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Abstract. Theories are an essential structuring concept in mathemat-
ics. Therefore, many formal languages for mathematical knowledge sup-
port some form of theory expressions, i.e., a set of built-in operators
that return new theories. We survey the commonly-used theory-forming
operators and the formal languages that feature them.

1 Introduction

Theories are one of the most fundamental concepts of mathematics. They allow
the Bourbaki method [Bou74] of systematically stating every result (definitions,
notations, theorems, algorithms, etc.) in the smallest possible context. Moreover,
theory morphisms allow moving and thus reusing results between theories along
complex translations [FGT92]. Finally, they allow systematically building large
theories out of small reusable components, a technique crucial for scalability.

Consequently, virtually every formal language used for mathematics has some
notion of theory. Moreover, almost all of these have developed at least limited
(although sometimes somewhat ad hoc) support for theory expressions. Among
the simplest examples is the union operator S U T, which returns the theory
consisting of all declarations of the theories S and T.

However, even intuitively simple theory expressions tend to be very difficult
to support in formal languages. Consequently, no state-of-the-art system sup-
ports all theory expressions needed to elegantly formalize even simple suites of
mathematical examples. We posit that designing a satisfactory formal language
of theory expressions is still an open problem.!

Therefore, this paper surveys the state of the art and serves as a starting
point for systematically designing future languages. Our contribution is twofold.
Firstly, we give a comprehensive collection of theory expressions that are used in
informal and/or formal mathematics. Secondly, we survey current specification,
deduction, and programming languages according to their theory expressions.

Sect. 2 introduces a general definition of basic theory. Sect. 3 describes three
design choices, according to which languages with theory expressions can be
classified. Even though these choices fundamentally affect the style of the lan-
guage, they are mostly orthogonal to the question of which theory expressions
are present. Sect. 5 compiles the set of operators that languages can provide to
form complex theory expressions from basic theories. Accordingly, Sect. 4 intro-
duces predicates that express properties of theory expressions. Finally Sect. 6

! In fact, this work is a by-product of the author’s ongoing effort to do just that.



applies our terminology to concisely survey existing languages. We conclude in
Sect. 7 with some design goals for future languages.

2 Basic Theories

Even though formal languages differ tremendously in their syntax and semantics
(not to mention the tools implementing them), the concept of theory is used
rather uniformly across all systems (although not always under that name; an
overview can be found in [RK13]). A major feature of the MMT language [RK13]
is that it provides an extremely general setting in which this observation can be
made precise: It gives a concise definition of theory without making language-
specific assumptions about syntax or semantics. Therefore, we use MMT to make
our discussion precise. In the sequel we recap non-modular MMT theories and
morphism.

Definition 1 (Theory). A basic theory T is of the form

T = D,....,D basic theory
D w= [ t][=d]  symbol declaration with optional type and definiens
t,d == ¢ ... OPENMATH objects built from symbols ¢

such that each t and d use no free variables and only use previously declared
symbols. We omit the remaining productions for OPENMATH objects
We write dom(T') for the set of symbol identifiers ¢ declared in T and 0bj(T)
for the set of closed objects using only symbols ¢ € dom(T).

These theories are similar to OpenMath content dictionaries [BCC*04] but
simpler in some aspects and more precise in others.

Symbol declarations subsume virtually all basic declarations common in for-
mal systems such as type/function/predicate symbols, axioms, theorems, in-
ference rules, etc. In particular, axioms [theorems| can be represented via the
propositions-as-types correspondence as declarations ¢ : F[= p|, which assert the
sentence F' [via proof p|. Similarly, objects subsume virtually all objects common
in formal systems such as terms, types, formulas, proofs.

Individual formal languages arise as fragments of MMT: They single out the
well-formed objects and theories by defining the two MMT-judgments 7 o : o’
(typing) and Fr o = o' (equality) for every theory T and 0,0’ € 0bj(T). The
details can be found in [Rab14].

