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Abstract. Interactive deduction systems are becoming increasingly pow-
erful and practical. While design has historically focused on questions
such as the choice of logic or the strength of the prover, modern systems
must additionally satisfy practical requirements such as good IDEs or
easily-searchable libraries. We hypothesize that many such practical re-
quirements can be solved independently of the specific logic or prover,
and that doing so will enable a fruitful separation of concerns between
logic/prover and user interface developers.
To that end, we design and implement a logic-independent IDE-style
user interface, which we base on the jEdit editor and the Mmt lan-
guage. jEdit is a full-fledged and extensible text editor, and Mmt is a
logic-independent representation format that already offers a variety of
generic knowledge management services. Taken together, they let us real-
ize strong user support at comparatively little cost: Example features of
our IDE include hyperlinking, awareness of inferred information, library
browsing, search, and change management.

1 Introduction and Related Work

Motivation Deduction systems such as type checkers, proof assistants, or the-
orem provers have initially focused on soundness and efficiency. Consequently,
the most natural design choice for the user interface (UI) has often been a kernel
that implements the logic and the theorem prover and with which users inter-
act through a read-eval-print loop. But over time formalization projects have
reached larger scales that call for more sophisticated UIs, and it has proved
non-trivial to add these to existing kernels.

Users more and more expect interactive, flexible UIs, e.g., like the ones they
know from software engineering. They ask for features such as highlighting of
errors, fast rechecking after editing any part of the project, or a powerful search
function over the library. For example, in personal communications with the
author, members of the Feit-Thompson project in Coq [GAA+13] pointed out
the UI as a key bottleneck (rather than the type theory or the theorem prover);
and Georges Gonthier expressed his wish for a better UI for searching. Similarly,
members of the L4.verified project in Isabelle [BDKK12] urged for better change
management support because their work was often delayed by long rechecking
cycles. And for casual users from outside the theorem proving community, the
UI can be more important than the underlying logic.

However, developers’ resources, tend to be stretched already by developing
(and maintaining) the kernel at all. Therefore, it is no coincidence that none



but the most mature systems like Coq [The14] or Isabelle [Pau94] are equipped
with graphical UIs. Arguably the most powerful UI is Makarius Wenzel’s Is-
abelle/jEdit [Wen12], and its history is telling: It required a multi-year effort
by one of the lead developers, throughout which he had to reimplement parts of
the kernel in order expose the needed kernel functionality to the UI component.

In this situation, it is important to investigate whether powerful UIs can
be realized independently of the kernel. This is well-known to be the case in
software engineering, where IDE frameworks like Eclipse [Ecl] are parametric
in the programming language, which is supplied as a plugin. This separation of
concerns between kernel and UI development would be even more valuable in
theorem proving, where developer communities are comparatively small.

Related Work The idea of generic UIs for theorem proving has so far mainly been
applied to lightweight user interfaces. These typically interact with an abstract
kernel through a read-eval-print interface. This has the advantage that almost
any kernel can be plugged into the UI at relatively little cost. Examples are Proof
General [Asp00], which uses a text editor, and Proof Web [Kal07], which uses a
web browser to host the UI. Similarly, [ABMU11] provides a wiki-like frontend
for Coq and Mizar.

It is often possible to enrich this abstraction layer with configuration and
query commands. But the lightweight approach is inherently limited by the fact
that the UI is not aware of the abstract syntax tree (AST) that is computed and
refined by the kernel.

We speak of heavyweight UIs if the UI is aware of (at least) the AST. Here
the AST should include the results of, e.g., disambiguation, type reconstruction,
and theorem proving, and nodes should carry cross-references to the correspond-
ing regions in the source. This awareness enables IDE-style UI features such
as AST display, error highlighting, tool tips, hyperlinks, and auto-completion.
Moreover, the kernel may expose functions for rechecking changed fragments
(and their dependencies) to enable change management. Aside from the one we
present here, Isabelle/jEdit [Wen12] is the only heavyweight UI we are aware
of, and we will relate the two in Sect. 5.

