Global, Regional, and Local Contexts

Florian Rabe[0000_0003_3040_3655] *

University Erlangen-Nuremberg

Abstract. We introduce UniFormal, a formal language for mathemati-
cal knowledge representation that continues the evolution of OpenMath
and MMT. It is motivated by the lack of identifiers in these languages
that exhibit the scoping behavior needed for, e.g., the fields in a record or
the variables in a polynomial. Its core feature is a separation of identifiers
and associated contexts into three levels: The global context maintains
the usual toplevel declarations that can be imported across libraries and
nested packages via qualified names. The local context maintains the
usual a-renamable bound variables with narrow syntactic scope. The
novel regional context sits in between these and maintains the identi-
fiers of the current theory. A stack of regional contexts is used to allow
for expressions that move between regions, e.g., when applying a theory
morphism to transport an expression from one theory to another.

We present a minimal language in this style, focusing on the general in-
tuitions underlying the design. We anticipate it to be extended flexibly
towards specialized aspects of mathematical knowledge such as program-
ming languages or theorem provers to enable interoperability through
their shared core concepts. This approach has already proved successful
in the design and implementation of a UniFormal programming language.

1 Introduction

OpenMath [BCCT04] and MathML [ABC™ 03] were introduced as universal rep-
resentation formats for mathematical objects. OMDoc [Koh06] extended them
to mathematical theories and documents. MMT [RK13] specified the semantics
of, implemented, and significantly evolved OMDoc. All of them were designed to
be foundation-independent, and the MMT tool offers a flexible library for rapid
prototyping and system interoperability.

They all feature two levels of identifiers, which we will call global (i.e., sym-
bols, OMS) and local (i.e., variables, OMV) here. This paper was motivated by
the observation that neither adequately captures the scoping behavior of the
identifiers in various standard constructions. We identify the issue and offer one
potential solution.

For example, consider the identifiers and y in the record {termx : Int =
0, termy : Int = 1}. They are not global (because the record may occur anony-
mously inside some expression), but they are not a-renamable variables either

* The author was supported by the VoLL-KI project (see https://voll-ki.de) under
German Research/Education Ministry (BMFTR) grant 16DHBKI089.

https://voll-ki.de

2 F. Rabe

(because they may be referenced when selecting fields from the record). Essen-
tially the same phenomenon occurs with anonymous theories (which behave very
much like record types) and anonymous diagrams of theories as used in [CFS20].

A different example are the identifiers that are used as generators in various
constructions. Consider the X in R = R[X]. It cannot be a global identifier
because X by itself is meaningless. But it cannot be an a-renamable local iden-
tifier either because we must be able to reference it from elsewhere, e.g., in the
formula X2 4+ 1 € R. A closely related phenomenon occurs in generated groups
like (X,Y|X? =Y), where X and Y are often referred to from outside of the
definition of the group.

Proof assistants and computer algebra systems have encountered these issues
and have developed ad hoc solutions. For example, Rocq [Roc25] and Isabelle
[Pau94] do not use anonymous record types/theories and thus can use global
identifiers for the fields. PVS [ORS92] uses anonymous records, and Mizar [TB85]
uses structures that behave similarly; both use identifiers similar to the regional
identifiers we will introduce below. Systems vary widely in how they represent
the X in R[X], e.g., as the constructor of an inductive type, a bound variable,
or as a string, or by using a least-fixed-point construction that avoids using
any identifiers. SageMath [ST13] assumes that a universal ring of polynomials
in all possible identifiers exists, of which R[X] is a subring; these identifiers
are similar to our regional ones. While MMT has proved remarkably resilient
in light of retroactive extensions that changed fundamental design assumptions,
e.g., [HKR12,WKR17], a foundation-independent solution for such identifiers
has proved very difficult, to the point of essentially grinding MMT development
to a halt since 2023.

This paper presents a minimal standalone framework language, called Uni-
Formal, that introduces an intermediate level, called the regional identifiers,
and shows how it allows representing formal theories. We leave the base lan-
guage open, allowing for individual instances of UniFormal to inject suitable
type and proof systems and operational semantics. One such instance, a UniFor-
mal Programming Language, has already been developed and has been used to
type-check the examples in this paper.

All design choices are the results of a years-long trial and error process that
hit numerous dead ends going back to at least [Duml2], and a key achieve-
ment is the simplicity of the resulting abstract syntax. While we have developed
(and implemented) a rigorous semantics for UniFormal, this paper employs an
intuition-focused presentation style with many side remarks, examples, and com-
parisons to other languages. Thus, this paper primarily explains and motivates
the syntax itself, and it only presents enough of the formal details to make
the intended semantics inferable and to serve as a starting point of a broader
discussion of the new design ideas.

Global, Regional, and Local Contexts 3

Declarations

D ::= [open] theoryT =T
| [total] includeT = [¢]
| typea = [A]
| termc: A=t

theory (open or closed)

include

type symbol, with definiens

term symbol, with type, definiens

‘ Theory Expressions ‘

T o=71|7..... T.T regional/global identifier
| eT pushout of T" along model e
| {D"} anonymous theory

A c=zl|al|T..... T.G local/regional/global identifier
| e.A interpretation of A in model e
| Mod(T) models of T’
| »t proofs of ¢ : Bool
| Bool|Int|A* — A example base types

Terms

etu=x|c|T..... T.C local/regional/global identifier
| et interpretation of ¢ in model e
| mod(T) a concrete model
| A" model of n-th enclosing region (for n € N)
| ...

other productions as needed

I =D ([|]TL)"
L =D~

global+stack of (regional+local)
local context of bound variables

Fig. 1. UniFormal Syntax

2 UniFormal Syntax

The syntax of UniFormal is given in Fig. 1 (where [optional] and repeated* parts
are marked as usual) and the meta-theoretical operations in 2.