Definition 2 (Morphism). For two theories S and T, a basic morphism
M : S — T is a list of symbol assignments ¢ := o for o € 0bj(T) such that there
is exactly one assignment for each ¢ € dom(S5).

M induces a homomorphic extension M(—) : 0bj(S) — 0bj(T), which
replaces every S-symbol in an S-object with the corresponding T-object provided
by M.

If T is the current theory, we also call M a ground morphism of S.



Morphisms subsume a wide variety of inter-theory relations including in-
heritance, refinement, translations, and representation theorems. Ground mor-
phisms of S allow formally representing implementations and models of S, in
which case M(—) is the interpretation function that maps objects to their de-
notation. Moreover, morphisms M : S — T subsume functors that map T-
implementations/models to S-implementations/models.”

Crucially, morphisms preserve judgments, in particular they map theo-
rems to theorems. Formally, M : S — T is well-formed if

— whenever ¢ has type t and ¢ := o0 in M, then F7 o : M(t),

— whenever ¢ has definiens d and ¢ := o in M, then Fr 0o = M (d).
In that case, if Fg 0: 0 (or Fg 0 = 0'), then Fr M(0) : M(0') (or b1 M(0) =
M(0')). Again, the details can be found in [Rab14].

We write Thy” and Mor’(S,T) for the sets of basic theories and basic mor-
phisms as defined above and Thy D Thy’ and Mor (S, T') D Mor®(S, T) for the sets
of complex theory and morphism expressions of specific languages.

3 Fundamental Aspects

3.1 Syntactic Status of Theories

We speak of external theories if a language allows theory declarations T =
{...,¢l: t;][=di],...} for a new identifier T but guarantees that 7" never occurs
in objects. This introduces a 2-layered hierarchy of object- and theory-level such
that the latter talks about the former but not vice versa. Therefore, external
theories are conservative in the sense that they do not change the set of well-
formed objects. External (ground) morphisms are defined accordingly.
External theories are used in virtually every practical system. The most well-
known example are SML-style module systems [MTHM97]: Here external theo-
ries, ground morphisms of S, and morphisms S — T correspond to, respectively,
signatures, structures typed by S, and functors F': T — S =Xz : T.{...,¢; :=
Ojyenny }
The sharp distinction between object- and theory-level is a disadvantage if we
want to compute or reason with theories. Usually, that requires primitives that
are already present in the object language such as equality or A-abstraction,
which have to duplicated at the theory level. Therefore, it is desirable to use
internal theories: Here a language expresses theory declarations as a special
case of symbol declarations, and theories become a special case of objects.
Often internal theories are more restricted than external ones: They may
forbid certain declarations (e.g., imports, definitions, or notations), forbid certain
t; (e.g., type declarations or axioms), or forbid dependencies (e.g., ¢; occurring in
t2). The most widely used example are records. Here internal theories correspond

2 Note that morphisms translate expressions one way but models the other way. We
find this effect in all languages, and in MMT we can understand it in general: If
we represent models as ground morphisms, then M : S — T maps the T-model
m T — U to the S-model mo M : S — U.



to record types, which are usually restricted to the form S = {...,¢; : t;,...}.
Internal ground morphisms of S correspond to record terms {...,¢; := 0;,...} of
type S. And internal morphisms correspond to functions between record types.

Because external theories are usually present anyway, internal theories intro-
duce some redundancy. This adds flexibility for ad hoc use, but formalizations
and tool support may end up being duplicated when communities build large li-
braries of theories collaboratively. This motivates internalized theories where
the external theories double as internal ones.

The most widely used example are classes in object-oriented programming
languages. Theories correspond to abstract classes S, which are at the same
time object-level types. Ground morphisms of .S correspond to concrete classes
M implementing S, which are (if we create a singleton instance of M) at the same
time objects of type S. Morphisms S — T correspond to classes implementing
S with a constructor argument of type T'.

