMT induces
I MathML content dictionary
I TPTP type checker
I MKM services



Solution: Define Interchange Languages in MMT 17

So we’re done? — No: That’s when this work started!

Little-known problem

I Common logical frameworks can’t actually specify logics
not even the syntax of FOL

I Problem: Can’t specify shape of declarations
will give examples on next slides

Solved in Fulya Horozal’s PhD thesis (2014)

I Added declaration patterns to MMT
MKM 2012 (Horozal, Kohlhase, Rabe)

I Introduced new logical framework: LFS = LF with sequences
MKM 2014 (Horozal, Rabe, Kohlhase)

I Formally specified TPTP logics in MMT/LFS this paper



Specifying the TPTP Logics 18

Modular specifications

FOF

Forms Types

TF

TH0TF0 TF1

TFA

I Forms: formulas, propositional logic

I Types: types, typed terms

I FOF : untyped first-order logic
I TF : typed first-order logic

I TF0 : plain
I TF1 : with toplevel polymorphism
I TFA: with arithmetic

I TH0 : higher-order logic



Specifying the TPTP Logics 19

Example: Untyped first-order logic

theory FOF = {
o : type formulas
& : o→ o→ o connectives
i : type terms
! : (i→ o)→ o quantifiers
...
New: pattern for n-ary function symbols
pattern fun = [n : nat] {

f : in → i

}
New: pattern for n-ary predicate symbols
pattern pred = [n : nat] {

p : in → o

}
}



Specifying the TPTP Logics 20

Effect: Reject Ill-Patterned Declaration

pattern fun = [n : nat] {
f : in → i

}
pattern pred = [n : nat] {

p : in → o

}

Plain LF allows inadequate declarations in FOF -theories

foo : (i→ i)→ i higher-order
bar : o→ i formulas in terms

LF with declaration patterns allows only

foo : i→ . . .→ i→ i function symbols
bar : i→ . . .→ i→ o predicate symbols



Specifying the TPTP Logics 21

Example: Typed first-order logic

theory TF = {
tType : type types
tm : tType→ type terms of a given type
New: pattern for base types
pattern baseType = {

t : tType

}
New: pattern for typed n-ary function symbols
pattern typedFun = [n : nat] [A : tTypen] [B : tType] {

f : [tmAi ]
n
i=1 → tmB

}
New: pattern for typed n-ary predicate symbols
pattern typedPred = [n : nat] [A : tTypen] {

p : [tmAi ]
n
i=1 → o

}
}



Specifying the TPTP Logics 22

Effect: Distinguish Languages

Plain and polymorphic logics only differ in declaration patterns

Plain TF0

pattern baseType = {
t : tType

}
pattern typedFun = [n : nat] [A : tTypen] [B : tType] {

f : [tmAi ]
n
i=1 → tmB

}

Polymorphic TF1

pattern typeOp = [n : nat] {
t : tTypen → tType

}
pattern polyFun = [m : nat] [n : nat]

[A : (tTypem → tType)n] [B : tTypem → tType] {
f : Πa:tTypem [tm (Ai a)]ni=1 → tm (B a)

}



Specifying the TPTP Logics 23

Translating and Combining Logics

Theory morphisms translate
untyped FOL to typed FOL FOF → TF0
typed FOL to polymorphic FOL TF0 → TF1
typed FOL to higher-order logic TF0 → TH0

FOF TF0 TH0

TF1 TH1

Combination yields: polymorphic higher-order logic TH1

I no informal specification yet syntax already used anyway

I formal specification obtained out of the box
easier and more precise



24

Conclusion

I MathML/TPTP standardize syntax but semantics is informal
I Logical frameworks formalize semantics but are not practical
I Our approach

1. use MMT with declaration patterns
2. instantiate with LFS
3. specify semantics of interchange languages

I Obtained specifications of all TPTP variants
concise, modular, fully formal

new variants by combining features

FOF

Forms Types

TF

TH0

TF0 TF1

TFA TH1


	Interchange Languages
	System Integration
	Need for Interchange Languages

	MathML vs. TPTP
	Two major interchange languages
	Advantages
	Disadvantages
	Similarities
	Similarity: Syntax
	Similarity: No Formal Semantics

	Logical Frameworks
	Specifying Semantics Formally
	Practical Interchange?

	Solution: Define Interchange Languages in MMT
	What's MMT?
	MMT and MathML
	MMT and Logical Frameworks
	MMT and TPTP
	Formal logic definitions for interchange languages
	So we're done? — No: That's when this work started!

	Specifying the TPTP Logics
	Modular specifications
	Example: Untyped first-order logic
	Effect: Reject Ill-Patterned Declaration
	Example: Typed first-order logic
	Effect: Distinguish Languages
	Translating and Combining Logics
	Conclusion