There are several kinds of declarations. All but includes are named:

— Theory declarations theory 7 = T give a name to a theory T'.

— Symbol declarations introduce a named object such as a type or term.

— Include declarations include T create an inheritance relation between the-
ories. Theory normalization eliminates them by merging all declarations of
the included theory T into the including theory.

Each kind of named declaration corresponds to a kind of expression, with
the identifiers referencing the former occurring as leaves of the latter. Expressions
are anonymous transient syntax trees that are checked and interpreted against
a context I'.

4 F. Rabe

[Judgment [Intuition ‘
I'-T THY |well-formed theory

I'FS < T |inclusion between theories

I'S=T |equality (= inclusion in both directions)
I' - A TYPE|well-formed type

I'H A <: B |subtyping

I'- A= B |equality (= subtyping in both directions)
I'kt: A well-formed typed terms

I'kFs=t equality of terms

Function|Intuition
7" normal form of theory T a list D of declarations
S <« d |merge declaration d into theory S

I'+T |extend context I" with a new frame for theory T'

Fig. 2. UniFormal Judgments and Auxiliary Functions

A theory T is an expression that normalizes to a list {D} of declarations,
essentially by expanding all theory definitions and include declarations. For I" -

T THY, we write T for this normal form of T'. The nesting of theories yields
a tree of declarations with theories at the inner nodes and symbol declarations
(or includes, if not normalized yet) at the leaves.

Beyond theories, UniFormal is flexible in what kinds of symbol declarations
and expressions are used. Here we pick types and terms:

— Type declarations typea = [A] introduce a named type with an optional
definition A. We could also allow type bounds and type operators, but we
omit that here for simplicity.

— Term declarations terme : A = [t] introduce a named term with type A
and optional definition ¢. The type is mandatory in internal syntax, but can
be omitted in surface syntax if it can be inferred.

— We represent axioms and theorems as special cases of terms with and without
definition, respectively, via the type » F' of proofs of Boolean term F.

Other languages may change these kinds as needed, e.g., to have kinds for uni-
verses, set, or proofs. Our results only require that every symbol declaration may
optionally carry an expression of the corresponding kind as its definition. If such
a definition is present, we call the declaration concrete, otherwise abstract.
Similarly, we call a theory concrete if all declarations in its normal form are,
otherwise abstract.

The details of contexts I" are explained throughout the paper. Generally,
the context must keep all information that an algorithm that traverses a formal-
ization may need such as the type of every identifier that is in scope. Therefore,
choosing the right data structure for the context can be as difficult as designing
the entire formal system, and much of this paper is devoted to motivating and
explaining our particular choice. We give the central definition below, but read-
ers may simply think of I" as a black box declaring all identifiers that expressions

Global, Regional, and Local Contexts 5

can use, and then revisit the formal definition from time to time while reading
the subsequent sections.

Definition 1 (Context). A UniFormal context I' is of the form G F where
— global context: G is a declaration of the form open theory root = {7}
We think of T as the set of all available toplevel declarations. The name root
is irrelevant and signifies the root of the namespace hierarchy.
— F is a stack in which each frame is of the form | R L or R L where
e regional context: R is a theory of the form {p}.
We think of p as the set of all declarations that are available in the
current theory.
e local context: a list L of variable declarations
We think of L as the set of bound variables in scope for the currently
traversed subexpression.
e transparency: an optional modifier | that indicates whether or not the
identifiers of the previous frame remain in scope for the current frame.

Contrary to the global context (which stays fixed during traversal) and the lo-
cal context (which is transient in the sense that bound variables are declared, stay
in scope for a while, and then go out of scope forever), the regional context can
be changed back and forth. For example, if a traversal encounters m : Mod(T)
(which binds a variable m whose type makes it a model of theory T'), it creates
and pushes a fresh frame in which to process the anonymous theory T'. After-
wards that frame is popped to remove the identifiers of T from the scope. But
when m is used later on, say in an expression m.c for some symbol ¢ of T, the
body of T must be brought back into scope to retrieve and process the type of
c. Thus, we can jump to other theories by pushing onto the stack and return
by popping in a way akin to how programming languages use a stack frame for
each function call.

Switching to theory 7" by pushing a new frame for 7" will happen frequently,
and we introduce a notation for it:

Definition 2 (Context Extension). Given a context I' = G F and a theory
I'+=T THY, we define

r+T:=G(F,(T' @) I'+|T:=GF, (T o)

These extend F with a fresh frame initialized with the normal form of T as the
regional and the empty list @ as the local context.