The disadvantage of heavyweight UIs is that it becomes much harder to plug
in an existing kernel (especially if they are implemented in a different program-
ming language than the UI). In fact, it is not always obvious whether it would
be easier to develop a heavyweight UI for a specific existing kernel or to connect
a generic heavyweight one.

A compromise can be to develop UIs for logical frameworks like Isabelle
[Pau94], which can be inherited by all object logics. A similar argument applies
to UIs for very rich systems like Coq [The14], whose logic can be customized by
disabling language features or adding axioms. The Agda kernel [Nor05] achieves
advanced UI features by dynamically generating code that is evaluated by the
emacs-based UI.
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Our Approach We hold that in the long run, a decoupling of kernel and UI can
prove beneficial if only because there are a lot more potential UI than kernel
developers. Somewhat provocatively, we observe that in monolithic systems, the
few people who understand the kernel well enough to improve the UI mostly do
not have the time and incentive to do so.

Therefore, we introduce jMmt, a logic-independent heavyweight user inter-
face. Our key idea is to design a rich abstraction layer between kernel and UI.
This permits the logic-independent development of UI features, which results in
a valuable separation of efforts:
– Logic developers can focus on designing the logic and implementing the

kernel. This frees valuable resources to improve the theorem prover.
– UI developers can focus on developing UI features without having to under-

stand any logic or prover. They benefit twice because their work becomes
easier and more reusable.

– Finally, this benefits developers of auxiliary components like proof hint gen-
erators (e.g., [KU13]) or search engines (e.g., [KŞ06]). They are enabled to
make their services logic-independent and directly integrate them with the
UI.
We base our abstraction layer on the Mmt language [RK13], a logic-indepen-

dent representation language that admits natural embeddings of virtually all
declarative languages. We model a kernel as a set of components for parsing
and validating the structure of a document as well as the terms within it. This
lets us develop advanced UI features such as change management and search in
addition to the ones we mentioned above.

On the implementation side, our IDE makes use of the Mmt API [Rab13],
which already offers a high-level machine interface to Mmt content, as well as
the jEdit text editor, which offers a rich plugin framework for both UI and
language-specific extensions. To connect them, we develop a plugin for jEdit
based on Mmt, which implements our abstraction layer and the UI functionality.

To evaluate and exemplify this design, we have developed a kernel for the
logical framework LF [HHP93] that instantiates our abstraction layer. This yields
a powerful IDE for LF, whose UI features surpass existing implementations of
comparable languages.

Moreover, our LF kernel is designed to be highly extensible. Thus, it is possi-
ble to develop additional kernels quickly by plugging in, e.g., different operators,
notations, or typing rules.

Overview Sect. 2 summarizes the preliminaries we need about jEdit and Mmt.
In Sect. 3, we describe the UI functionality, which amounts to the user perspec-
tive of jMmt. In Sect. 4, we describe our abstraction layer, which amounts to
the kernel developer perspective of jMmt.

Source code, binaries, documentation, and additional screenshots and videos
are available from the Mmt homepage1. Early parts of this work were carried
out with Mihnea Iancu and presented as work-in-progress [IR12].

1 https://svn.kwarc.info/repos/MMT/doc/html/index.html
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2 Preliminaries

2.1 The jEdit Text Editor

jEdit is a widely-used Java-based text editor [jEd]. It is particularly interesting
as a UI for formal systems due to its strong plugin infrastructure that can be
used to provide IDE-like functionality. Thus, it provides a lightweight alternative
to complex IDE frameworks like Eclipse [Ecl].

Existing plugins already provide abstract interfaces for among others outline
view, error highlighting, auto-completion, hyper-linking, and shell integration
that can be implemented by format-specific plugins. Thus, relatively little glue
code is necessary to connect the UI components and the language-specific data
model.

2.2 The MMT Representation Language

Mmt [RK13] is a prototypical declarative language. It systematically avoids
committing to an individual logic or type theory and focuses on capturing their
joint structural properties. Specific language features such as function types
or equality are defined in separate modules, which serve as building blocks to
compose languages.