3.2 Formation of Complex Theories

We call the formation of complex theories declaration-based if the syntax of
basic theories is extended to support import declarations. The simplest such
declaration is inclusion as in®

AbelianGroup = {include Group, commutative : Vz,y.z oy = yox}

Combined with anonymous theories (see Sect. 5.1), this allows defining many
operators discussed in Sect. 5, including extension (as above), union (written as
{include S, include T'}), and pushout (via a more complex import declaration).

We call the formation operator-based if the syntax of objects is extended
with operators that return theories. For example, the union of two theories would
be SUT for a symbol U declared in an appropriate theory.

Declaration-based formation is supported by many languages (e.g., MMT
itself), often in addition to operator-based formation. Declaration-based forma-
tion was discussed and surveyed extensively in [RK13], and we will focus on
operator-based formation in the sequel.

3.3 Semantic Status of Theories

Denotational semantics uses a class Mod of models and functions (i) [—] :
Thy — P(Mod) assigning to each theory its class of models, and (i) [-] :
Mor(S,T) — ([T] — [S]) assigning to each morphism its model translation
functor. As a special case, we obtain the semantics of ground morphisms of S as
elements of [S].

Denotational semantics allows theories-as-types in the sense that we treat
every theory S as the type [S] of its models and morphisms as functions between

3 Here and in all following examples, we will use common mathematical notation for
objects and assume that all relevant symbols (e.g., V) have previously been declared
or imported. MMT [RK13] handles the latter formally using meta-theories.



these types. All example languages of Sect. 3.1 use theories-as-types. This is
particularly appealing when using internal theories in languages that already
use a type system. However, because [S] is usually a proper class, theories-as-
types is not compatible with the standard interpretation of types as sets.

T is called flattenable if there is a basic theory T° such that [T] = [T°],
and accordingly for (ground) morphisms. Because there are more model classes
than basic theories, denotational semantics allows for unflattenable expressions.

Constructive semantics uses functions —” : Thy — Thy” and —° : Mor(S, T) —
Mor’(S°, T”) (which must be the identity for basic expressions). This can be seen
as the special case of denotational semantics where all expressions are flatten-
able. In this case, theory expressions do not introduce semantically new theories
and only provide new ways of writing existing ones.

The most widely used example of unflattenable theories are theories with hid-
den declarations (see Sect. 5.1). To accommodate hiding, constructive semantics
with hidden declarations was developed in [GRO04]: It divides the declarations
in 7” into the visible and the hidden ones.

4 Relations between Theories

Several properties (incidentally all binary relations) about theories and mor-
phisms are frequently used. Interestingly, they are mostly used with external
theories even though they would also be useful at the object level as predicates
on internal theories.

Two theories S and T are equal, written S = T, iff [S] = [T]. Equality of
(ground) morphisms is defined accordingly. Two theories S and T are isomor-
phic, written S = T, if there are morphisms M : S — T and M’ : T — S such
[M] and [M'] are inverse to each other. Both are equivalence relations.

Equality and isomorphism may or may not be decidable, and languages may
or may not provide an inference system for them. However, the equality of flat-
tenable theories can be determined: S = T holds iff dom(S”) = dom(7”) and for
every c € dom(S”)

— chas a type s in S” iff it has a type t in 7%, and if so Fg» s = t,

— c has a definiens s in S” iff it has a definiens ¢ in T°, and if so Fg» s = ¢.
Moreover, in that case, 0bj(S) = Obj(7"). The corresponding criterion applies to
the equality of morphisms. Thus, if flattening is computable, equality is decidable
for theories and morphisms iff it is decidable for objects.

We say that T includes (or extends) S, written S < T, if the morphism
1 : S — T mapping all S-identifiers to themselves is well-formed. Inclusion is an
order relation (with respect to =), which — under certain reasonable conditions
— is equivalent to [T] C [S]. If S < T, there are two definitions of when the
inclusion is conservative:

— constructive semantics: if every MMT-judgment about S-objects is derivable

in T iff it is derivable in .S,

— denotational semantics: if every S-model can be extended® to a T-model.

* An extension of m € [S] is an m’ € [T] such that [i](m’) = m.