Ezample 1. The algebraic hierarchy (the Hello-World of mathematical module
systems) starts with

theory Carrier = {typeu},
theory Magma = {include Carrier, termop : (u,u) — u}
theory Semigroup = {include Magma,

termassoc : » Vx,y, z : u.op(x,op(y, z)) = op(op(z,y), 2)}

6 F. Rabe

Here and in subsequent examples, we assume an instance of UniFormal in which
all the relevant constructors for types and terms are present such as —, A\, —(—)
for functions, and the usual connectives and typed quantifiers like V and =.
The global context is the entire development. When traversal reaches the
equality in the associativity axiom, the context stack contains a single frame:
Its regional context contains typewu and termop : (u,u) — w, which stem
from the normalization of the preceding declarations of the current theory, i.e.,
include Magma. Its local context declares the bound variables x : u,y : u, z : u.

3 Open vs. Closed Theories

3.1 Distinction

system open closed

Isabelle theory locale, type class
Rocq package module, type class, record
Mizar article structure

sTeX module mathstruct
OpenMath/MathML|content dictionary —

MMT — theory
SageMath module category

Axiom — category

Java package class

C++ namespace class, struct

Fig. 3. Analogues of Open and Closed Theories in Various Systems

UniFormal distinguishes two kinds of theories. We call a theory open if
its declarations are freely accessible from the outside, otherwise closed. For
example, in opentheoryr = {termc : A}, termd = 7.c, the symbol ¢ of
the open theory 7 is referenced using a qualified identifier. If 7 were closed,
such a reference would be ill-formed. Closed theories require additional language
features that regulate access to them.

Most formal systems (see Fig. 3) use a similar combination of open and
closed theories, albeit sometimes in multiple variants and/or with a less clear-
cut difference. Notably, MathML and MMT do not make the distinction, and the
author now sees that as a deficiency.

The open/closed theory distinction is analogous to the open/closed world
assumption. An open theory is effectively just a namespace. The set of inhab-
itants of the open world (in our case: the expressions over the open theory) is
open to future changes: symbols can be added, deleted, or moved between open
theories at will, incurring “only” the cost of updating qualified downstream ref-
erences to them. Consequently and critically: induction on the set of inhabitants
is not allowed because it would be broken by extension.

Global, Regional, and Local Contexts 7

A closed theory is like an open one except that it is “closed off” in the sense
that induction on the set of inhabitants is allowed. Common language features
to access closed theories and to leverage this induction are (i) the models of
C' (where induction is used to interpret all expressions in the model), (ii) the
term language of C' (where induction is used for induction on expressions), or
(iii) Prolog-style querying and negation-by-failure (where induction is used to
exhaustively search all expressions). This paper formally defines only (i), but
UniFormal’s closed theories can be used for the others as well.

The main purpose of open theories is to provide namespaces both inside files
and across files as when structuring projects into packages and folders. In UniFor-
mal, we assume the current project, with all its dependencies, to be provided as
a single open theory G containing all available toplevel declarations—the global
context. GG is the root of a tree, whose inner nodes are nested open theories
(representing packages, folders, namespaces, etc.) and whose leaves are symbol
and closed theory declarations.

Remark 1 (Imports). When packages are published in central repositories, many
languages provide import statements to tell the tool which open theories are
going to be used. These may have some additional non-trivial semantics, e.g.,
making symbols available via unqualified names, renaming symbols, or selecting
only some symbols of an open theory to import. But their main role is to provide
extra-logical package management that builds the open theory that a project
depends on. In particular, imports are very different from includes, which make
closed theories available. UniFormal itself does not feature imports although
particular instances typically will.

3.2 Models of a Theory

Consider a closed theory C' consisting of a list of term/type declarations for
names s;. Intuitively, a model m of C is an object that provides an interpretation
for every s;. We can think of C' and m as

— a record type and a record value,

— a logical theory and a model for it,

— a specification/interface and an implementation.
This only makes sense if C' is closed: changing the symbols of C' changes what
the models are.

Remark 2 (Are Theories Types?). In OO-languages like Java, both the theory
and its models can be represented as classes, usually called abstract and concrete
classes. (Technically, we must distinguish between the concrete class and its in-
stances. However, this distinction only becomes relevant if C' contains mutable
fields, which we do not consider here.) Moreover, the closed theories (i.e., the
classes) double as the type of models. Many computer algebra systems like Ax-
iom [JS92], SageMath [ST13], or FoCaLiZe [H*12] do the same. Alternatively,
e.g., in SML, the two are strictly distinguished with models of a theory cor-
responding to structures implementing a signature. Structures and signatures

8 F. Rabe

are two additional kinds of symbols with a separate typing relation. In some
languages, both styles of closed theories exist, e.g., Isabelle has locales on a
separate level [KWP99] and records as types; Rocq similarly has modules and
records [Coql5]. In [MRK18], we discuss this in detail and speak of internalized
theories if there is a type of models of C.

In UniFormal, Mod(C) is the type of models of C, and mod(T) for a concrete
theory T is a term of such a type. For example, Mod(Magma) is the type of
magmas, and mod(include M agma, typeu = Int, termop = \z,y.z +y) is a
model of it. Thus, closed and concrete theories give rise to type and terms. To
type-check mod(T'), we need to check that T indeed defines every field of C' and
does not conflict with any definitions already present in C'. That is one purpose
of the inclusion judgment (which we define in Sect. 4):

I'+C THY I'-C < T T is concrete
I' Mod(C) TYPE ' mod(T) : Mod(C)

The elimination forms take a model m : Mod(C') and project out C-symbols
s, commonly written as m.s. We generalize this syntax to allow applying m to an
arbitrary C-expression. This corresponds to the application of the interpretation
function that maps C-expressions to their semantics in m:

I'bm:Mod(C) TI'+|CHATYPE TI'bFm:Mod(C) TI+|CHt:A
I'Fm.ATYPE TFmt:mA

I'tm:Mod(C) I'+|CEHSTHY
I'm.S THY

Here I' 4 |T extends the context with the declarations of C' in order to build the
C-expressions. The details are defined in Sect. 5.2.