Theory Σ ∶∶= ⋅ ∣ Σ, c[∶ E][= E][#N]

Context Γ ∶∶= ⋅ ∣ Γ, x ∶ E
Term E ∶∶= c ∣ x ∣ c(Γ ;E∗)

Notation N ∶∶= (Vn ∣ An ∣ string)∗

Fig. 1. Mmt Grammar

Here we introduce only a small
fragment of Mmt that is sufficient
to exemplify our IDE. The gram-
mar is given in Fig. 1. A theory Σ
is a list of constant declarations.
A constant declaration is of the
form c[∶ A][= t][#N] where c is
an identifier, A is its type, t its definiens, and N its notation, all of which are
optional. A context Γ is very similar to a theory and declares typed variables.

type # type

kind # kind

Pi # {V1 }A2,
lambda # [V1 ]A2,
apply # A1 A2,
arrow # A1 → A2

Fig. 2. LF in Mmt

Type and definiens are terms, which are formed
from the constants, variables, and complex terms.
We use a general form c(Γ ;E1, . . . ,En) for complex
terms, which subsumes binding and application: c is
called the head of the term, the (possibly empty)
context Γ declares the bound variables, and the
Ei are the arguments. For example, in a λ-term
lambda(x ∶ A; t), λ is the head, x ∶ A the bound
variable context, and t the single argument.

The notation of c is used for the concrete representation of complex terms
with head c: Vn refers to the n-th bound variable, An to the n-th argument
(counting starts from the last variable), and they may be interspersed with ar-
bitrary delimiters. For example, if we declare the constant lambda with the no-
tation λV1 .A2, then λx ∶ A.t becomes the concrete representation of lambda(x ∶
A; t).

The following theories will serve as running examples throughout the paper:
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Example 1 (LF as an Mmt Theory). To obtain the logical framework LF, we
use the theory shown in Fig. 2. These constants do not have types. Instead,
they constitute primitive concepts, which can be used to form terms, which can
then occur as the types of other constants. However, their binding-arity and
argument-arity can be inferred from their notations, e.g., Pi binds one variable
and then takes one argument.

Once LF is defined, we can use it as a logical framework to define other logics:

Example 2 (A Logic in LF). Using the theory from Ex. 1, we can define a theory
for a simple logic by declaring (among others) the following constants

prop ∶ type # prop,
ded ∶ prop→ type # prop,
imp ∶ prop→ prop→ prop # A1 ⇒ A2,

and ∶ prop→ prop→ prop # A1 ∧A2,
andI ∶ {A}{B}dedA→ dedB → ded (A ∧B) # andIA3A4,
impI ∶ {A}{B} (dedA→ dedB)→ ded (A⇒ B) # impIA3

example ∶ {A}ded (A⇒ (A ∧A)) = [A]impI [p]andIpp

This theory uses the Curry-Howard representation of judgments as types: The
provability judgment of A ∶ prop is represented as the term dedA. The constant
example declares and proves a (trivial) theorem using the natural deduction
rules for conjunction and implication introduction. We already omit inferable
variable types and declare arguments to be implicit by not mentioning them in
the notation (e.g, the first 2 arguments of impI are implicit).

Mmt abstracts from the typing relation between terms. It fixes only the judg-
ments about terms as given in Fig. 3. These judgments can be defined arbitrarily
by specific languages represented in Mmt.

⊢T A TYPE inhabitability, i.e., A may occur as the type a constant
⊢T E ∶ A typing relation, in particular E may occur as the definiens of a constant

with type A
⊢T E = E′

∶ A equality of terms at type A

Fig. 3. Mmt Judgments Relative to a Theory with Name T

The Mmt implementation [Rab13] provides an API for maintaining Mmt
content. It is written in Scala and thus fully interoperable with the Java codebase
of jEdit. It is not an application with its own user interface. Instead, it focuses
on providing services that can be used in Mmt-based applications (such as our
IDE).