Both definitions have a similar style, but they are not equivalent; for example,
in sound and complete logics, denotational implies constructive conservativity
but not vice versa.

5 Operators that Form Complex Theories

No formal language exists that supports all operators. Therefore, we state all
our examples in a hypothetical extension of MMT.

5.1 Operators on Symbol Declarations

Anonymous Theory An anonymous theory is an expression of the form {..., c[:
t][=d],...}. Intuitively, this is the simplest possible theory expression. However,
it is non-trivial to define the scope of the identifiers ¢ and to keep track of which
identifiers are present in which theory. In particular, it is not possible to form
qualified identifiers to disambiguate if the same c is used in multiple anonymous
theories. Therefore, many languages restrict their use, e.g., only use them as the
definiens of a theory identifier.

Anonymous (ground) morphisms are defined accordingly. These do not suffer
from the same problem because morphisms do not introduce new identifiers.

FEaxtension Theory extensions add declarations or declaration parts to an existing
theory as in

AbelianGroup = Group with{commutative : Vz,y.x oy = yox}

which extends the theory of groups with an axiom for commutativity. More
subtly, we can add a definiens to an existing symbol without definiens as in

Field = {universe: Set,...}

VectorSpace = {F : Field, V : Set,...,mult : F.universe xV — V,...}
RealVectorSpace = VectorSpace with {F := R}

In both cases, we obtain an inclusion morphism from the original to the extended
theory. Both with constructive and denotational semantics, this inclusion is con-
servative if all added declarations have a definiens.

Remowval This is a relatively rare dual of extension that removes declarations
from a theory. It is very useful in the typical case where an existing theory
library is not maximally modular, e.g., we might find

SkewField = Field without commutativeMult

Note that this operator is more complex than extension because it must also
remove all declarations that depend on the removed ones such as theorems whose
proofs use commutativity.

Removal induces an inclusion morphism from the shrunk to the original the-
ory. In [RKS11], a form of partial morphisms (called filtering) was introduced
so that removal induces a filtering morphism in the opposite direction.



Hiding This operator is syntactically similar to removal but behaves very dif-
ferently: It makes an identifier inaccessible but retains the object it identifies. A
typical application is to hide auxiliary declarations that should not be exported.

The denotational semantics of a theory with hiding is the class of all models
of the public interface that can be extended to models of the hidden declarations,
i.e., [T hide c] = image([[i]) where 4 is the inclusion morphism 7 without ¢ —
T'. Theories with hiding cannot be flattened in general. Using constructive se-
mantics with hidden declarations, we can define (T'hidec)” as T” with ¢ and
all declarations depending on it marked hidden. [GR04] formalizes this by rep-
resenting basic theories as a pair I < T such that T declares the internally
available identifiers and I is the publicly visible interface.

We call the above hiding along inclusions. We obtain general hiding by al-
lowing any morphism M : I — T and putting [T hide M] = image([M]).

Renaming The operator T[c ~ ('] leaves T' unchanged except for renaming the
identifier ¢ to ¢. Renaming is only occasionally interesting in itself. But it can
be crucial to avoid name clashes when combining theories (e.g., as in Sect. 5.3).

5.2 Parametrization and Instantiation

The vector space example from Sect. 5.1 can alternatively be written as a para-
metric theory:

VectorSpace(F : Field) = {V : Set,...,mult : F.universe xV — V,...}

RealVectorSpace = VectorSpace(R)

The parameters can be normal values (i.e., typed by a object type) or ground
morphisms (i.e., typed by a theory). The above example uses the latter, i.e., the
parameter F' represents a ground morphism (intuitively: a model) of the theory
Field. When using theories-as-types, the latter is a special case of the former.
Otherwise, the two are orthogonal features, and we speak of object-parameters
and theory-parameters.

A common example of parametric theories are classes with type parameters
such as Java generics. Using internal theories and type-valued functions, para-
metric theories are a special case of A-abstractions that return a record type, and
instantiation becomes a special case of function application. However, as these
are rather strong requirements (satisfied, e.g., by the dependent type theory
underlying Coq [Coql4]), parametric theories are often a separate feature.