The computational behavior of m.— is that m.s (for a symbol s) projects out
the definition of the field of s in m:

I'tmod(T) : Mod(C) typea=Ain o
I'-mod(T).a = subsmoUT)(A)

and accordingly for term and theory symbols For composed expressions, m.—
behaves like a homomorphic extension, e.g., I' - m.(A — B) = m.A — m.B and
I' - m.Int = Int. The grayed out operation replaces occurrences of A? (which
refers to the current region) with mod(T). It is defined in Sect. 5.2.

Remark 3 (The Type of Types). The combination of abstract type fields and
a type of models allows defining the type of types as Mod({typeuniv}). This
raises the question of consistency when giving a semantics because higher uni-
verses may be needed to hold this type. Both set theoretical systems like Mizar
[TB85] and type theoretical systems based on Martin-Lof type theory [ML84]
have developed sophisticated solutions. In programming languages, having the
type of types can be harmless; sometimes, like in Scala, the type of types simply

Global, Regional, and Local Contexts 9

exists, and one has to dive deep into the language semantics to see where and
how any issues are handled.

A rigorous semantics to UniFormal must carefully work out the details in
a way that retains consistency. While this is very difficult, we ignore the issue
here because it is orthogonal to our results. In fact, we are not even sure if a
universal representation language should address the issue at all or if it should
(at the risk of inconsistency and akin to informal mathematics) leave the details
unspecified to avoid over-committing to any one solution.

Remark 4 (Dependent Types). The combination of nested theories and the type
of models allows creating dependent types (in the sense of type expressions with
terms as subexpressions). For example, theory 7 = {term ¢ : Int, theoryv =
{...}} yields, for any value n, a different type Mod(mod(include 7, termc =
n).v). Abstract type fields in theories have a similar effect. Therefore, it is dif-
ficult to design a language for theories and models without allowing some form
of dependent types, and UniFormal does so.

3.3 The Term Language of a Theory

Term language types can be seen as dual to the type of models of a theory. For
example, consider theory N = {typen, termz : n, terms : n — n} (assuming
we have function types —). Its term language is that of the natural numbers.
More generally, we can represent families of mutually recursive inductive types
or context-free grammars (using one type symbol per non-terminal) like this.

Constructing objects through term languages is commonly done, albeit usu-
ally under a different name: it subsumes inductive types, Herbrand models, free
objects over some generators such as rings of polynomials, the set of syntax trees
over a grammar, or the set of derivations over an inference system.

While we do not consider it in this paper, our implementation already sup-
ports an extension of UniFormal with term language types: It allows forming
the type T[A], which holds the normal terms over theory T of type A. Induc-
tion on the type T[A] is possible but only from outside of T. For example, in
theory N = {...},termeven : N[n] — Bool = ..., induction on the term
language of N is allowed in the definition of even but not inside V.

4 Inclusion of Theories

4.1 Definition

Intuitively, normalization of include S occurring in T means to copy all decla-
rations of S into 7. Only closed theories can be included—including an open
theory would be redundant because we can already refer to their symbols any-
way. In terms of theory morphisms, the include declaration induces an inclusion
morphism from S to T'.

Precisely, for theory expressions S, T', an inclusion morphism exists, written

I'+ S — T, iff every declaration in 5" is also part of T" in the following sense:

10 F. Rabe

— If the former has a term symbol ¢ of type A [with definition ¢], then the
latter has a term symbol ¢ of type A" such that '+ T+ A <: A’ [and with
definition ¢’ such that I' + T F ¢ = ¢'].
— If the former has a type symbol a [with definition A], then the latter has a
type symbol a [with definition A’ such that '+ T+ A = A'].
— If the former has a theory symbol ¢ with body X, then the latter has one
with the same body.
Clearly, this relation is reflexive and transitive, which is critical for efficient
implementations. Moreover, we define equality of theories as inclusion in both
directions, thus making inclusion an order.

The normalization of theories (see Sect. 4.3) is defined in such a way that
include declarations do indeed induce a morphism: We can prove that if I" -
T THY and the body of T" contains include S, then I'+ S < T

4.2 Relation to Subtyping

Inclusion induces subtyping between the types of models: if I' .S < T, then
I't Mod(T) <: Mod(S). Informally, if T is bigger than S, than defining all of
T implies defining all of S. This inclusion=supertype relationship is common in
module systems, and languages often say that T" inherits from S. Alternatively,
languages may require applying an explicit forgetful functor to turn a model of
T into a model of S, e.g., with Rocq or Isabelle records, or infer the forgetful
functor like Mizar [TBS85].

Even though we do not formally define term language types here, we mention
the anticipated subtyping rule because of its symmetry: If I' = S < T, then the
term language of S forms a subtype of the term language of T, i.e., term language
types and model types behave dually.

Remark 5 (Decidability). Note that equality of types and terms is needed to
determine theory inclusion, and theory inclusion is needed for subtype checking
and thus for term/type equality checking. In particular, the equality of types
and terms must be decidable for theory inclusion to be decidable. Whether or
not that is the case, depends on what other types are added in a particular
UniFormal instance.