The Mmt implementation is highly extensible and relegates many features
to plugin interfaces. In particular, to instantiate Mmt with specific languages,
one supplies a plugin that implements the judgments from Fig. 3.

5



Note that via Curry-Howard, axioms, theorems, tactics, inference rules,
etc. can be represented as Mmt constants. In particular, the type of a theorem
represents the asserted formula and its definiens the proof (as in the constant
example of Ex. 2). In that case, the typing relation represents the correctness of
proofs.

This is flexible enough to represent the tactic-based proofs used in interac-
tive theorem provers: For example, we can declare an untyped constant auto

and use it as a proof. In that case, the implementation of the typing judgment
would include the theorem proving necessary to determine whether auto can be
accepted as a proof.

3 Generic User Interface Functionality

3.1 Basic Features

We use the phrase “basic features” to group together features that are relatively
easy to realize on top of the jMmt abstraction layer. Most of these features
make use of existing jEdit UI functionality, specifically the jEdit plugins Side-
Kick, ErrorList, and Hyperlinks. This is not, however, meant to imply that these
features are inherently easy to realize. Instead, this easiness positively evaluates
our design.

Fig. 4. jMmt Instantiated with Our LF Kernel

Abstract Syntax Display A dockable subwindow displays the abstract syntax
tree (AST) of the current buffer. This is shown on the left of Fig. 4, where we
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define the theory from Ex. 2 in LF. (Here, the green parts are the keywords and
separators of our structure parser (see Sect. 4.1.)

Users can navigate from a buffer position to the respective node in the AST
and vice versa, as shown in the jointly selected occurrence of ded. This is achieved
by using source references: Every node in the AST points to the region it
covers in the buffer. An example for the strength of source references in the AST
is that it took the author < 15 minutes to code the follwoing immensely useful
feature: Double-clicking on an operator selects the smallest sub-term containing
it.

The AST also includes information that is not present in the source but
inferred by the kernel. This can be seen in the types prop of x and y, which
occur in the AST but not in the source. Similarly, all inferred implicit arguments
occur in the AST.

Error Highlighting All errors returned by the kernel are displayed in a dockable
window and via line markers. This is shown at the bottom of Fig. 4. There
the kernel detected an example typing error in the definition of the equivalence
connective: ded is used instead of y⇒ x. Clicking on the error message resulted
in the selection of this ill-typed sub-term.

The error message also includes the kernel’s log messages from the branch of
the derivation that led to the error. In this case, the typing judgment ded ∶ prop
failed.

Note that the AST display is robust against errors. Firstly, parsing of the ill-
typed term succeeded so that the AST can be displayed. Secondly, even though
type-checking of the term failed, the type-checker returned a partially checked
term. We can see that in the inferred types of the bound variables x and y,
which are displayed correctly in the AST even though they occur in an overall
ill-typed term. This is very important because UI support is needed especially
when fixing errors.

Tooltips and Hyperlinking For all occurrences of variables and constants, jMmt
displays their types as tooltips. This includes the inferred types of bound vari-
ables and the inferred implicit arguments of constants.

Moreover, users can navigate from every occurrence of a constant to its dec-
laration. Because the Mmt project manager (see Sect. 3.4) serializes the AST
of every source file to disk, this includes declarations in files or projects that are
not currently open in the IDE.

3.2 Auto-Completion and Proof Hints

jMmt provides a basic auto-completion feature (realized based on SideKick). Us-
ing the AST, it determines the current theory and context at the cursor position
and suggests identifiers that are in scope.

Moreover, we realize a general hinting feature as follows. We declare a addi-
tional Mmt constant and implement a typing rule for it such that the term ⟪E⟫

is inferred to have type E. Both users and plugins can use such terms to represent
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a missing term of type E (e.g., an open subgoal). In that case, jMmt is aware of
the expected type at the cursor position and can provide better auto-completion
support.