Parametrization and instantiation of (ground) morphisms can be defined
accordingly. For example,

FiniteField(p : Prime) : Field = {universe :=Z,,...}

is a parametric ground morphism of the theory of fields.



5.3 Colimit Operators

Colimits form larger theories out of smaller ones. The resulting theories are
flattenable and retain the identifiers of their constituents.

Empty The empty theory {} and the empty morphism {} : {} — T are trivial
nullary operators that are special cases of anonymous expressions. Their main
value is that {} is an initial object in the category of theories.

Union Union is a very common binary operator on theories. For example,
AbelianGroup = Group UCommutativeMagma

If we think of basic theories as sets of declarations, the flattening of the union
theory can be defined by (S UT)” = S UT®. Thus, we have S — S UT and
T < S UT. However, the union operator is partial because S* U T” is only
well-formed if S” and T® assign the same type and definiens to every identifier
in dom(S”) Ndom(7T®) (x). This can be non-trivial to check, especially if equality
of objects is undecidable. Above AbelianGroup is well-formed assuming that
Magma — Group and Magma < CommutativeMagma.

The requirement (%) can be relaxed. If both S” and T° declare ¢ with the
same type but only one of them assigns a definiens, then that definiens can be
used in (SU T). (The according provision could be used for types, but that is
rare.) With this relaxation, the union operator is also called mizin composition.

Even more relaxed, we can define a variant where the definiens in 7” overrides
a definiens in S° (or vice versa). Some programming languages use the override
keyword for that purpose. This is often considered harmful because we no longer
have S — SUT.

An orthogonal generalization is dependent union, which can also be seen as a
variant of extension. If T'(M) is a theory with a theory-parameter M of S, then
SUT(idg) extends S with the declarations of T' where M is instantiated with
the identity morphism of S (see Sect. 5.4). Dependent unions behave similarly
to X-types: Models of SUT are certain pairs (M, M') € [S] x [T], and models
of SUT(ids) are dependent pairs (M, M') € Xprersy[TT(M).

Pushout The general pushout pushout M, M’ takes two morphisms M : S — T
and M’ : S — T’ as arguments. Intuitively, it combines T and 7" in such a
way that they share exactly S. We obtain (pushout M, M’)" as the union of T°
and T" extended with axioms ¢ : M(c) = M’(c) for all ¢ € dom(S”).> Thus, all
pushouts exist if we use a logic that can express the equality of anything that
can be declared. Example are untyped first-order logic or type theories with
sentences for type equality.

5 Actually, this yields a pushout only if dom(Sb), dom(Tb)7 and dom(T'b) are pairwise
disjoint. Otherwise, declarations have to be renamed accordingly.



Of particular importance is the special case of pushout of De
inclusions. Here M’ : S < X is an inclusion, and we write the
pushout as pushout X via M or simply M (X). It can be desir-
able to treat this case as a separate operator because it allows
a much simpler semantics: We do not have to add axioms when
flattening (and thus do not have to generate proof obligations g
when giving models later on). The key idea of constructing the
pushout of an inclusion is that M (X) extends T with the translation via M of
those declarations that X extends S with, e.g.,

M x)
M

T

M(S,....cit=d,..) = T,...,c: M*(t) = M*(d), ...

where M* is like M but additionally maps ¢ := ¢ for ¢ € dom(X) \ dom(S). Thus,
we can think of M (X) as the homomorphic extension of M to X, which justifies
our notation.®

For example, given an extension FOL — Group (i.e., the theory of groups
defined by extending first-order logic with non-logical symbols) and a morphism
FOL2HOL : FOL — HOL, which represents a logic translation, we can write

HOLGroup = pushout Group via FOL2HOL

for the HOL-theory arising from Group by translating every declaration of FOL
according to FOL2HOL.