4.3 TUnion and Mixin of Theories

We do not need primitive syntax for the union of theories because we can simply
define it as S + T := {include S, include T'}.

More generally, we need a dependent union S < D = {include S, 5}
to extend S with declarations D that may already use the symbols of S. For
example, we have {typea} < termc:a = {typea, termc : a}. That raises
the question of merging declarations, e.g., do we have that

{termc: Int} < termc=1 = {termc:Int =1}

Global, Regional, and Local Contexts 11

Dependent unions with such merging behavior are central to many systems in-
cluding the inheritance systems of OO-languages and mixin or trait-based mod-
ule systems. We adopt that idea in UniFormal and define theory normalization
in such a way that multiple declarations for the same name are merged.
Theories are normalized by merging in every declaration individually as in
S <« Dy € ... < D,. In particular, we normalize includeT by normalizing
T into a list of declarations and then merging those in one at a time. A theory
is well-formed if its normalization succeeds. It is difficult to define it in any
other way because the normal form of a theory is needed to check references to
its identifiers. However, this does not require normalizing each expression in a
theory, only to expand all includes and merge all declarations of the same name.

Ezxample 2. The theory Group is usually defined by including M onoid. But ac-
tually Monoid needs both neutrality axioms whereas Group needs only one.
UniFormal can capture this by defining some fields of the included theory:

theory Monoid = {include Semigroup, terme : u
termneutL :» YV : w.op(e,x) = x, termneutR :» Vz : u.op(e,x) = x}
theory Group = {include Monoid, (axioms for inverse omitted),
termneutR = (now provable, proof omitted)}

Note that merging declarations can result in a normal form with two mu-
tually recursive declarations, i.e., normal theories are sets rather than lists of
declarations. A neat side effect of this is an easy handling of recursive functions:

Ezample 3 (Recursion). We define the mutually recursive functions odd and
even (omitting the usual definitions) as the theory below, which normalizes to
2 mutually recursive declarations

{termodd : Int — Bool, termeven : Int — Bool = ..., termodd = ...}

Not all merges are well-formed, e.g., UniFormal rejects merges if two defini-
tions for the same name are not identical as in {termc: Int = 1} < termec :
Int = 0. If multiple types are merged, the least upper bound is computed. This
is non-trivial in particular for model types, where it is obtained by taking the
union of theories as in {termec : Mod(S)} <« terme : Mod(T) = {termc :
Mod(S + T)}. That corresponds to the typical behavior in languages with in-
heritance. To protect the user from inadvertently introducing an inconsistent
theory, UniFormal flags an error if the bound ends up being the empty type as
in {termc: Int} < termc:Bool = {termc: Void}.

Remark 6 (Inconsistent Merges). If we see a symbol’s type and definition simply
as special cases of axioms, there is no need to ever reject a merge. We could
merge, e.g., termc : Int and termc : Bool into termc : Void, or termc = 1
and termc = 0 into a theory in which 0 = 1 holds. Typically, the resulting
theories will be inconsistent, but that is not problematic per se. An alternative
design could accept all merges and defer such inconsistency analysis to linters.

12 F. Rabe

Remark 7 (Overloading). Some languages with inheritance, in particular OO-
languages, allow for overloading: Then merging term ¢ : Int and term c : Bool is
not an error. Instead, it results in two different declarations that share the symbol
name. This issue can be resolved if we assume that the official internal identifiers
is a pair of ¢ and (some normal form of) its type. This is, e.g., how official Java
identifiers are formed to disambiguated overloaded names. Our language will not
support overloading but could be extended to do so.

Remark 8 (Overriding). Overriding arises if there are two conflicting definitions,
e.g., if it is not an error for 7" to declare termc: Int = 1 and termc : Int = 0.
Many OO-languages allow this, typically when the former is inherited, say from
S, and the latter is local in T'. Then the local definition overrides the inherited
one silently (as in Java) or only if an “override” keyword is present (as in Scala).
Either way, this is problematic because the inclusion from S to T is now broken
in the sense that the original definition from S is no longer valid in 7. This
throws every proof carried out in .S in question because it might have relied on
the old definition. In terms of theory morphisms, in the presence of overriding, an
include declaration does not induce an inclusion morphism anymore. Therefore,
we reject overriding in UniFormal.

Remark 9 (Redefinition). A special case of overriding can be allowed safely: if
the overriding definition is extensionally equivalent to the overridden one. For
example, if the theory S of groups is included to form the theory T of com-
mutative groups, a computer algebra system is well-advised to override some
algorithms of S with more efficient versions for commutative groups. Similarly,
Mizar [TB85] uses redefinitions (albeit in open theories, rather than in closed
ones) to switch the definition of an identifier to an equal one that is more helpful
in the current context. Redefinitions do not suffer from the drawbacks of general
overriding and are thus compatible with UniFormal. But they require proofs
about the equality of terms and are therefore very difficult.