Example 3. In our kernel for LF, we implement a completion rule: If jMmt
asks for completions for the open goal ⟪E⟫, this rule finds all constants or
variables c of type {x1} . . .{xm}T1 → . . . → Tn → T such that T unifies with
E via substitution σ. If a completion is chosen by the user, the rule inserts
c σ(x1) . . . σ(xm) ⟪σ(T1)⟫ . . .⟪σ(Tn)⟫.

Fig. 5. Proof Hints

In the upper part of Fig. 5, the user
is about to choose implication in-
troduction towards proving the ex-
ample theorem from Ex. 2. Our rule
returns impIA (A ∧ A)⟪dedA →

dedA∧A⟫. The bottom part shows
the situation afterwards (where the
implicit arguments have been re-
moved when inserting the hint into
the source).

Using a second rule to introduce λ-terms, the whole example proof can be
completed using repeated auto-completion.

More generally, any tactic, decision procedure, or proof hinting algorithm
can be realized as an auto-completion in this way.

3.3 Interactive Type Inference

Fig. 6. Inferred Type as a Tooltip

If a subterm is selected, jMmt queries the
kernel for its type and displays it as a
tooltip. This can be seen in Fig. 6 where
the user selected a sub-term of the proof
of the theorem from Ex. 2.

3.4 Project Management and HTML View

Mmt provides a notion of projects [HIJ+11] modeled after projects in software
engineering. Among other things, this includes a build tool that calls the kernel
on all files in a project and caches the resulting ASTs to disk using the OM-
Doc XML format [Koh06]. Therefore, jMmt can access all dependencies of the
current source file without them being processed during the current session.

Fig. 7. Generated Web Page

The Mmt build tool can also pro-
duce a documentation website for the
project, which includes a hierarchi-
cal and graph-based project browser.
For example, Fig. 7 shows the theo-
rem from Ex. 2 as rendered in a web
browser.
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Fig. 8. Folding

Moreover, jMmt automatically starts a web
server, through which the project pages can
be browsed interactively. Interactive features
include selecting or folding sub-terms (as in
Fig. 8) or showing/hiding any inferred part of
the term. The user can also control jMmt via
the web browser; in particular, by clicking on a declaration in the web browser,
the user can open it in jEdit.

3.5 Relational Navigation

Fig. 9. Navigation

The Mmt build tool also produces a relational index
that stores the ABox of the Mmt ontology. For ex-
ample, atomic relations in the index are the import-
relation between theories and the occurs-in relation
between parsing units. Mmt includes a query lan-
guage over this ontology [Rab12], which can, e.g.,
take the transitive closure of a relation or its re-
striction to theorems.

A particularly useful application in jMmt is relational navigation: It displays
one navigation button for every declaration that is related to the current one.
Clicking a button navigates to that declaration. This permits very fast navigation
across a project. Fig. 9 shows for example all constants that refer to and.

3.6 Search

Fig. 10. Display of Search Results

The Mmt build tool also
creates an index of all
terms in a project. This
index can be read by
the MathWebSearch tool
[KŞ06], which uses sub-
stitution tree indexing to
make the set of terms
available for fast search-
ing. If an instance of
MathWebSearch is running, it can be registered with jMmt, which then provides
a search interface for the project.

In Fig. 10, jMmt displays the results of two search queries, where only results
from the running example are shown. A search query is of the form $x1, . . . , xn ∶
E(x1, . . . ,En) and returns all terms that unify with E(x1, . . . ,En). The first
query asked for all terms of the form x ∧ x for arbitrary x, and the second for
all terms of the form x⇒ (y ∧ z).

Note that the results include hits in the inferred parts of the term: For ex-
ample, the term A ∧A is found in the definiens [A]impI [p]andIpp because it
occurs in the implicit arguments of impI.
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Clicking on a result opens the containing file in jEdit and selects the respec-
tive sub-term.