Together with anonymous morphisms, this allows extending a theory with a
definiens: The vector space example from Sect. 5.1 can be written as

RealVectorSpace = pushout VectorSpace via {F := R}

Another important special case arises when M and M’ are inclusions and
S < I, where I is the largest theory included into both T and T'. We can
write it as pushoutT,7’ over S. It can be seen as a variant of union with
limited sharing: It combines T' and T” sharing exactly the declarations in S and
duplicating the ones for dom(7) \ dom(S).” In particular, if S = {}, we obtain the
disjoint union of T and T, and if S = I, we obtain T U T".

For example to define the theory Ring we would use

pushout AbelianGroup, Monoid over CarrierSet (1)

where I = Monoid. This yields the combination of AbelianGroup and Monoid
that shares the logical symbols and the carrier set but contains two copies of the
binary operation.

6 Actually, this yields a pushout only if dom(X”) \ dom(S”) and dom(7”) are disjoint.

" Then this yields a pushout only if dom(7”) \ dom(I’) and dom(T") \ dom(I’) are
disjoint. Moreover, when constructing the pushout, we have to duplicate the non-
shared declarations of I, i.e., the ones for the identifiers in dom(I°) \ dom(S”); this
requires generating a fresh set of identifiers for them.



General Colimits Empty theory, union, and pushout are special cases of colimits
in the category of theories. For many languages (e.g., first-order logic), this
category is cocomplete, i.e., all colimits exist.® Therefore, it makes sense to
introduce a single operator for colimits (and one for the universal morphisms
out of them). However, there are two difficulties.

Firstly, colimits take a diagram as their argument, i.e., a multi-graph of
theories and morphisms. Even though straightforward conceptually, it is difficult
to design a human- and machine-friendly syntax for diagrams.

Secondly, colimits are only unique up to isomorphism, and many character-
istic properties are stated as isomorphisms, not as equalities between theories.
But the constructive semantics must make a concrete choice for the identifiers
in the colimit (especially if we want to implement flattening). For example, in
(1), AbelianGroup and Monoid share the binary operation o, but we need two
different identifiers in the pushout. Thus, even if we know that a colimit exists,
there may not be a canonical choice to call the colimit. Therefore, systems must
either generate fresh identifiers, or require/allow users to supply identifiers as in

pushout AbelianGroup[o ~» +],Monoid[o ~~ -] over CarrierSet

This can be very tedious if many renamings are necessary so that qualified
identifiers are useful as in

pushout AbelianGroup as add, Monoid asmult over CarrierSet

Either solution destroys coherence, i.e., different constructions of the same col-
imit may result in isomorphic but unequal theories. This can be extremely harm-
ful because tools must check the relations S = T and S — T very often, e.g.,
to remove duplicates from the list of imported theories. Thus, we have to make
the colimit operator partial in a way that guarantees coherence (as done in
[Rab14] for pushouts in MMT) or use a complex calculus that keeps track of
isomorphisms.

5.4 Operators Specific to Morphisms

As seen above, most theory operators come with characteristic morphisms into
or out of the constructed theories. This is not surprising: If we use theories-as-
types, the morphisms correspond to the introduction and elimination forms of
the respective theory operator.

However, two operators are unique to morphisms and provide the basic struc-
ture of the category of theories. idp : T — T is the identity morphism of T,
and idy = {¢ == ¢ | ¢ € dom(T”)}. And if M : R — S and N : § — T,
then No M : R — T is the composition morphism, and (N o M)* = {c :=
N(M(c)) | ¢ € dom(R®)}.

8 For the practically relevant case of colimits of finite diagrams, this already follows
from the existence of empty theory and pushout.
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5.5 Theory Polymorphism

Many mathematical statements quantify over all theories or all theories of a
certain shape. Most importantly, universal algebra permanently works with an
arbitrary algebraic theory. We speak of theory polymorphism if variables can
range over all theories, and of bounded theory polymorphism if they can range
over all theories that extend a given theory. For example,

Abelian(T < Magma) = T with{commutative : Vo,y.z oy =yox}

adds the commutativity axiom to any theory T that extends Magma (and thus
has a binary operator o).