4.4 Total Includes

We define an inclusion I' .S < T to be total if every abstract symbol decla-
. o=, .=
ration in S° is concrete in T . Thus, a total include is conservative in the sense
that it does not change the semantics of 7. It can be seen as T implementing
the interface S, or as a special case of a theory morphism from S to T" that maps
every symbol of S to the corresponding definition in 7T'. UniFormal provides two
ways to make an include total.
Firstly, the keyword total triggers a totality check at the end of the contain-
ing theory. For example, in

theory Preorder = {termr : (u,u) — Bool, (axioms omitted)},
theory Monoid = {(as above), total include Preorder,
termr = Az,y.3d.op(z,d) = y}

the keyword total asserts that Monoid not just inherits from but implements
the theory Preorder. Note that all types in the definition of r can be inferred.

Global, Regional, and Local Contexts 13

Here the totality check at the end of Monoid would fail because the proofs of
the axioms (reflexivity and transitivity) are still missing.

Secondly, an include can have a definition. include C' = ¢ is a legal declara-
tionin T iff F'+T + e : Mod(C), i.e., the definition of an include must be a model
of the included theory. include C = e is equivalent to declaring total include C
followed by term s = e.s resp. type s = e.s for every term/type symbol s of C.
In programming language terms, defined includes are delegation: If T already
has a term e that implements the interface C, it can use a defined include to
delegate all C-calls to e.

4.5 Guarded Theories and Conservative Extensions

Only closed theories make sense to be included. Accordingly, we might say that
only closed theories may include others. But here it turns out, a small general-
ization yields a critical expressivity gain: If opentheory 7 = {includeC,...}
includes closed theory C, we call 7 guarded by C'. Like for all open theories,
access to symbols s of T' is by qualified identifiers 7.s. But now we define 7.s to
be well-formed only in contexts that also include all guards of C. This allows
writing conservative extensions of C' as open theories guarded by C.

Writing a new closed theory D that extends C' for this purpose would be
problematic for three reasons: Firstly, any model m : Mod(C') must be cast into
a model of D to utilize the definition/theorem. Secondly, the normal forms (which
must be computed frequently) of the closed theories become bigger, presenting
serious scalability issues. Therefore, both IMPS [FGT93] and Isabelle locales
[KWP99] allow adding defined symbols to C' from the outside. But this is has
a rather imperative flavor, and does not address the third issue: having many
such extension by different authors increases the danger of name clashes when
multiple extensions must be included at the same time.

UniFormal solves all issues by combining small closed theories that prioritize
the abstract symbols with large guarded open theories for the extensions as in

open theory Doubling = {include Monoid, term double = \x.op(zx,x)}

Now assume we have m : Mod(Monoid) and want to access the global identifier
g := Doubling.double on m. We can do this by simply writing m.g requiring no
further extensions of the syntax: the typing rule (as shown above) for m.g checks
g in context I'| + Monoid where the guard Monoid is available so that checking
g succeeds.

5 Global vs. Regional vs. Local Level

Finally, we can understand UniFormal’s level of identifiers. The table below gives
an overview. Note that these levels are orthogonal to the symbol kinds, i.e., we
have global, regional, and local identifiers for terms, types, or theories.

14 F. Rabe

level global regional local
paradigm toplevel declaration field in class/record bound variable
identifiers qualified identifiers names variables
declared in open theory closed theory block, binder
scoping global global but guarded lexical, narrow
name clash handling|qualification merging shadowing
semantics fixed context-specific place-holder

Fig. 4. The Levels of UniFormal Identifiers

5.1 Identifiers

The global identifiers are the ones declared in open theories. They have a qual-
ified identifier rooted at the toplevel, via which they can be accessed from every
context. Consequently, they cannot be a-renamed without breaking downstream
content. Name clashes are disambiguated by putting symbols of the same name
into different open theories resulting in different qualified names.

The semantics of a global identifier is fixed: Most global declarations include a
definiens that explicitly states the meaning of the global identifier. If no definiens
is present, the meaning is still fixed but unknown, e.g., a stub declaring only the
type of a foreign function that is provided by the runtime environment.

The local identifiers are the bound variables. Their scopes are lexical and
always contained within an expression. They are easily a-renamable, and name
clashes are resolved by shadowing, i.e., each local identifier is resolved to the
innermost binding of that name.

Local identifiers are usually introduced declaratively by a binder as in
Vz : A.t, in which case the scope of x is t. But UniFormal also allows imper-
ative bindings: This uses block terms (t1,...,t,), where each t; may introduce
variables whose scope extends to the end of the block, as in (termz : Int =
1, termy : Int = 2+ 1, f(y)). More complex examples of imperatively binding
terms are pattern-matching definitions like head :: tail = [for some list [; dy-
namic binding as in discourse representation terms like ((3z : Int.P) = B) A C
where z is visible in B but not in C' [KK97]; and tactics in imperative proof
languages such as intros in Rocq that dynamically introduce identifiers.

Remark 10 (Theory Variables). We allow for term and type declarations in local
contexts but not for theory declarations. It is intriguing to have theory variables
to formalize computations on theories like the ones in [SR19,CO12]. But it is an
open problem how to do that best.

The global and local identifiers as described above are standard. The idea of
regional identifiers is new: They are the symbols declared in closed theories,
and they combine properties of global and local identifiers.

Consider a closed theory C of the form {termc : A, ...}. Like local and
contrary to global identifiers, there is no way to assign a qualified identifier to ¢

Global, Regional, and Local Contexts 15

(because C' might appear anonymously), the symbol ¢ acts as a placeholder for
values that are to provided later, and a-renaming feels natural. But like global
and contrary to local identifiers, ¢ can be referenced from the outside: e.g., if we
have a model m : Mod(C'), we can call m.c to access its definition of ¢; or if we
add term language types, then ¢ must occur in terms over C. Thus, ¢ as a name
has global scope, but its semantics varies with the theory in which it is declared.