3.7 Change Management

The type checking of terms is typically the most expensive part of checking a file
because it can involve theorem proving or computation. Therefore, it is desirable
to recheck terms only when necessary.

t
string

parsed

validated

t′

string

parsed

validated . . .

depends on
Therefore, Mmt maintains a two-

dimensional dependency graph for all
terms in a project as indicated on the
right. In the vertical dimension, every
term is maintained in three forms: the
string in the source file, the result of
parsing it, and the result of validating it. In the horizontal dimension, Mmt
maintains a logical dependency relation between terms.

These horizontal dependencies are known from software engineering, where
IDEs recompile a source file only when necessary. For logics, it is important to
use a more fine-granular dependency relation. For example, [AMU12] extract
fine-granular dependencies for Coq and Mizar. We use terms as the granularity
level: If the validity of a term is used while checking another one, this creates a
horizontal dependency.

For example, consider two theorems c ∶ A = p and d ∶ B = q such that d uses
c. Then type checking the proof of d, i.e., q, has to look up the formula asserted
by c, i.e., A. Thus, we obtain a horizontal dependency from q to A. Let us now
assume that we make a change in p without changing A, e.g., we might fix an
error in the proof.

Without change management, jMmt would have to ask the kernel to recheck
the whole buffer and then replace the old AST with the new one returned by the
kernel. This may even require rechecking multiple files (which is what caused
the delays in the L4.verified project we cited in Sect. 1).

As we will describe in Sect. 4, jMmt splits the kernel conceptually into sev-
eral components such that every term can be parsed and validated individually.
This permits jMmt to patch the AST by calling the kernel only on the neces-
sary terms. More precisely, a term is reparsed only if its string representation has
changed. If this causes the parsed representation to change, the term is revali-
dated as well. For example, this is not the case if we only changed a comment
or the formatting of a term. Finally, if a term has to be revalidated and the
resulting validated representation has changed, we also revalidate all terms that
horizontally depended on it.

For our two-theorem example, that means that the changes in p do not trigger
the expensive revalidation of q. This is crucial to achieve short edit-check cycles
when working with multiple theorems at the same time.
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4 An Abstraction Layer Between Kernel and UI

user interface

text
representation

Mmt
representation

jMmt IDE

structure parser
term parser

structure validator
term validator

kernel

parsing validation

uses uses

An overview of our IDE is
shown on the right. jMmt
maintains both the concrete
text source and its abstract
Mmt representation, which
are used by the UI. It
is parametric in operations
for parsing and validation,
which must be provided by
the individual kernels.

The crucial difficulty is
how to conceptually split the
kernel into separate compo-
nents. If the kernel appears
as a single component (as
is typical for read-eval-print
kernels), the UI is effectively limited to reporting and querying the kernel’s state.
But if we specify too many components, it puts too many constraints on kernel
design. For our abstraction layer, we choose a trade-off that splits the kernel into
2 × 2 components as shown on the right.

2 × 2 components Parsing Validation

Structure Sect. 4.1 Sect. 4.2
Terms Sect. 4.3 Sect. 4.4

Along one dimension, we distin-
guish the structure and term lev-
els. The structure level comprises the
names of the theory and constant dec-
larations. This corresponds to the OCaml toplevel in HOL Light [Har96] or to
the outer syntax of Isabelle. The term level comprises the type and definiens of
the constant declarations. This corresponds to the HOL Light formula parser or
to the inner syntax of Isabelle.

Along the second dimension, we distinguish parsing and validation. The
former produces an abstract syntax tree that closely resembles the source text;
the latter refines this AST using advanced operations such as type checking,
theorem proving, or computation. Notably, we use Mmt to represent both the
parsed and the validated representation, i.e., validation is a transformation from
Mmt syntax to Mmt syntax.

A major motivation of this separation is to isolate the validation of terms.
This has three reasons. Firstly, this is the most expensive phase. Therefore, as we
described in the change management section, isolating this component permits
revalidating terms as rarely as possible. Secondly, almost all errors that users
have to fix are detected during term validation, whereas the other 3 components
succeed most of the time. By isolating term validation, we can provide substantial
UI features, which are especially helpful when term validation does not succeed.
Moreover, many UI features do not depend on term validation such as auto-
completion or search.
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Thirdly, it opens up an alternative way to connect an existing kernel with
our UI in those cases where it is not possible to have the kernel expose the AST.
Then it can be feasible to reimplement the other 3 components from scratch,
but it will usually be impossible to reimplement term validation.