Languages that use theories-as-types can offer (bounded) theory polymor-
phism as a special case of (bounded) type polymorphism: AT <: B.K takes a
type parameter 1" that is required to be a subtype of the bound B. Then we can
use T <: Magma because subtyping of theories corresponds to inclusion.

A major difficulty is that many theory operators are partial (e.g., union or
pushout), and well-formedness depends on the domains of the argument theories.
For example, Abelian(7T) is only well-formed if commutative ¢ dom(7T). But we
do not know dom(T") if T is a variable, which makes it difficult to statically check
expressions with theory polymorphism.

But even more complex forms of theory polymorphism are necessary to el-
egantly formalize even elementary examples. In particular, we often need to
iterate over the list of declarations in a theory and define the cases of the itera-
tion by pattern matching on the shape of the declaration. The following example
defines the theory of homomorphisms ¢ between models m,m’ of an arbitrary
first-order theory T

Hom(T <= FOL,m : T,m’ : T) = {
@ : m.universe — m’.universe,
iterateT
case f : FunSymb(n) put f : Vz : m.universe™ . p(m.f(x)) = m’.f(xmap ¢)
casep : PredSymb(n) put p : Va : m.universe™. m.p(x) = m’.p(x map ©)

}

This assumes FOL has been defined using the formalism of [Hor14] with declara-
tion patterns FunSymb and PredSymb for n-ary function and predicate symbols.

6 Selected Formal Systems with Theory Expressions

6.1 Logic-Independent Languages

Generic representation languages such as OPENMATH [BCC104] and MMT [RK13]
use external theories with declaration-based formation. The current MMT im-
plementation also supports parametric theories and morphisms, identity, com-
position, empty, union, pushout along inclusion, and anonymous morphisms.

11



6.2 Specification Languages

Structured specification languages [SW83,5S5T92] were systematically designed
to provide a set of logic-independent primitives for constructing external the-
ories with denotational semantics. Logic-independence is achieved by using an
arbitrary institution [GB92] to provide the basic theories and models. Because
institutions abstract from the inner structure of theories and objects, it is not
possible to define all operators from Sect. 5 at this level. The central operators
are union, translation (a special case of pushout of inclusion), and general hiding.

OBJ3 [GWM™93] uses external theories and morphisms with constructive
semantics. It supports theories with theory-parameters, parametric morphisms
(not implemented though), renaming, and union (called sum).

CASL [CoF04] provides the operators of ASL as well as anonymous theories,
extension, and theories and morphisms with theory-parameters. Hiding is re-
stricted to inclusions, which allows implementations (e.g., Hets [MMLOT7]) to use
constructive semantics with hidden declarations. Basic morphisms are restricted
to assignments of the form c := ¢'.

Specware [SJ95] uses external theories (called specifications) and morphisms
with constructive semantics. It supports anonymous theories and morphisms,
renaming (called translation), pushout of inclusion (called substitution), and
general colimits. The latter take diagram expressions as arguments, which are
given as a list of nodes and edges labeled with theory and morphism expressions,
respectively. Specware also uses internal theories via record types.

MathScheme [CFO10] is not intended as a specification language, but its
results regarding theory expressions [CO12| are similar to the above languages.
It uses external theories with constructive semantics and supports anonymous
theories, empty theory, renaming, extension, pushout (called combination), and
composition. Except for renaming in the arguments of a pushout, theory expres-
sions cannot be nested.

6.3 Proof Assistants

All proof assistants use constructive semantics.

Isabelle [Pau94] uses three kinds of external theories (called theory, type class,
and locale), and external morphisms between some of them (called interpretation,
sublocale, or subclass). Theories are mostly used for namespace management,
and type classes can be seen as special cases of locales; thus, locales are the best
analogue to our theories. Locale expressions are extensions of unions of locale
instances, where locale instances extend basic locales with definitions.

PVS [ORS92] uses external theories with theory-parameters. It supports
pushout of inclusion via anonymous morphisms (called interpretation).