Finally, regional identifiers have an entirely different name clash behavior
than both local and global identifiers: a second regional declaration for the same
name is merged into the first one.

Remark 11 (Named Record Types). Some formal systems nudge or even force
users to introduce record types only if they are tied to a global identifier. For
example, Rocq features named record declarations of the form Record R := {a :
A,b : B}. In this case, R and thus a and b can be taken as global identifiers.
This avoids the need for regional identifiers, greatly simplifying the language,
but preventing the construction of anonymous record types. This subtle design
decision of named vs. anonymous record types is often barely noticeable for users,
but has massive consequences for system development.

5.2 Contexts

We use a three-partite context holding the global, regional, and local identifiers.
For example, when considering the term ¢ in

opentheory m = {
D, open theory 7 = {E, theory 7 = {ﬁ, terme = Az : A.t}}}

the global context holds D and E, the regional context ﬁ, and the local context
termx : A. t can reference global declarations by, e.g., 71.7%.s for a symbol s
from E , and references regional and local identifiers by name.

But we have to go one step further. Consider nested closed theories as in

theory 2Pointed = {type a, theory Point = {termc: a},
termp : Mod(Point), termq : Mod(Point)}

Type-checking Point nested inside 2Pointed requires opening a new region for
the symbol ¢, while keeping the region of 2 Pointed with the symbol a accessible.
Nested theories also occur every time an anonymous theory C'is used in Mod(C)
or mod(C'). Therefore, we use the stack of regions in Def. 1.

Reconsider the rule for checking the model type Mod(C) from Sect. 3.2. To
check I' F Mod({D}) TYPE, we check I - {D} THY. To check the latter, we
check each declaration D; in the context I' + (Dy...,D;_1). Not using the |
modifier means that each D; can see the outer regions.

In contrast, in the elimination rule for model types, which concludes with
I' - m.A TYPE, the hypothesis is I' + |C - A TYPE. Here the | modifier
ensures that A can only see C-identifiers no matter in which context m.A is
used. That corresponds to m.— representing the application of morphism m to

16 F. Rabe

a C-expression: a term I' - m : Mod(C) is the same as a theory morphism from
C to the innermost region of I'.

Technically, we must actually write theory Point = {termc :A'.a} above,
where Al refers to the first enclosing region. That is necessary to differentiate if
two nested regions define the same identifier.

Ezample 4. Consider the theory of bimagmas where two binary operations on
the same carrier (as defined in Ex. 1) are present, like in a ring:

theory BiMagma = {include Carrier,
term add : Mod(include Magma, typeu =A'.u)
termmult : Mod(include Magma, typeu =At.u)}

Here both BiMagma and the nested regions in the argument of Mod(—) declare
unrelated regional identifiers u. In this particular example, we happen to want to
identify them and therefore extend the additive and the multiplicative magma
with typeu =Al.u.

Finally, we can define the semantics of contexts and identifiers:

Definition 3 (Lookup in a Context). Consider a context I' = G Fy,..., F}
where each F; is of the form R; L; or | R; L;. Let k be the smallest number such
that Fy, uses the | modifier. Then:
— A global identifier 1. Tn.8 resolves to the declaration for s that occurs in
G in a sequence of nested open theories ;.
— A regional identifier s resolves to the declaration for s in R;.
— The special identifier A7 is well-formed if j < k; its type is shi [t/ (Mod(R;)).
In particular, £7.s resolves to the declarations for s in region R;.
— A local identifier x resolves to shift’(d) where d is the last declaration for
xin Ly, ..., L1 and d is found L;.

Here, the expression AY corresponds to the “this” or “self” keyword present
in many OO-language. It refers to the instance of the current theory. A™ for
n > 1 generalizes this principle, e.g., A' refers to the instance of the theory
enclosing the current theory. We can think of each A™ as a variable implicitly
declared at the beginning of each region and representing the region itself. To
refer to that variable, A™ uses its de-Bruijn index n. In particular, A® represents
the current region, and when computing expressions like m.c, all occurrences of
A% in the declaration of ¢ must be substituted with m.

Akin to the de-Bruijn representation of variable binding, we must define
shifting and substitution operations to move expressions between regions. Firstly,
to move expressions originating in the j-th enclosing region into the current
region, we apply s/ift/(—): it shifts all occurrences of A* to AT+,

Ezample 5. Consider Ex. 4 and assume that Carrier additionally contains the
declaration typev = u. Now assume we use the expression Al.v inside the type
of add. The unshifted type of Al is Mod(BiMagma), which at this point is
Mod({typeu, typev = u}). This becomes Mod({typeu, typev =Al.u}) after
shifting, and A'.v definition-expands to Al.u.

Global, Regional, and Local Contexts 17

.

Dually we define the function subs™(E) to move an expression F from an
enclosed region to the current one—an operation that requires a model m of the
enclosed region. subs" (E) behaves similarly to shift '(E) with the exception
that subs(A®) := m. In particular, we have subs” (shift'(E)) = E.

