Project Description

LATIN: Logic Atlas and Integrator

Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, Florian Rabe

DFKI Bremen, Jacobs University Bremen
Goals

- Formalize and interrelate all foundational languages of mathematics, logics, and computer science uniformly in a simple framework
 - logics, type theories, set theories, category theory, etc.
 - syntax, proof theory, model theory
- Little Foundations: systematic reuse of theorems across logics and semantic domains
 - building logics out of little components
 - representation theorems to connect different domains
Methods

- Proof theoretical logical frameworks
 - based on type theory
 - specifically LF/Twelf
- Model theoretical logical frameworks
 - based on set/category theory
 - specifically institutions
- MKM-oriented representation languages
 - based on XML, URIs
 - specifically OMDoc, MMT

Continuous feedback loop between LATIN as an application and the employed technologies.
Logics-as-Theories, Relations-as-Theory-Morphisms

Uniform representation of foundations, domains, logics as nodes in a graph of modular theories.
Local View

%sig Logic = {
 form : type.
 proof: form → type.
}.

%sig Conjunction = {
 %include Logic.
 and : form → form → form.
 andI : proof A → proof B → proof (A and B).
}.

Proofs-as-Terms and Judgments-as-Types

Uniform representation of constants, functions, predicates, sorts, binders, axioms, theorems, inference rules, tactics as typed/defined constants.
Current State

- **700 little theories including**
 - propositional, (unsorted, sorted, dependently-sorted) first-order, higher-order, common, modal, description, linear logic
 - λ-cube, Curry and Church-style type theories
 - ZFC set theory, Mizar’s set theory, Isabelle/HOL
 - category theory

- **500 little morphisms including**
 - relativization of quantifiers from sorted first-order, modal, and description logics to unsorted first-order logic
 - negative translation from classical to intuitionistic logic
 - translation from type theory to set theory
 - translations between ZFC, Mizar, Isabelle/HOL
 - Curry-Howard correspondence between logic, type theory, and category theory
Implementations

- Input: IDEs based on Eclipse, jEdit, web browser (Planetary)
- Compilation: LF+Twelf extended with MMT module system, compiled to OMDoc/MMT
- Manipulation: MMT API — analyzing, querying, presenting, refactoring, change management
- Storage: TNTBase (= SVN + XML database)
- Output: interactive XHTML+MathML

All implementations are

- semantics-aware
- foundation-independent
- ongoing work

http://cds.OMDoc.org:8181/