We explain the 2× 2 components in the following, using our kernel for LF as
a running example. To simplify the description below, we point out two general
aspects globally that apply to all 2×2 components. Firstly, to maximize exten-
sibility, both individual kernels as well as extensions of our example kernel are
supplied to jMmt as plugins. Thus, kernels can be developed and used without
rebuilding jMmt itself.

Secondly, all 2 × 2 components can report errors to jMmt and can always
recover from errors by returning partial or no results. For example, term parsing
may return a term with some unparsed sub-terms, for which errors are reported.

4.1 Structure Parsing

Structure parsing takes a source document and returns an abstract syntax tree
(AST) in the Mmt language. Alternatively, the AST can be returned as XML
(using the OMDoc format [Koh06]), which is useful if kernels are implemented
in other programming languages. The terms occurring in the source can remain
unparsed: jMmt produces a parsing unit for each unparsed object, which is
passed on to the term parsing component.

Example 4 (A Keyword-Based Parser). We implement a straightforward struc-
ture parser based on keywords. First it splits a file into declarations based on a
few reserved characters and computes their source references. Then the parsing
of each declaration is relegated to an appropriate plugin, which is selected based
on the keyword.

We choose the ASCII characters 28-31 as separators (the green boxes in
Fig. 4). Thus, existing term parsers can be reused easily no matter what special
characters are used in the terms.

Our structure parser works at the Mmt level, and we do not have to customize
it for LF at all.

4.2 Structure Validation

Structure validation is a fixed algorithm, that implements the semantics of Mmt,
in particular the module system [RK13]. Thus, it is not necessary to change the
implementation in specific kernels.

Because Mmt is parametric in the underlying type system, the terms cannot
be validated generically. Instead, structure validation produces one validation
unit for each term and passes them on the term validator. In particular, the
constant declaration c ∶ A = t in a theory T gives rise to two validation units:
ctype validates the judgment ⊢T A TYPE, and cdef validates the judgment ⊢T t ∶ A.

Even though this algorithm is fixed, it is still extensible because it imple-
ments the structure level extension mechanism we presented in [HKR12]. This
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is general enough to express, e.g., all toplevel declarations of Mizar (as we show
in [IKRU13]) or the type definition principle of HOL systems.

4.3 Term Parsing

A parsing unit is a tuple of

– a string S that is to be parsed into a term,
– the source reference R of S (if returned by the structure parser),
– the theory T in which S occurs.

Term parsing takes as input a parsing unit and returns an Mmt term t in context
Γ . The role of Γ is to declare meta-variables for unknown sub-terms that are to
be found during validation. For example, the term parser may generate a meta-
variable for the omitted type of a bound variable. More generally, meta-variables
can be used to represent proof that still have be found and inserted.

In Mmt, each sub-term may carry its own source reference. Thus, the term
parsing algorithm can return fine-granular source references for all sub-terms.
The Mmt implementation makes sure that source references are ignored when
programs inspect terms (e.g., to check identity or for pattern-matching), but are
carried along when programs transform terms by substitution or rewriting.

Example 5 (A Notation-Based Parser). jMmt includes a term parser, which
uses the Mmt notations of all constants that are imported into T . It returns
source references for every sub-term and inserts fresh meta-variables for omit-
ted variable types and implicit arguments. (An argument position is considered
implicit if it is not mentioned in the notation.)

In fact, our term parser is a bit more general: It also supports notations with
precedences, argument sequences, and bound variable sequences.

Our term parser works at the Mmt level, and we do not have to customize
it for LF – we only have to import the theory from Ex. 1.