Coq [Coql4] uses two independent features that support theories. Firstly,
it uses external theories (called modules) evolved from the ML module system.
Secondly, it uses a variant of record types that (although not systematically in-
tended as such) has the flavor of internalized theories. Record types are declared
(only) by a toplevel macro, which is expanded into an inductive type with a
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single constructor. Moreover, record types may be parametric, and a declaration
in a record type may carry definiens and notation.

This makes Coq one of the few languages that provide strong support for
both external and internal theories. The experience of Gonthier’s formalizations
of algebra [GGMRO09] confirm that internal theories are more flexible.

Moreover, dependent type theories with universes (like the one underlying
Coq) are rich enough for an even more expressive variant of internalized theories.
Here theories are represented as a type I of identifiers and a function I — type
mapping every identifier to its type. This yields a type of theories and thus allows
theory polymorphism. This was applied to universal algebra in [Cap99]. But such
theories are even weaker as an abstraction mechanism than record types.

Mizar [TB85] uses an abbreviation for introducing toplevel record types
(called structs) that is similar to the one in Coq. It uses a special set of identifiers
and expands records into functions out of that set. Moreover, Mizar allows rep-
resenting axioms as unary predicates (called attributes) on these record types,
and the extension of a theory with an axiom (called mode) as a predicate sub-
type. A sophisticated concrete syntax hides the expansion and makes the internal
theories appear similar to external ones.

HOL Light [Har96] inherits external theories from the OCaml toplevel within
which it is implemented. As such it inherits the theory expressions of OCaml.

6.4 Programming Languages

These mostly use constructive semantics with hidden declarations.

SML [MTHMO97] uses external theories and (ground) morphisms as described
in Sect. 3.1. It supports anonymous theories, extending with a definiens (the
where keyword), and hiding declarations (via structural matching). Only type
declarations in signatures may carry a definiens. Other ML variants such as
OCaml use similar module systems.

MixML [RD13] redesigns the ML module system. It uses anonymous theories
(called modules), parametric theories (called suspension), and dependent mixin
composition (called linking) as primitives.

Java [GJJ96] uses internalized theories as described in Sect. 3.1. It supports
extension and union with overriding. However, only the first theory in a union
may contain definitions (the others are called interfaces). Theories and (ground)
morphisms may use bounded polymorphism (called generics).

Scala [OSV07] gently redesigns the Java class system. It additionally supports
anonymous theories and mixin composition (using the keyword with). Because
it supports higher-order functions, we can form the type T' = S of morphisms
from S to T; therefore, parametric (ground) morphisms can be plain functions.

7 Conclusion

We showed a large variety of theory operators along with examples of mathe-
matical theories, whose elegant formalization depends on these operators. More-
over, we summarized which operators are supported by state-of-the-art formal

13



languages. We observe that none of these offer a satisfactory combination of
expressive power and reasoning support.

Based on our survey, we consider the following requirements crucial in the
design of future theory expression languages.”

Theories should be language-independent. A major problem in formal-
ized mathematics is the incompatibility between languages. But languages are
highly compatible regarding (basic) theories. Thus, if we develop theory expres-
sions language-independently, we can use them as interfaces between different
formalization systems as well as between formalization and MKM systems.

Theories should be distinguished ontologically. It is tempting to iden-
tify theories and objects, e.g., by using internal theories. While that makes many
developments simpler, it deemphasizes some the key properties that motivated
using theories in the first place: Abstraction, inheritance, and reuse along mor-
phisms should be special operations.

The theory language should be extensible. It appears hopeless to fix
a small, expressive subset of theory operators once and for all. Indeed, even
if many other operators are definable, these definitions themselves can usually
not be stated in the formal language. For a language with user-definable theory
operators, we need (at least) support for functions taking and returning theories.

Theories should be internalized. This is the most promising approach to
combine the rich expressivity of the object level with the ontological simplicity
of the theory level. There is currently no logical language that systematically
supports it.
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