6 Conclusion

We have introduced the UniFormal language for an OO-style definition of math-
ematical theories and models. The key to obtaining a simple syntax that admits
a rigorous semantics was a novel notion of contexts that distinguishes global,
regional, and local identifiers, with a stack of regional contexts to allow jump-
ing back and forth between regions. While global and local identifiers are well-
understood, the regional identifiers offer a novel systematic representation of
various common constructions that can be difficult to represent otherwise. Ex-
amples include record fields or generators like the variables in a polynomial ring.

Concrete instances of UniFormal can extend it towards specialized languages
like logics, programming languages, or or flexiformal languages like sTeX [Koh08],
while enabling interoperability through a shared theory layer. Indeed, such ex-
tensions can be designed by adding features that do not interact substantially
with the context.

We have already built one such instance: a UniFormal programing language'
that features dependent function types, collection types, as well as mutable re-
gional and local identifiers and the usual control flow operators.

References

ABCT03. R. Ausbrooks, S. Buswell, D. Carlisle, S. Dalmas, S. Devitt, A. Diaz,
M. Froumentin, R. Hunter, P. Ion, M. Kohlhase, R. Miner, N. Poppelier,
B. Smith, N. Soiffer, R. Sutor, and S. Watt. Mathematical Markup Lan-
guage (MathML) Version 2.0 (second edition), 2003. See http://www.w3.
org/TR/MathML2.

BCC'04. S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical report, The
Open Math Society, 2004. See http://www.openmath.org/standard/om20.

CFS20. J. Carette, W. Farmer, and Y. Sharoda. Leveraging the information con-
tained in theory presentations. In C. Benzmiiller and B. Miller, editors,
Intelligent Computer Mathematics, volume 12236, pages 55-70. Springer,
2020.

CO12. J. Carette and R. O’Connor. Theory Presentation Combinators. In J. Jeur-
ing, J. Campbell, J. Carette, G. Dos Reis, P. Sojka, M. Wenzel, and V. Sorge,
editors, Intelligent Computer Mathematics, volume 7362, pages 202-215.
Springer, 2012.

Coqlbs. Coq Development Team. The Coq Proof Assistant: Reference Manual. Tech-
nical report, INRIA, 2015.

! Source code and examples available at https://github.com/UniFormal/UPL/.

http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2
http://www.openmath.org/standard/om20
https://github.com/UniFormal/UPL/

18 F. Rabe

Duml2.
FGT93.

Ht12.
HKR12.

JS92.

KK97.

Koh06.

Koh08.

KWP99.

ML8&4.
MRK18.

ORS92.

Pau94.
RK13.
Roc25.
S*13.

SR19.

TBS85.

WKR17.

S. Dumbrava. A Type Theory based on Reflection. Master’s thesis, Jacobs
University Bremen, 2012.

W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive Mathematical
Proof System. Journal of Automated Reasoning, 11(2):213-248, 1993.

T. Hardin et al. The focalize essential, 2012. http://focalize.inria.fr/.
F. Horozal, M. Kohlhase, and F. Rabe. Extending MKM Formats at the
Statement Level. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. So-
jka, V. Sorge, and M. Wenzel, editors, Intelligent Computer Mathematics,
pages 64—79. Springer, 2012.

R. Jenks and R. Sutor. AXIOM: The Scientific Computation System.
Springer, 1992.

M. Kohlhase and S. Kuschert. Dynamic lambda calculus. In Meeting
on Mathematics of Language, pages 85-92, 1997. https://kwarc.info/
people/mkohlhase/papers/d1c00.pdf.

M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Docu-
ments (Version 1.2). Number 4180 in Lecture Notes in Artificial Intelligence.
Springer, 2006.

M. Kohlhase. Using BTEX as a Semantic Markup Format. Mathematics in
Computer Science, 2(2):279-304, 2008.

F. Kammiiller, M. Wenzel, and L. Paulson. Locales — a Sectioning Concept
for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery,
editors, Theorem Proving in Higher Order Logics, pages 149-166. Springer,
1999.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

D. Miiller, F. Rabe, and M. Kohlhase. Theories as Types. In D. Galmiche,
S. Schulz, and R. Sebastiani, editors, Automated Reasoning, pages 575—-590.
Springer, 2018.

S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In D. Kapur, editor, 11th International Conference on Automated Deduction
(CADE), pages 748-752. Springer, 1992.

L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1-54, 2013.

Rocq Consortium. The Rocq Prover: Reference Manual. Technical report,
INRIA, 2025.

W. Stein et al. Sage Mathematics Software. The Sage Development Team,
2013. http://www.sagemath.org.

Y. Sharoda and F. Rabe. Diagram Operators in MMT. In C. Kaliszyk,
E. Brady, A. Kohlhase, and C. Sacerdoti Coen, editors, Intelligent Computer
Mathematics, pages 211-226. Springer, 2019.

A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In
A. Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 26—28. Morgan Kaufmann, 1985.

T. Wiesing, M. Kohlhase, and F. Rabe. Virtual Theories — A Uniform
Interface to Mathematical Knowledge Bases. In J. Blomer, 1. Kotsireas,
T. Kutsia, and D. Simos, editors, Mathematical Aspects of Computer and
Information Sciences, pages 243-257. Springer, 2017.

http://focalize.inria.fr/
https://kwarc.info/people/mkohlhase/papers/dlc00.pdf
https://kwarc.info/people/mkohlhase/papers/dlc00.pdf
http://www.sagemath.org

	Global, Regional, and Local Contexts