4.4 Term Validation

A validation unit consists of

– a context Γ (as returned by the term parser),
– a judgment (as in Fig. 3) whose terms may use the free variables of Γ .

A term validator takes a validation unit; it verifies the judgment and returns
a substitution for the variables in Γ , i.e., it finds the unknown parts of the term.
This has the advantage that the validated term has the same structure as the
parsed term so that the UI can present both at once. Alternatively, it may be
reasonable that validation returns a whole new term, e.g., its normal form.

It is important that we validate at a per-term basis and not at a per-
declaration basis. As described above, our structure validator produces two in-
dependent validation units ctype and cdef for a declaration c ∶ A = t. For most
type theories, cdef implies ctype so that validating both seems redundant. But
this design is crucial for change management, as we have seen in Sect. 3.7.
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Example 6 (A Rule-Based Validator). We have developed a term validator for
Mmt terms. It reconstructs the unknown variables from Γ by using an algorithm
similar to the one of Twelf [PS99]. Moreover, type checking can be performed
modulo rewriting according to user-declared equalities (which are assumed to be
confluent). This term validator is described in detail in [Rab14].

In order to maximize reuse, we only implement certain structural rules like
congruence and lookup. We use the heads of complex terms to relegate to
language-specific rules, which can be provided by other plugins.

Example 7 (A Term Validator for LF). We instantiate the term validator from
Ex. 6 with LF by providing LF-specific rules. These are inference rules that infer
the types of terms with head type, lambda, Pi, or apply; a checking rule for
judgments of the form ⊢T f ∶ {x ∶ A}B; an equality rule for judgments of the
form ⊢T t = t′ ∶ {x ∶ A}B; a rewrite rule to turn A → B into { ∶ A}B and a
rewrite rule for β-reducing terms of the form ([x ∶ A]t)a.

Moreover, we implement a solution rule, which is used to determine the values
of the meta-variables in Γ : It applies to judgments of the form ⊢T X x1 . . . nn =

E ∶ A, whereX is a meta-variable from Γ , and the xi are distinct bound variables,
and solves X as [x1, . . . , xn]E.

Notably, in terms of lines of code, the LF-specific rules from Ex. 7, the generic
term validator from Ex. 6, our plugin for jEdit together with Mmt, and the
whole jEdit code are roughly related like 1 ∶ 5 ∶ 500 ∶ 5000. This indicates the
potential synergies of logic-independent IDEs.

5 Conclusion

We have developed jMmt, a generic user interface (UI) for formal logics, by
combining the Mmt representation language and the jEdit text editor. Our
UI differs from most current ones by employing a high-level abstraction layer
that permits a heavyweight UI. This permits a number of advanced features
including auto-completion, error highlighting, search, navigation, and change
management. Future work can benefit from the existing abstraction layer and
extend these features substantially.

But we have to pay for this feature richness: Our IDE cannot be directly
used with existing logic implementations. Even though these largely include the
algorithms that our abstraction layer assumes, these algorithms are not easy
to expose. Depending on the individual system, this may require even partial
redesigns.

Among IDEs for existing logic implementations, our closest relative is Is-
abelle/jEdit [Wen12], which was developed independently of ours. Both sys-
tems share the idea of a heavyweight UI based on jEdit as well as the basic
features (Sect. 3.1). The main difference is that jMmt is a jEdit plugin, whereas
Isabelle/jEdit uses a fork of jEdit that is integrated with the Isabelle system.
Consequently, Isabelle/jEdit can offer additional Isabelle-specific features, in
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particular in regard to theorem proving. jMmt, on the other hand, offers several
advanced features and focuses on logic-independence and extensibility.

New logic implementations can easily reuse jMmt by providing plugins that
instantiate our abstraction layer. We demonstrated that by developing a mature
implementation for the logical framework LF from scratch. Moreover, new logic
implementations can customize our LF implementation by adding operators,
notations, or typing rules – in that case, developers obtain the double benefit
of a strong UI at very small implementation cost. Additionally, they can benefit
from the existing Mmt infrastructure, in particular the module system.
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